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_________________________________________________________________________________________________ 

ABSTRACT---- Static Water Production Function Models were used in assessing and predicting crop growth and 

yield for plantain. The regression analysis between the crop water use and yields showed that the relationships 

continued to improve from the linear function to the third degree polynomial functions. 

Fundamental water production function equations were drawn from the regression equations of each treatment when 

the relative yield decrease and relative evapotranspiration deficits were compared. The crop yield response factor 

values obtained in the study for plantain crop ranged from 0.61 – 1.35. The linear yield prediction models established 

for the crop gave positive slopes and thus exhibit some measure of reliability for predicting crop yields. The coefficient 

of correlation were significantly high varying from 0.66 – 0.87 for all treatments. Crop growth model is a very 

effective tool for predicting possible impacts of climatic change on crop growth and yield and also useful for solving 

various practical problems in agriculture. 
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1. INTRODUCTION 

Crop response to water can be described by crop-water-yield functions. It is important in defining the marginal crop 

production for maximum profit. Crop water production functions (CWPF) provide important basis not only for the 

planning and design of irrigation system, but also for the determination of water allocation scheduling of deficit irrigation 
for an area. In the last decades, researchers have developed a large number of models from different points of view since 

the early twentieth century. These models can be basically divided into two types. These are the static and dynamic crop 

water production functions. In the case of dynamic crop models, dry matter accumulation of the crop is expressed as a 

function of available soil moisture content in root zone. This indicates that dry matter accumulation is dependent on 

available soil moisture content. In view of its dynamic characteristics, model of this type is named as DYNAMIC 

MODELS. 

 
Fig. 1: Conceptual framework of Crop Water Production Function Models (CWPFM)  
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However static model is about the relationship between crop water consumption (evapotranspiration or transpiration) and 

the crop yield. In this type of models, crop yield is represented as a function of crop water consumption. It reflects the 

crop yield response to the degree of water stress at different growing stages. Models of this type can be called static 

models.  

The Crop water yield function (CWYF) has been used to evaluate the economic viability of irrigation management 

schemes decades back. De Wit (1958) suggested the following CWYF, based on transpiration [Y(T)]:  

  (1) 

where Y is the dry matter yield, T is seasonal transpiration, E0 is evaporation from free water surface, and M is the slope 

of the straight line representing the function. The term M accounts for crop variety, soil type, water availability and 

weather conditions not accounted for by E0.  Based on the de Wit function, Hanks (1974) suggested the following 

function:  

  (2)  

where TMAX is maximum seasonal transpiration and YMAX is the yield at TMAX.  

Stewart et  al., (1977) suggested a function based on evapotranspiration [Y(ET)]:  

  (3) 

where ET is the actual seasonal evapotranspiration, ETMAX is the maximum seasonal evapotranspiration and B is an 

empirical coefficient.  

The above three relations are linear functions. The crop yield as a function of water applied (IRR) can be described 

generally as:  

Y = F (IRR),   (4) 

The relation in this case is curvilinear. It coincides with the Y (ET) up to a point and deviates from linearity with 

increased water application. This departure occurs because the irrigation efficiency decreases. Y (ET) and Y (IRR) are 

identical as long as the irrigation efficiency is 100%. The departure from linearity is a non-ET contribution and results 
from deep percolation, runoff, drainage, change of soil moisture content or other components of the soil water balance 

equation.  

This relation is important for irrigators since the water applied is the water paid for. It is a variable under their control as 

compared to T or ET. Transferability of Y (T) or Y (ET) to Y (IRR) is an interesting issue which represents a bottleneck.  

The growth stage effect was taken into account by Jensen (1968) who developed a function which divided the growing 

season into stages with ET in each stage having a unique effect on yield:  

,         (5) 

where bi is the relative sensitivity of the crop to water stress in the ith growth stage and n is the number of growth stages.  

(f) Similarly Hanks' model can be written as:  

,        (6) 
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where bn is the sensitivity to water stress in the n growth stage.  
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(g) Stewart's model can also be used to include the growth stage effect as follows:  

,       (8) 

where ETMAX is the ET for the whole season.  

(h) Salinity affects the CWYF. Therefore, under saline conditions present in soil or irrigation water, the CWYF 

takes the following form (Maas and Hoffman, 1977):  

for ECe ≤ As,                               (9) 

for ECe ≥As,             (10) 

where As is the salinity threshold in ds m-1, bs is sensitivity of the crop to salinity above the threshold value in ds-1 m-2 and 

ECe is the electrical conductivity of the soil solution of the saturation extract in ds m-1.  

(i) Van Genuchten and Hoffman (1984) suggested the following model:  

,          (11) 

where OP is the current soil osmotic potential in J kg-1 and OP50 is the soil osmotic potential in J kg-1 when yield is 

reduced by 50% and b is an empirical constant. This was found to be around 3 for some crops.  

Crop growth models can be used to produce daily CWYF. Its accuracy depends on the accuracy of the input to the model 

(Ragab et al., 1990). The assumptions and limitations of the model will be reflected in the output similar to those of the 

empirical models.  

The empirical relations based only on T or ET are usually valid for a single crop at a specific location. Using a 
relative transpiration or relative evapotranspiration ratio would make the CWYF a more generalized function and, 

therefore, transferable to different sites. Field values of T, unlike ET, are difficult or nearly impossible to determine or 

estimate accurately and, therefore, ET is more reliable.  

From an economic point of view the Y (IRR) is the most important function for growers because it reflects better the cost 

of irrigation water, although it does not represent the actual water used by the crop as well as the ET. The relationship 

between ET and IRR applied is not well understood but it is known to depend mainly on irrigation system design and 

management. Soil water stress will usually have an inconsistent effect on yield under field conditions. The relation is also 

affected by the soil permeability (Ragab and Cooper, 1993), soil moisture uniformity within fields and other factors. The 

effect of variation in spatial application of irrigation and the spatial uniformity of ET over the field is an unresolved issue. 

Integrating all the factors affecting the CWYF is difficult. There is no universal relation between Y and IRR. This work 

studies some Static crop water production functions of plantain (Musa AAB) grown under a tropical climatic condition of 

South western Nigeria. 

2. MATERIALS AND METHODS 

2.1. Experimental site 

Experimental site is the Agricultural Engineering Research farm of the Federal University of Technology, 

Akure, Nigeria. It is located within the humid region of Nigeria at latitude 7o 16’ N and longitude 5o 13’ E. It lies in the 

rainforest zone with a mean annual rainfall of between 1300-1600 mm and with average temperature of 27.5oC. The 

relative humidity ranges between 85% and 100% during the rainy season and less than 60% during the harmattan period.  

 

2.2 Soil Physical and Chemical Properties of the Experimental Field 

Soil samples were collected from 0 – 60cm depth at five different locations on the experimental field to determine the 
soil mineralogical, chemical and physical properties such as the particle size distribution (i.e. sand, silt and clay 

contents), organic matter present, soil pH, bulk density, percentage composition of nitrogen, sodium, potassium, calcium, 

phosphorous and magnesium using standard procedures. The soil at the experimental field belongs to category of sandy 

loam soil, skeletal, Kaolinitic, iso-hyperthermic, oxic paleustalf (Alfisol) or Ferric Luvisol. 
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Fig 2: Map of Nigeria showing South Western Nigeria and the geographical location of the study area. 

 

 

2.3 Planting and other cultural practices 

Suckers of plantain, cultivar Agbagba (musa sp. AAB) were planted at the Teaching and Research farm site of the 

Department of Agricultural Engineering, Federal University of Technology, Akure between July 2006 - November 2007 

and August 2007 – November 2008. The planting density was 1,921 plants ha-1 at 2 x 2 m spacing. A preliminary 

investigation was carried out on the soil physical and chemical characteristics, climate variations and water resource of 

the study site to determine its potentials for dry season farming.  Low gravity drip irrigation system was designed for the 

16 x 40 m2 experimental farm. There were four irrigation treatments: no deficit irrigation, T100, (i.e. maintained at near 

field capacity or 100% available water); 50% deficit irrigation, T50, (i.e. maintained at 50% available water); 75% deficit 

irrigation, T25, (i.e. maintained at 25% available water) and the control treatment, T0, which was not irrigated except 

during crop establishment. The experimental design was a Randomized Complete Block Design (RCBD) with four 
replicates.  

Table 1:   Summary of Irrigation Treatments 

Treatment Code Definition 

High (Full) T100 0% Deficit Irrigation  

Moderate T50 50% Deficit Irrigation 

Low T25 75% Deficit Irrigation 

Control T0 Control experiment 

 

Measurements taken on the field during experiments included soil moisture content using the gravimetric method, soil 

bulk density, overland flow during occasional rainfalls in the field by use of runoff meter and deep drainage from the 

field using hydraulic lysimeter. Measured crop parameters included the plant height, the leaf area and the number of 
leaves and crop yield. The leaf area index (LAI) was determined weekly, a representative plant was selected weekly for 

the measurement of LAI. The length L and the maximum width W of each leaf were measured from which the leaf area 

was computed following the method of Obiefuna and Ndubizu, (1979) 

0.83LW  (LA) Area Leaf                                                                            12 

Leaf area index was then estimated from the relationship below (Gong et al., 1995): 

plantper  covered soil of Area

plantper  leaf of Area
(LAI)Index  Area Leaf                             13 

Bunch yield and dry matter yield were determined at maturity.  

The consumptive use of water by the crop was estimated using the water balance equation: 

 DRSPIET                                                                         14 

where ET =  actual evapotranspiration in mm; I =  amount of irrigation water (mm); P   =  effective rainfall  (mm); ΔS = 

change in soil water storage (mm); R =  surface runoff, (mm) and D = amount of drainage water (mm) 
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Plate 1: Runoff Meter Installed on T100        Plate 1: Runoff Meter Installed on T0 

3. RESULTS AND DISCUSSIONS 

3.1 Biomass Yield – Consumptive Yield 

The relationship observed between the measured consumptive use and biomass yield for each treatment are 

presented in fig.3. Estimated water consumed ranged from 900 mm to 1700 mm from planting to harvest in the order of 
T0, T25, T50 and T100 treatments respectively. For example, in the fully irrigated treatment, (fig. 3c), crop consumptive use 

at 413DAP (at harvest) was 1691.5 mm while crop consumptive use was 910.7 mm at same period for treatment T0 (fig. 

3d). Correspondingly, highest biomass yield was 23.2tha-1 at harvest for T100 treatment while lowest value of biomass 

yield was 8.3 tha-1 in T0 treatment. This confirms that supplemental irrigation had significant effect (p<0.05) on biomass 

yield.  

 
                                       (a) 

 

 
                                   (b) 

 
 
                                    (c) 

 
                              (d) 

Fig 3: Biomass Yield vs Seasonal Consumptive use for (a) T25 (b) T50 (c) T100 and (d) T0 
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When crop consumptive use and biomass yield were fitted to a linear model, R2 values obtained were 0.94, 0.77, 0.73 

and 0.77 for T100, T50, T25 and T0 respectively. On third degree polynomial model, R2 values were 0.99, 1.0, 0.94 and 0.97 

for T100 down to T0 treatments respectively 

 

3.2 Pseudostem Yield and Consumptive Use 

The pseudostem yields and consumptive use relationship (fig. 4) for each treatment were examined. Results 

showed that T100 treatment (fig. 4c) was highest in each case. The value for the highest yield of pseudostem was 5.73 tha-

1 while the corresponding ET was 1691.5 mm at maturity. T0  (fig. 4d) had least pseudostem yield of 3.08 tha-1 at harvest. 

The R2 value for the linear regression equation for T100, T50, T25 and T0 treatments were 0.94, 0.94, 0.69 and 0.98 

respectively.   

 
                                       (a) 

 
                                     (b) 

 
                                       (c) 

 
                                    (d) 

Fig 5: Yield of Pseudostem vs Consumptive Use for (a) T25 (b) T50 (c) T100 and (d) T0 
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The relationship between the corm yield and consumptive use are shown in fig. 5 On the average corm yield 

was highest for T100 treatment (fig. 5c) with a value of 3.93 tha-1 which occurred during the maturity stage. The 

corresponding consumptive use at this period was 1691.5 mm. The lowest yield was in the T0 treatment (fig. 5d) with a 

value of 1.98 tha-1 also at the maturity stage. The R2 values for T100, T50, T25 and T0 were 0.96, 0.94, 0.69 and 0.98 

respectively.  
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                                       (a) 

 
                                      (b) 

 
                                       (c) 

 
                                    (d) 

Fig 5: Yield of Corm vs Consumptive Use for (a) T25 (b) T50 (c) T100 and (d) T0 

 

3.4 Relative Yield and Relative Evapotranspiration 

 When actual evapotranspiration (ETa) is less than the maximum evapotranspiration (ETmax), evapotranspiration 

deficit occurs which consequently leads to a reduction in yield. According to Stewart et al., (1976), the effect of 

evapotranspiration deficit is associated with some minimum fractional reduction in yield below the maximum yield 
(Ymax), and the reduction is a measure of crop sensitivity to water stress. Fig. 6 shows the relationship between relative 

yield and relative evapotranspiration.  The relative relationship “yield – evapotranspiration” varied with variation in 

water supply to crop and also to variations in rainfall. The coefficient of correlation R2 between relative yield and relative 

evapotranspiration expressed with linear function were significantly high, between 0.73 and 0.94 for all treatments. 
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                                       (a) 

 
                             (b) 

 
                                       (c) 

 
                              (d) 

Fig. 6: Relationship between relative yield (Y/Ymax) and relative evapotranspiration (ET/ETmax) - Global function for (a) T25 (b) 

T50 (c) T100 and (d) T0 

 

 

3.5 Relative Yield Decrease – Relative Evapotranspiration Deficit 

 The relationship between yield decrease and relative evapotranspiration deficits are shown in fig 7. 
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                                       (c) 

 
                                 (d) 

Fig. 7: Relationship between Relative Yield Decrease (1-Y/Ymax) and Relative Evapotranspiration Deficit (1-ET/ETmax) for (a) T25 (b) T50 (c) 

T100 and (d) T0 

 

The linear regression equations of the relationships for each treatment were as follows:  
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and,  for T0 
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where Ya  =  actual yield obtained for the treatment 

Ym  =  maximum yield obtained for the treatment 

 ETa  =  actual ET for the treatment 

 ETmax  =  maximum ET obtained for the treatment 

 Equations 16-19 above are the well known water production functions of Doorenbos and Kassam, (1979). 

Doorenbos and Kassam, (1979) referred to the slope of the expression as the crop yield response factor, Ky. The Ky values 
obtained in this study ranges from 0.51 to 0.82. In Kenya, values of Ky for musa varied from 1.3 to 1.35 (Molua and 

Lambi, 2006). Ky values greater than unity is an indication of severe moisture stress (Igbadun et al., 2006). The result in 

this study confirmed that the rate of relative yield decrease resulting from moisture stress is relatively proportional to the 

relative evapotranspiration deficit for all treatments. This is in agreement with the works of Prieto and Augueira, (1999), 

Anac et al., (1999). When the relationship between yield decrease and relative evapotranspiration deficits were fitted to a 

linear model, R2 values obtained ranged from 0.70 – 0.94 for all treatments. On third degree polynomial model, R2 values 

were between 0.95 – 1.0. 

3.6 Water Stress Factor (Ks) for Musa paradisiaca  
 The FAO revealed the plausibility of “linear crop-water production functions” to predict the reduction of crop 

yield when crop stress is caused by a shortage of soil water according to the relationship in equation 20: 
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where Ks  is the water stress factor and other terms as previously defined. Hence water stress factor for the various 

treatments as revealed in this study are given in Table 2. The water stress factor was high for both fruit filling/bulking 

and maturity stages of musa for all treatments (0.82-0.97) and low during the vegetative period. The mean water stress 

factor for the combined treatments ranged from 0.44 to 0.95 for the various stages of growth. When compared with 

bananas grown in Kenya (Karanja, 2006), the Ks factor was 0.506 for the variety of banana grown. The nature of 

treatment applied was not however mentioned in the report and neither was the Ks value for the crop stages given. 

 A high value of stress factor is an indication of the severity of water stress in a plant and the need to supplement 

with water. The standard deviation for combined Ks was 0.11, skew was -0.399 and kurtosis 1.43. 

Table 2: Water Stress Factor Ks for the Plantain Crop during the 2006-2007 Growth Season 

STAGES TREATMENT    Summary for Combined Treatment 

 LOW MEDIUM HIGH CONTROL  Mean STD Skew Kurtosis 

Vegetative 0.46 0.3 0.57 0.44  0.4425 0.111 -0.399 1.430 

Floral 0.64 0.9 0.75 0.61  0.725 0.131 0.955 -0.420 

Flowering 0.82 0.92 0.9 0.83  0.8675 0.050 0.103 -5.027 

Maturity 0.91 0.95 0.97 0.96  0.9475 0.026 -1.443 2.235 

Mean 0.7075 0.7675 0.7975 0.69      

STD 0.1996 0.3123 0.1773 0.2308      

Skew -0.4816 -1.9790 -0.6788 -0.1806      

Kurtosis -1.6995 3.9151 -1.0797 -2.3064      

 

4. CONCLUSION 

Static water Production Function Models were used in assessing and predicting crop growth and yield for plantain. The 

regression analysis between the crop water use and yields showed that the relationships continued to improve from the 

linear function to the third degree polynomial functions. 

Fundamental water production function equations were drawn from the regression equations of each treatment when the 

relative yield decrease and relative evapotranspiration deficits were compared. The crop yield response factor values 

obtained in the study for plantain crop ranged from 0.61 – 1.35. The linear yield prediction models established for the 

crop gave positive slopes and thus exhibit some measure of reliability for predicting crop yields. The coefficient of 

correlation were significantly high varying from 0.66 – 0.87 for all treatments. Crop growth model is a very effective tool 

for predicting possible impacts of climatic change on crop growth and yield. Crop growth models are useful for solving 

various practical problems in agriculture. One should however trust contemporary models particularly those concerned 

with yields. Wide variations may be found in the yield predicted by different models for specific crop in a defined 
environment. There is a need to develop,  test and improve the models with similar basis till they achieve comparable 

success for use by farmers, extension workers industry, etc. The reason is that the farmer needs them for decision-

making, because It was found that the model can be used to identify new sites suitable for development of crop which 

finally results in generation of income to them. Adequate human resource capacity has to be improved to  develop and 

validate simulation models across the globe. 
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