Sinusoidal Map Based Particle Swarm Optimization Detect the SNP Barcode in Breast Cancer to Disease Susceptibility
Keywords:
Sinusoidal map, Particle Swarm Optimization, SNP barcodeAbstract
Single nucleotide polymorphisms (SNPs) are the most common type of DNA sequence variation in the human genome and are widely used to investigate the association analysis of diseases. SNP barcode is a combination of SNPs with genotypes (AA, Aa, and aa for an SNP) to find the difference between case data set and control data set for analyzing the disease association amongst SNPs. Currently, the computational time of statistical method becomes the weak to analyze the big data to find the significant SNP barcode. Here, we applied a sinusoidal particle swarm optimization (SPSO) algorithm facilitate the statistical methods to analyze the associated SNPs. We systematically evaluated the synergistic effect of 26 SNPs from eight epigenetic modifier-related genes in breast cancer. The 2- to 5-order SNP barcodes were found to determine the risk effects in breast cancer. We found that five of eight genes (BAT8, DNMT3A, EHMT1, DNMT3A, and BAT8) were statistically significant to breast cancer and play the important role in the SNP barcode. In addition, we compared the search ability between PSO and SPSO in the 2- to 5-order SNP barcodes. The results indicated that SPSO can find the better SNP barcode than PSO. In conclusion, SPSO is a precise algorithm for finding a significant model of SNP barcode.
Â
References
L. E. Mechanic, B. T. Luke, J. E. Goodman, S. J. Chanock, and C. C. Harris, "Polymorphism Interaction Analysis (PIA): a method for investigating complex gene-gene interactions," BMC bioinformatics, 2008, pp. 146-146.
P. Kraft and C. A. Haiman, "GWAS identifies a common breast cancer risk allele among BRCA1 carriers," Nature genetics, vol. 42, 2010.
J.-C. Yu, C.-N. Hsiung, H.-M. Hsu, B.-Y. Bao, S.-T. Chen, G.-C. Hsu, W.-C. Chou, L.-Y. Hu, S.-L. Ding, and C.-W. Cheng, "Genetic variation in the genome-wide predicted estrogen response element-related sequences is associated with breast cancer development," Breast Cancer Res, 2011, pp. R13-R13.
X. Li, H. Chen, J. Li, and Z. Zhang, "Gene function prediction with gene interaction networks: a context graph kernel approach," Information Technology in Biomedicine, IEEE Transactions on, 2010, pp. 119-128.
J. H. Moore, F. W. Asselbergs, and S. M. Williams, "Bioinformatics challenges for genome-wide association studies," Bioinformatics, 2010, pp. 445-455.
C.-H. Yang, L.-Y. Chuang, Y.-J. Chen, H.-F. Tseng, and H.-W. Chang, "Computational analysis of simulated SNP interactions between 26 growth factor-related genes in a breast cancer association study," Omics: a journal of integrative biology, 2011, pp. 399-407.
P. D. Pharoah, J. Tyrer, A. M. Dunning, D. F. Easton, B. A. Ponder, and S. Investigators, "Association between common variation in 120 candidate genes and breast cancer risk," PLoS genetics, 2007, pp. e42-e42.
J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of IEEE international conference on neural networks, 1995, pp. 1942-1948.
Y. Shi and R. C. Eberhart, "Empirical study of particle swarm optimization," in Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, 1999.
A. Ratnaweera, S. Halgamuge, and H. C. Watson, "Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients," Evolutionary Computation, IEEE Transactions on, 2004, pp. 240-255.
Downloads
Published
Issue
Section
License
- Papers must be submitted on the understanding that they have not been published elsewhere (except in the form of an abstract or as part of a published lecture, review, or thesis) and are not currently under consideration by another journal published by any other publisher.
- It is also the authors responsibility to ensure that the articles emanating from a particular source are submitted with the necessary approval.
- The authors warrant that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required.
- The authors ensure that all the references carefully and they are accurate in the text as well as in the list of references (and vice versa).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author.