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ABSTRACT—The stability and accuracy of the numerical integration of the time-evolution equation obtained by
discretizing an unsteady partial differential equation with respect to space variables has a crucial importance in
solving the unsteady partial differential equation numerically. The second and fourth order Runge-Kutta methods are
widely used in the numerical integration. However, in some cases, the stability is not sufficient. New implicit methods
are proposed to increase stability and accuracy of the solution of the time-evolution equation. Three new implicit
methods, that is, implicit method using linear approximation (IMP1), one using parabolic approximation (IMP2) and
one using cubic approximation (IMP3) are proposed. In the case of linear problem, IMP1 is identical to the implicit
method by Crank and Nicholson. The stability of various methods including Runge-Kutta method is discussed
theoretically and numerically, and the numerical examples are shown to show the effectiveness of the Implicit
methods. It is proposed that the most practical way to increase both the accuracy and the stability in the solution of
unsteady boundary value problems may be to use IMP1 and the smaller spatial mesh size.
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1. INTRODUCTION

If an unsteady partial differential equation is discretized with respect to the space variables, a time-evolution equation
with the multi unknown variables is obtained. The stability and accuracy of the numerical integration of the time-
evolution equation has a crucial importance in solving the unsteady partial differential equation. Crank and Nicholson [1]
and Rosenbrock [2] have discussed not only the stability but also the accuracy theoretically. In the present paper, the
same problems are discussed again from the different viewpoint and verified by the numerical results.

The second and fourth order Runge-Kutta methods are widely used in the numerical integration. However, in some
cases, the stability is not sufficient. Implicit method is effective in increasing the stability. New implicit methods are
proposed to increase stability and accuracy of the solution of the time-evolution equation. The stability of various
methods including Runge-Kutta method is discussed theoretically and numerically, and the numerical examples are
shown to show the effectiveness of the New Implicit methods.

2. SOLUTION AND PROPERTY OF IMPLICIT METHOD
2.1. Implicit method

Let’s consider the numerical integration of a differential equation using a one-dimensional example:

du .
E—f(t,u) int>0 1)
with the initial condition:
u=u, att=0. 2)
Equation (1) is approximated as
% ~ f(t, +0.5dt, u(t, +0.5dt)) at t=t, +0.5dt 3)
where u, =u(t,).
If we use an approximation:
u(t, +0.5dt) = 0.5(u, +u, ) , (4)
then, we have
u,,, =u,+ f(t, +0.5dt, 0.5(u, +u,,,))dt. ©)
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If f(t,u) isa linear function of u, we can obtain a difference equation to determine u,,,. Even if f(t,u) isa nonlinear
function of u, we can solve this equation by iteration. A solution based on the approximation given by Eqg. (5) is called
an implicit solution.
If approximation:

f (t, +0.5dt, 0.5(u, +u,,,)) = f(t, +0.5dt, u, +0.5dt (u

is used, it becomes the second order Runge-Kutta method
u,,, =u, + f(t, +0.5dt,u, +0.5dt f (t,,u,))dt. (7

The second order Runge-Kutta method is very close to this method but different. Runge-Kutta method is an explicit
solution. On the other hand, Euler solution is given by

—u,)/dt) ~ f (t, +0.5dt, u, +0.50t  (t,,u, )) (6)

n+l

u,,=u,+f(,u,)dt. (8)
Using Taylor expansion, we have
,odt,  dt? ,odt,  dt?
Upg = un+1/2 + un+1/2 7 + un+1/2 ? + O(dt3) Uy = un+1/2 - un+1/2 ? + un+1/2 ? + O(dt3) . (9&, b)
Hence, we obtain
u, +U,, ) ;U —u 2
Upyyp = ”T”l +0(dt?), Uup,y, = % +0(dt?). (104, b)

From Eq (10), the accuracy of Eq. (4) is estimated as

u,,, =u, + f(t +0.5dt, 0.5(u, +u,,,))dt +O(dt?) . (12)
The second order Runge-Kutta method is also O(dt®) approximation.
Let’s consider the property of the implicit and explicit solutions through examples.

2.1.1. Example 1
A problem is defined as

2—?=f(t,u)=uint>0, u=1att=0. (12a, b)
The exact solution is given by
u=e'. (13)
Hence, we have
un+1 _ e(n+1)dt — edtun i (14)
From Eq. (5), the implicit solution is given by
1+0.5dt
u.,~u +05(u, +u )dt or u ,~=———u_. 15, 16
n+l n ( n n+1) n+l 1—05dt n ( )
When dt <<1
U,,; ~ (1+0.5dt)(L+0.5dt +0.25dt* +--Ju, ~ (L+dt +0.5dt*)u,, . (17)
From Eq. (7), the solution of the second order Runge-Kutta method is given by
U, ~U, +(u,+0.5u,dt)dt or u,,,~(L+dt+0.5dt*)u, . (18, 19)
On the other hand, Euler solution is given by
U, ~[@+dt)u,. (20)
In this example, the exact, implicit and Runge-Kutta solutions show the similar tendencies.
2.1.2. Example 2
A problem is defined as
z—l:zf(t,u)z—u int>0, u=1att=0. (214, b)
The exact solution is given by
u=e". (22)
Hence, we have
Uy, =€ "D =e %y, . (23)
From Eqg. (5), the implicit solution is given by
1-0.5dt
u.,~u, —05(u,+u,)dt or u _,~ u,. 24,25
n+l n ( n n+l) n+1 1+05dt n ( )

When dt <<1
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U,,; ~ (1—0.5dt)(1—0.5dt +0.25dt* +-- Ju, ~ (L dt +0.5dt*)u, . (26)
From Eq. (7), the second order Runge-Kutta solution is given by
u,,, ~U, —(u, —0.5u dt)dt or u,,, ~(1—dt+0.5dt*)u,. (27, 28)
On the other hand, Euler solution is given by
U, ~@-dbtu,. (29)

In this example, the exact, implicit, Euler and Runge-Kutta solutions show the quite different tendencies. When dt
tends to o, u,,,/u, tends to 0, -1, —o and —o for the exact, implicit, Euler and Runge-Kutta solutions,
respectively. The implicit solution does not diverge for an arbitrary dt. However, the Euler and Runge-Kutta solutions
diverge when 1—dt <—1 and 1—dt —0.5dt* <—1, respectively. Hence, by making u,, in f unknown, the stability of
the numerical calculation increases drastically, and much larger dt can be used in comparison with explicit methods
such as Euler method and Runge-Kutta method.

The stability analysis using Crank-Nicholson’s method [1] was conducted for this example in Appendix A. An
interesting result is obtained.

2.2. Numerical example

A problem is defined as
z—ltjzuint>0,u:0 att=0. (303, b)

The exact solution is given by

u=e'-1. (31)
The numerical results are shown in Fig. 1. EUL, IMP and RK2 refer to Euler method, Implicit method and Runge-
Kutta method of 2nd order, respectively. Exact means the exact solution. IMP corresponds to IMP1 in section 4.
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Figure 1: Comparison of various solutions (du/dt =y for t >0, u(0)=0)

The accuracy of the solutions increase as dt becomes smaller. The accuracy of the implicit solution is the highest, and
the Runge-Kutta solution is the next. That of the Euler method is much worse.

3. GENERAL LINEAR PROBLEM
3.1. Implicit solution of General linear problem for single unknown variable

If f(t,u) isalinear function of u or f(t,u)=a(t)u+Db(t), namely

i—t‘ =a(t)u+b(t), (32)
then, we have
% ~a(t + O.5dt)%u”*l +h(t, +0.50t) . (33)
Rewriting Eq. (33), we derive
Unoy = —7 ! KH 1a(tn + 0.5dt)dtjun +b(t, + 0.5dt)dt} . (34)
1- 5 a(t, +0.5dt)dt

3.2. Implicit solution of general linear problem for multiple unknown variables
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In the case of multiple unknown variables u;(t), i=0,2,---, the superscript is used to show the time step t™,

i=012,---. Hence, u™ refers to u;(t™), and {u‘”’} means a column vector [ugm um ]T A matrix with element
A, i=012,, j=012, isdenoted by [A].
If the differential equation is given by:

A0} S} -+ b, )
then, we obtain
[a@® + o.5ao]{$} ~[a® + O.5dt)]{&2+u(n)} +{ot®™ +0.5dt)}. (36)
Rewriting Eq. (36), we have
{%} ~[At® + 0500 [ac™ + 0.5dt)}{&;“(n)} +[AGE™ +0.5dt) [ {o(t™ +0.5dt)). (37)

Hence, we derive

e~ [| - %[A(t(”) +0.5dt) [ fat, + O.5dt)]] :
ﬂl +%[A(t‘”) +0.5dt) [ *[a® +O.5dt)ﬂ{u(”) b+ dt[At® +0.50t) [ o™ +O.5dt)}J. (38)

3.2.1. A numerical example:

A problem is defined as
du, /dt 1 -6 5
o/t _ “lintso, 4ol=Platt=o. (39, b)
duy/dt| |1 —4]|y, u 2

The exact solution is given by
{uo} ) {3} eil ’ {2} 8721 ' (40)
u, 1 1

For the exact solution (Exact), we have from Eqg. (40), we have

™) (3 2 3 2] et™
N s e 2
u! 1 1 1 1 e 2t
(n+1) 3 2 o 2] g
U2 | _ 13 gt )2 oo _ 3edt 292& NS (41b)
uly 1 1 e e e
U |3 2|3 2 * ulm |3t 201 -2 ug”
ul(n+1) - et g2t |1 1 ul(n) - el g2t 1 3 Ul(n)

Hence, we obtain

Se—dt _2e—2dt _Ge—dt +6e—2dt u(n)
:{ et _g2t  _pg-t +3e—2dt:|{u?n)} (422)
1
_ 2 _ 2 (n)
N 1+dt 2.5(::t 6dt +9dt 2 Up” | (42b)
dt—15dt>  1—4dt+5dt? | |u™
For the implicit solution (IMP1), [A], [a] and {o} in Eq. (38), are given as
1 0 1 -6
=[5 o) [y 5 e @
Hence, we have )
ugrd dt[r -6, dt[1 —6]][u®
e [ == I+ (n)
U 211 -4 | 2[1 -4y
1 1+ 2.5dt —0.5dt? — 6dt ud"
_ g , (()n) (44a)
1+1.5dt + 0.5dt dt 1-2.5dt-0.5dt" | |u,
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—6dt +9dt?

For Euler solution (EUL), we have

u é n+1)
u 1( n+1) ~

1+dt

For the second order Runge-Kutta solution (RK2), we have

(n+1) (n) (n) (n)
uO uO uO uO
= +dt [a;; +0.5dt|a;; =
{ul(ml)} {ul(n)} [ J]{{ul(n)} [ J]{ul(n)}J |:

From Egs. (42b), (44b), (45) and (46), [u((,“*l) ul(””)]T is expressed by [u((,“) ul(")]T as

Uénﬂ) N Co Cou Uén)
ufnﬂ) ClO COl u:En)

1+ dt —2.5dt?
dt—1.5dt2

ulm
0
1-4dt + 3.875dt2Hu1‘”)} '

(n) (n)
uO u0
+dt [a;; =
{ul(n)} [U]{ul(n)} |: dt

—6dt ||ul™
1-4dt | |u®™ ]

—6dt +9dt?
1—4dt +5dt?

(44b)

(4%)

(46)

(47)

In Fig. 2, C;; s are compared in various solutions. In Fig. 3-5, u, and u, are compared in various solutions. The
accuracy of the solution is higher in the order of IMP1. RK2 and EUL.

24

o

Figure 2: Stability criteria of numerical procedure

—uo
= = u0_exact

(@) dt=1

]
(c)dt=05 - - u?,exam e
—_—

\ |- —ut_exact a0

—uo
(b)dy=0.75 I~ = u0_exact

- ut
N = - —u1_sxact

—]
(d) dt=025 I~ = u0_exact
Sout

|- —u1_exeet

Figure 3: EUL
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Figure 5: IMP1

4. ANEW IMPLICIT METHOD

From Eg. (1), we have

tn1 du th+l
u :un+_|.l Edt:uﬁftn f(t,u(t))dt. (48)

n+1
n

4.1. Constant approximation
If f(t,u(t)) isapproximated by a constantin t, <t <t ,,:

FEU®) = (g2 Uniga) » (49)
where t,,,, and u,.,, are defined as t,,,, =t, +0.5dt and u,,,, =u(t,,,»,) , respectively, then, we have

[ £ U)X = dt T (5 Uy0,) = 0t F (4,050, +U, 1) (50)

t

Substituting this into Eq. (50), we obtain
un+1 ~ un +dt f (tn+1/210'5(un + un+1)) . (51)
This approximation is equal to Eq. (5).

4.2. Linear approximation

If f(t,u(t)) isapproximated by linear function of t in t, <t <t ,:
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(TR

Fu@) = 1 tu) — (Gt

then, we have

[ )= S )+ )

th

Substituting this into Eq. (48), we obtain
un+1 ~ un +%[f (tn’un) + f (tn+1'un+1)] :
u,., can be obtained by iteration.

4.3. Parabolic approximation

If f(t,u(t)) isapproximated by the second order function of t in t, <t<t,,;:

n+l -
(t _tn+1/2)(t _tn+1) (t _tn)(t _tn+1)
(tn - tn+1/2 )(tn - tn+1) n+y/2 — tn )(tn+1/2 - tn+1)
(t B tn )(t - tn+1/2)

(tn+1 -t )(tn+1 - tn+1/2) 7

f(t,U(X)) ~ f(tn'un) + f(tn+l/2'un+1/2) (t

+ f (tn+l’ un+1)
then, we have
th+l dt
7 F GOt~ =[G+ 45 G Uege) + )]

6

If u(x) is approximated by
) =ty + G+, — F (e -1)?,

n

we have
du

u(tn) =U,, |:dt

} ~ £(t,u,) and u(t,.) = Uy,
t=tp
Hence, we obtain

1 1

dt 3 dt
Unyp = U, + f(t,,u)—+=|u,, —u, — f(t,,u)dt|==u, + f(t,,u,)—+=u,,.
n+l/2 n (n )2 4[ 1 ( ) ] 4 ( )4 4 1

Substituting Eq. (56) into Eq. (48), we derive
U, = U, +%[f (tn’un) +4f (tn+1/2'un+1/2) +f (tn+1lun+1)]!
where u,,,, is approximated by Eq. (59). u,,, may be obtained by iteration.

4.4. Cubic approximation

If f(t,u(t)) isapproximated by the third order function of t in t, <t<t,,,:

f (t U(t)) ~f (t B tn+1/3)(t - tn+2/3)(t - tn+1) " , (t _tn)(t - tn+2/3)(t _tn+1)
" (tn - tn+1/3)(tn - tn+2/3 )(tn _tn+1) "y (tn+1/3 - tn )(tn+1/3 _tn+2/3)(tn+1/3 - tn+1)
(t B tn )(t - tn+1/3 )(t - tn+1) (t - tn )(t - tn+1/3 )(t - tn+2/3)

+ n+2/3 + T '
(tn+2/3 - tn )(tn+2/3 - tn+1/3)(tn+2/3 - tn+1) (tn+l - tn )(tn+1 - tn+l/3 )(tn+1 - tn+2/3)

where
1 2
thys =t +§dt s =t +§dt ,

u, = u(tn)v Upiyz = u(tn+1/3) v Upiyz = u(tn+2/3) v Ung = U(tn+1)
1:n = f(tn’un)l fn+1/3 = f(tn+1/3'un+1/3) ’ fn-¢-2/3 = f(tn-+-2/3'un+2/3) ' fn+1 = f(tn+l'un+1) ’
then, we have (see Appendix B)
J‘tnﬂ f (t, U(t))dt ~ I:n,O fn + Fn,]/S fn+J/3 + I:n,2/3 fn+2/3 +F,f

¢ nl'n+l?

where
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I(a,b,m,m,,m,) = E (b*-a*) - % (m, +m, + m;)(b* —a®)+ % (mm, +m,m, +m,m,)(b* —a*) —mm,m, (b — a)} ,  (64a)
I(t ’tn+ 'tn+ 'tn+ ’tn+
n.0 = ( N ! ys 25 l) == 9 3 I(tn1tn+1ltn+1/3ltn+2/3’tn+l) ! (64b)
(tn _tn+1/3)(tn _tn+2/3)(tn _tn+1) 2dt
I(t ’tn+ ltn'tn+ ’tn+
Fn,]/3 = ( v - i 1) = 273 I(tn!tn+1ltn'tn+2/3’tn+1) ) (640)
(tn+1/3 _tn )(tn+1/3 _tn+2/3)(tn+1/3 _tn+1) 2dt
I tn’tn+ 'tn'tn+ 'tn+ 27
Fn,2/3 = ( : L l) == 3 I (tn 'tn+1’tn’tn+1/3’tn+1) ) (64d)
(tn+2/3 _tn)(tmz/a _tn+1/3)(tn+2/3 _tn+1) 2dt
I(t 'tn+ ’tn’tn+ ’tn+
nl ( ne B 2/3) = J 3 I(tn’tn+1'tn'tn+1/3'tn+2/3) : (649)
(tn+l _tn )(tn+1 _tn+1/3)(tn+l _tn+2/3) 2dt
If u(t) is approximated by a cubic function:
U(t) ~ u(tn) +f (tn ' u(tn))(t _tn) + pn (t _tn)2 + qn (t _tn)3 ' (65)
then, we have
dt dt? dt® 2dt 4dt? 8dt®
Uy U+ T —+ P, —+0,—, Uyps =U, + f,—+ p,—+0q,—, 66a, b
n+1/3 n n 3 Pn 9 d, 27 2/3 3 p 9 q 27 ( )
where
P, = d—iz(Sun+1 —3u,—-2f.dt—f .dt), q,= —%(Zum1 —2u, — f dt—f dt). (67a, b)
Eq. (67) is obtained by solving
u(t,,,) =u(t)+ f(t,u(t,))dt+ p,dt* +q,dt>, f(t,,u(,.,)=f(, u(x,))+2p,dt+3g,dt°. (684, b)
u(t,,,) is approximated by
ut,.) ~ult) +F o fo+ Ryt + R frgs + Fafo (69)
4.5. Numerical example
4.5.1. Linear case
We check the effect of the implicit method by a linear problem such as
du/dt=-u int>0, u=1att=0. (70a, b)
The exact sokution is given by
u=e'. (71)

Various numerical results are compared in Table 1. In the table, EUL, RK2, RK4, IMP1, IMP2, IMP3 and Exact refer
to Euler method, 2nd order Runge-Kutta method, 4th order Runge-Kutta method, Implicit method using linear
approximation, Implicit method using parabolic approximation, Implicit method using cubic approximation and exact

solution, respectively. The accuracy is higher in the order of column.

Table 1: Comparison of numerical results of linear problem

t EUL RK2 IMP1 IMP2 RK4 IMP3
0 1 1 1 1 1 1 1
0.5 0.5 0.625 0.600006  0.607143  0.606771  0.606554  0.606531
1 0.25 0.390625  0.360013  0.368623  0.368171  0.367911  0.367879
1.5 0.125  0.244141  0.216014  0.223807  0.223395 0.22316 0.22313

2 0.0625  0.152588  0.129594  0.135882 0.13555 0.13536  0.135335
2.5 0.03125  0.095367  0.077748  0.082499  0.082248  0.082103  0.082085
3| 0.015625  0.059605  0.046644  0.050088  0.049905 0.0498  0.049787
3.5| 0.007813  0.037253  0.027998  0.030412  0.030281  0.030206  0.030197
4| 0.003906  0.023283  0.016806  0.018465  0.018374  0.018322  0.018316
45| 0.001953  0.014552  0.010066  0.011212  0.011149  0.011113  0.011109
5| 0.000977  0.009095  0.006029  0.006807  0.006765 0.00674  0.006738
55| 0.000488  0.005684  0.003611  0.004132  0.004105  0.004088  0.004087
6 | 0.000244  0.003553  0.002182  0.002508  0.002491  0.002479  0.002479
6.5 | 0.000122 0.00222  0.001318  0.001522  0.001511  0.001504  0.001503
7| 0.000061 0.001388  0.000796  0.000926  0.000917  0.000912  0.000912
75| 0.000031 0.000867 0.000465  0.000563  0.000556  0.000554  0.000553
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8 [ 0.000015  0.000542 0.00027  0.000342  0.000338  0.000336  0.000335
8.5 | 0.000008  0.000339  0.000156  0.000208  0.000205  0.000204  0.000203
9| 0.000004 0.000212  0.000107  0.000125  0.000124  0.000124  0.000123
9.5 0.000002  0.000132  0.000057  0.000075  0.000075  0.000074  0.000075
10 [ 0.000001  0.000083  0.000007  0.000045  0.000046  0.000045  0.000045

4.5.2. Nonlinear example
We check the effect of the implicit method by nonlinear problem such as
du/dt=u®int>0, u=-latt=0. (72a, b)
The exact solution is given by
-1
u=———-.
t+1
Various numerical results are compared in Table 1. The accuracy is higher in the order of column.

(73)

Table 2: Comparison of numerical results of nonlinear problem

t EUL RK2 IMP1 IMP2 IMP3 RK4 Exact

0 -1 -1 -1 -1 -1 -1 -1
0.5 -0.5 -0.71875 -0.65683 -0.66993 -0.66703 -0.66668 -0.66667
1 -0.375 -0.54494 -0.49188 -0.50244 -0.50025 -0.50003 -0.5
15 -0.30469 -0.43416 -0.39381 -0.40174 -0.40017 -0.40003 -0.4
2 -0.25827 -0.35926 -0.32859 -0.3346 -0.33346 -0.33335 -0.33333
2.5 -0.22492 -0.3058 -0.28198 -0.28668 -0.28581 -0.28573 -0.28571
3 -0.19962 -0.26592 -0.247 -0.25075 -0.25007 -0.25001 -0.25
3.5 -0.1797 -0.23511 -0.21976 -0.22282 -0.22228 -0.22223 -0.22222
4 -0.16355 -0.21062 -0.19796 -0.20049 -0.20005 -0.20001 -0.2
4.5 -0.15018 -0.19072 -0.1801 -0.18222 -0.18186 -0.18183 -0.18182
5 -0.1389 -0.17422 -0.1652 -0.16701 -0.1667 -0.16667 -0.16667
5.5 -0.12926 -0.16034 -0.15257 -0.15414 -0.15387 -0.15385 -0.15385
6 -0.1209 -0.14849 -0.14175 -0.14311 -0.14288 -0.14286 -0.14286
6.5 -0.11359 -0.13827 -0.13236 -0.13356 -0.13335 -0.13334 -0.13333
7 -0.10714 -0.12936 -0.12413 -0.1252 -0.12502 -0.125 -0.125
7.5 -0.1014 -0.12153 -0.11686 -0.11782 -0.11766 -0.11765 -0.11765
8 -0.09626 -0.11459 -0.11041 -0.11127 -0.11113 -0.11111 -0.11111
8.5 -0.09163 -0.10839 -0.10462 -0.1054 -0.10528 -0.10527 -0.10526
9 -0.08743 -0.10283 -0.09942 -0.10013 -0.10001 -0.1 -0.1
9.5 -0.08361 -0.09781 -0.09471 -0.09535 -0.09525 -0.09524 -0.09524
10 -0.08011 -0.09326 -0.09042 -0.09101 -0.09092 -0.09091 -0.09091

5. APPLICATION OF NEW IMPLICIT METHODS TO SOLUTION OF PARTIAL DIFFERENTIAL
EQUATION

5.1. Diffusion equation

5.1.1. Diffusion in a still fluid
The initial-boundary value problem of Diffusion equation is defined by

2
6_u:V6_Z| in 0<x<L, (74)

ot X
ux,0)=f(x); uOt)=U,, u(Lt)=U,. (75a, b)

We divide the computational region into N elements x; < X < X;,,, where
dx:ﬁ; X, =idx, i=0L---N. (76a, b)
We use the difference operations to approximate the spatial derivatives. If we denote u(x;,t) as u;(t) , then, we have
du, 1 .

—=v—(U,,,—2u, +u,_,), i=0L--- N, 77
dt dez( i+1 i |—1) 1, ( )
U (0)=f(x); uy(t)=const=U,, uy(t)=const=U, . (784, b)
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Equations (77) and (78) can be rewritten as

{%}&[a]{% (79)
where
1 for j=i-1&i+1
U=l w o oulL] oa, = -2fr j=i for i=12,---,N—1. (80a, b)
0 otherwise

From Eg. (79), the following time-progressive equations for Euler method (EUL), Implicit method using linear
approximation (IMP1), Runge-Kutta method of the 2nd order (RK2) and Implicit method using parabolic approximation

(IMP2) are given below, where u, at time step n is denoted as u{™ .

EUL:
{u(n+1)}= [l ]{u(”) }+ ;—S;[[a]{u(”) }+ ;—)(?{51}[-,0(0 + ;_)((j;[{é‘N -1}U L), (81)
where {5}=[L 0 --- 0]and {5, ,}=[0 -~ 0 1].
IMPL:
{u(n+1)}: {u(")} ;)C(jt [a]z{u(ﬂ) u(n+1)} ;)((jt{ }U (n+ 05)t)+th{ N,l}UL((n"'O-S)t) (82a)
or
{I o }{ ‘”*“}{I + zvddxtz}{ a2,y 1+ 0510 + E5 {5, JU, (n+05) . (820)
RK2:
U= fuo) vdt [a]{ o)y ;j‘t{ 8, U, ((n+0. 5)t)+th{ Sy 1)U (n+05)0), (83a)
{u(nwz)}:{u(n)} ;;dzt [afu®}+ ;;dzt{ S JUq(n t)+1 Vjt{ w2 JUL (nt) . (83b)
IMP2:
o2 o} P o), L] =
fuen )= ) ;j: [a]% U™ 1 gy Ly )y ;dzt{ } (U, (nt) +4U, ((n +0.5)t) +U, ((n +1)t))
;dzt {5, }(13 (U, (nt) +4U, (n+0.5)t) + U, ((n +1)t)) (84b)

or eliminating {u(””/z)}

{l—v—dta}{u<nﬂ>}{|+”dta+ (th] a }{u(”)} prates } (U, (nt) +4U, ((n + 0.5)t) + U, (n+1)t))

3dx? 3dx? dx? dx?
;dzt {5, }6 (U, (nt)+4U_((n+0.5)t) +U_((n+ D). (85)
The initial condition is given by
u® = f(x) for i=01,---,N. (86)
The exact solution of the initial-boundary value problem, Egs. (74) and (75) is given by
o 2
u(x,t)=U, + U, —UO)%+Zam exp|:— v(m—l_ﬂj t}sin[m—l_”x), (87a)
m=1
where
2L . (mx 2 m m
a, ZIIO f(x)sm(ijdx—E[Uo(l—(—l) )- U, —U)D)"]. (87h)

The numerical results are shown in Tables 3 and Fig. 6. In Tables 3, v is the kinematic viscosity, and symbols O and X

means whether the calculation is conducted normally or diverged, respectively. The stability of IMP1 is much higher
than EUL and RK2. In Fig. 6, the accuracy is compared among EUL, RK2 and IMP1. The accuracy of IMP1 is high.
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Table3: f =0,U, =1, U, =0, L=1, v=0.089, t,, =25
EUL RK2 IMP1
N=20 N=40 N=80 N=20 N=40 N=80 N=20 N=40 N=80
d=0.0025 | o O X O O X O O O
dt=0.005 o) X X o) X X e) @) )
d=001 | o X X 0 X X 0 @ O
d=01 | X X X X X X 0 0 0
dt=1 X X X X X X @) @) O

Figure 6: Comparison of accuracy of the solutions by IMP1 ( f =hat, U,=0, U, =0, L=1, N=20, dt=0.01, t=1
, v=0.089)
5.1.2. Diffusion in a flow with uniform flow
If there is a flow in the fluid, the initial-boundary value problem of Diffusion equation is defined by
2
a—u+va—u:va—l;| in0<x<L, (88)
ot X OX
ux,0)=f(x); u(0,t)=0, u(L,t)=0, (89a, b)
where V is the velocity of the uniform flow.
We divide the computational region into N elements as given by Eq. (76). We use the difference operations to
approximate the spatial derivatives. If we denote u(x;,t) as u,(t), then, we have

% :_Vz_jj-x(um_Ui—1)+V%(ui+1_2Ui +U;,), =01+ N, (90)
U0 =1f(x); uyt)=0, uy(t)=0. (91a, b)
Equations (90) and (91) can be rewritten as
Sl otall) )
where {u} and [a] are given by Eq. (80), and [b] is defined by
1 for j=i-1
b;=¢+1 for j=i+1 fori=12,---,N-1. (93)

0  otherwise

From Eq. (92), the following time-progressive equations for Euler method (EUL), Implicit method using linear
approximation (IMP1), Runge-Kutta method of the 2nd order (RK2) and Implicit method using parabolic approximation

(IMP2) are given below, where U, at time step n is denoted as u{™ .
EUL:

Asian Online Journals (www.ajouronline.com) 149




Asian Journal of Engineering and Technology (ISSN: 2321 — 2462)
Volume 02 — Issue 02, April 2014

{ (n+1)} [l]{ (n)} ( \lei[b] [a]]{ (n)} (94)
where {5,}=[L 0 -~ 0] and {5,,}=[0 - 0 1].
IMP1:
o= o | w0, (52)
or
I I
RK2:
{u(n+1) }: {u(n) }+ [_;—/_:)t([b] + g_)c(t[[a]\){u(nu/z) }7 (96&)
{u(n+1/2)}= {u(n)}+ ;(_V_dt[ 1+ [ ]J {u(”)}. (96b)
IMP2:
{u(n+1/2)}=§{u(n)}+[ \2/3:([ 1+ th[ ]j4{ (n)} i—l{u(nﬂ)}, (97a)
{u(”*l)}z {u(")}+( vt [b] th ]J { ™ 4 gy +u(””)} (97b)

or eliminating {u(””/z)}

2
|—1( Vo vty j{u("”)}: |+3( thb+v—d;[a]+1( vat vdty ] fu}. (98)
3\ 2dx dx? 3 2dx dx 6\ 2dx dx?

The initial condition is given by

u® =f(x) fori=01---N. (99)
The exact solution of the initial-boundary value problem, Egs. (88) and (89), is given by
u(x,t) = mzzam exp{— v(m—:[)zt:lsin(m—f(x —Vt)j , (100a)
where 7
L .
o = % (o1 (x)sm[m_l_” xjdx . (100b)

The numerical results are shown in Figs. 7, 8 and 9. The initial condition f(x) is a pulse-like function given by
E(x—L/8-(x—L/2))E(L/8- (x—L/2)—x) . The stability of IMP1 and IMP2 is much higher than EUL and RK2. In Figs.

7 and 8, the accuracy is compared among EUL (Central), EUL (Upwind), IMP1 (Central) and IMP1 (Upwind). The
accuracy of IMP1 is very high. In Fig. 9, the accuracy is compared between IMP1 and IMP2. The accuracy of IMP2 is
higher than that of IMP1.

5.2. Burgers’ equation

The initial-boundary value problem of Burgers’ equation is defined by

2
6_u+u8_u:V8_l; in —00 < X<o00, (102)

ot 0ox OX
u(x,0)= f(x); u(z=o,t)=0. (1023, b)

In the numerical calculation, we replace the inifinite region —o < x <oo with a computational region —L <x <L . We
divide the computational region into N elements x, < X < X;,,, where

dx=%; X =—L+idx, i=01---,N. (1034, b)
We use the difference operations to approximate the spatial derivatives. If we denote u(x;,t) as u;(t) , then, we have
du; 1 1
—=-U—U_,—U_, )+ —2U, + U, i=0L---N, 104
dt i 2dX( i+1 |—1) V— dX2 ( |+1 i 1) l' ( )
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Figure 7: Comparison of accuracy of the solutions by EUL ( f (x) ="pulse-like", V =1, L=1, dt =0.0025, t=0.1,
v =0.00089)
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Figure 8: Comparison of accuracy of the solutions by IMP1 ( f(x) ="pulse", V =1, L=1, dt=0.0025, t=0.1,
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u0)="f(x); u,t)=0, u,,({t)=0. (1054, b)
Equations (77) and (78) can be rewritten as
du 1 1%
kel U — Ia , g =ulu,-u_,)2, 106a, b
{dt} o) d=u(u—u) ( )
where
ub=lu, u - u ., =ln 4 - aT, (107, 108)
—2for j=0 1 for j=i-1&i+1 1 for j=N-1
a; =11 for j=1, a;=1-2fr j=i fori=12,---,N-1, ayj=4-2fr j=N . (1094, b, c)
0 othewise 0 otherwise 0 othewise

The boundary condition is included in [a].
From Eg. (94), the following time-progressive equations for Euler method (EUL), Implicit method using linear
approximation (IMP1), Runge-Kutta method of the 2nd order (RK2) and Implicit method using parabolic approximation

(IMP2) are given below, where u, and ¢ attime step n are denoted as u™ and 4™, respectively. ¢" is given by

A7 =u U -u)/2. (110)

EUL:
o=} S 5 ) a1y

IMP1:
o2} ) L2 g} S o] s

or

(O e I DA R T

RK2:
) Sfgn Stpao), yo] o) )]
T (AT 3 (1130)

IMP2
o) 2 o B} R o) L) e
fueo = fum}- %é {g + g4 4 g |y ;dt [a] {u® 4 g2 4y} (114b)

The initial condition is given by

The boundary condition is included in [a]. {¢(”*1)} is determined by iteration.

The exact solution of the initial-boundary value problem, Egs. (101) and (102), is given in Ref. [3].

The numerical results are shown in Tables 4 and 5 and Figs. 10 and 11. In Tables 4 and 5, v is the kinematic
viscosity, and symbols O and X means whether the calculation is conducted normally or diverged, respectively. The

stability of IMP1 is much higher than EUL and RK2. In Figs. 10 and 11, the accuracy is compared among EUL, RK2 and
IMP1. The accuracy of IMP1 is very high.

Table 4: N=100, t,., =5
EUL RK2 IMP1
v=0.1 v=0.01 v =0.005 v=0.1 v=0.01 v =0.005 v=0.1 v=0.01 v =0.005
d=0.001 1 o O X O O X O O X
dt=0.01 X 0O X X '0) X 0) o) X
dt=0.1 % X X X X X o) o) X
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Table5: N =200, t, =5
EUL RK2 IMP1
v=0.1 v=0.01 v =0.005 v=0.1 v=0.01 v =0.005 v=0.1 v=0.01 v =0.005
dt=0.001 | o O O O O O O O O
dt=0.01 | X O O X O X O O O
dt=0.1 X X X X X X o o X

g

(a) EUL 1 (e)RKZ

—1t= 0.0000 ——t= 0.0000
= = t= 1.0000
-+ t= 2.0000

(€} IMP1 - = t= 1.0000 1 (d) Exact

Figure 10: Comparison of accuracy (N =200, L=2, dt =0.01, v=0.01)
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Figure 11: Effects of N and v on the accuracy (IMP1, L=2, dt=0.001).
5.3. Wave equation

Let x and t be one-dimensional space coordinate and time, and ¢(x,t) be a solution of a initial and boundary value
problem of a wave equation:

az—?—izif:O in —o<X<oo, (116)
ot ¢ ox
P(x,0)=f(x), 4(x,0)=0; ¢(+0,t)=0, (117a, b)

where c is the velocity of wave.
We approximate —o < x<oo by —L < X< L and the discretization of the space is given by Eq. (103). If we denote
#(x;,t) as ¢(t), then, Egs. (116) and (117) is approximated for i =01,---,N as
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d’g¢ 1

= g7 B2+ ), (118)
$(0) = f(x), %(m:o; ¢, 0)=0, ¢,,(t)=0. (119a, b)
Equations (118) and (119) can be rewritten for i =01,---,N as
d _, dwi 1
oV g s g a2 ), (1202, b)
#0)=1(x), ¥ (0)=0; ¢,()=0, ¢,.,()=0. (121a, b)
Equation (107) is further rewritten as
dg| dy 1
{a}—{'//}, { dt} S aligl, (1222, b)
where
=le & - &I Wi=lve v - wl. (123a, b)

and [a] is defined by Eq. (109). The boundary condition is included in [a].

From Eg. (122), the following time-progressive equations for Euler method (EUL), Implicit method using linear
approximation (IMP1), Runge-Kutta method of the 2nd order (RK2), Implicit method using parabolic approximation
(IMP2) and Implicit method using cubic approximation (IMP3) are given below, where ¢ and y; at time step n are

denoted as 4™ and ", respectively.

EUL:
ol o], oo}l o). 2.t
IMP1:
{¢<n+1>} {¢(n>} { (n+1) +y/(")}, {V,<n+1>}:{,/,(n)} 23 Z[a]{qﬁ(”*l) n ¢(n>} (1254, b)
or
1 0][gm I O]fg™ 0 L1|fgod g
0 |1H‘//(n+l)}:|:0 |Hw(n)}+L§;2a OH‘//(M)“//W} (126)
or
o —0.5dt - I | [ 4 | 0.5dt- 1] 4™
_—O.Sd‘i—ga | :Hy,(nu)}:{o.Sd‘i—‘za I Hw(m}' (127)
RK2:
{02 _ o dzt (128a)
=gl B o), oy 2 ) (2.9
{¢(n+1)} {¢(”)}+dt{ (n+1/2>}’ {W(nm}: {z//(”’}+dtd—)l(2[a]{¢(””/2’}, (128d, )
IMP2:
{¢(n+u2>} {¢(n>} { (n)} {¢<n+1>} {V,mwz)}: %{V/(")} T 2[ ]{¢<n>} { (n+1)}, (1292, b)
{¢<n+1)} {¢<n)} {1//(”) + 4y D +,/,(n+1>} {W("“)}:{!//(")} %[ ]{¢(n) 440V +¢(n+1)} (129c, d)
or
¢(n+]/2) %I %l ¢(n) 1 ¢(n+1)
{w‘”wz’}z a3 {w("’}+z{w(”+l)}’ e
4dx* 4
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dt 4dt dt
{¢(<1i>} = dtl o {¢<:n>)}+ 4d(1 o V(:j;;}* d:) o V((l;} (1300)
4 5 1| ~a 0 v ~a 0 [V
6dx 6dx 6dx
Substituting Eq. (130b) into Eq. (130a)
| _$| (n+1) I+—dtz a 2—dtl (n)
| 3 {¢ }: 60X’ 3 {¢ } (131
t (n+1) m ("
- S a I v 2dt2 a1+ dt _a "%
X 3dx
IMP3
{f(;n)}: {l//(n)}, {f¢§(n+1/3)}: {l//(n+l/3)}, {f¢(n+2/3)}: {l//(n+2/3)}, {f¢§(n+l)}: {l//(nJrl)}7 (132&, b, c, d)

n n n+1/3 _i n+1/3 n+2/3 _i n+2/3 n+1 _i n+1
(0} et {1k otae ) “}—dxzta1{¢< I = g alal ) a3zt ohy
-l a2,

2 3
{¢(n+1/3>}:{¢(n) F D ‘lt N p;”) dt* q dt” } fpo-zo) {¢(n) N f;n)%dtJr o 4‘;" g 8:; } (132K, I)

L lapm g0 _goge— g 0va), @32, )

n 1 N+ n n n+. n l n+: n n N+
o) g o w0 —2na e ) ol -2 - o g, asem
dt dt dt 2dt 4dt? 8dt®
o)L ) + 0 =4 p — g o2t _ g £ ) +g™ . (1320,
{w } {u/ 3 P gt 27} {w } {w A A ( p)

I(a,b,m;, m,,m,) = E (b*—a*)— % (m, +m, +m,)(b* —a®)+ % (mm, +m,m, +m,m,)(b* —a*) —mm,m, (b — a)} . (13209)

Ittt et R 9
FE - NI+l 'n+1/37 *n+2/31 'n+l - _ |(t ,t ,t ,t ,t ’ 132r
n,0 (tn_tn+1/3)(tn_tn+2/3)(tn_tn+l) 2dt3 (n n+1' *n+1/37 *n+2/3 n+1) ( )
(9 PN FON APPSO
Fn,l/s = (n e l) 27 3 I(tn’tn+l’t ’tn+2/3’tn+1)! (1325)
(tn+1/3 _tn )(tn+1/3 _tn+2/3)(tn+1/3 _tn+1) 2dt
Lttt by s
Fn,2/3 = (n e 1) 27 3 I(tn’tml’t ’tn+1/37tn+l)! (132t)
(tn+2/3 _tn )(tn+2/3 _tn+1/3)(tn+2/3 _tn+1) 2d
I (tn vtn+17tn 71:n+1/37tn+2/3) 9
= = Lt b bty thaos) 132u
" (tn+1_tn)(tn+1_tn+1/3)(tn+l_tn+2/3) 2dt3 (n e 2/3) ( )
{¢(n+1)}: {¢(n)}+ {F(n) f¢(n) L EO3 f¢(n+1/3) L E23 fgj(mz/a) 4+ EOD f¢(n+l)}, (132v)
{V/(nu)}: {‘//(n) }+ {F(n) fw(n) L EM3) fufnu/s) L EM23 fl/EnJrZ/S) L EMD fufnﬂ)}- (132w)
The initial condition is given by
2
fi(O) :exp{—[ﬁ] ] fori=01---,N. (133)

The boundary condition is included in [a]. {¢(”*1’} and {z//‘”*l)} are determined by iteration.
The exact solution of the initial-boundary value problem, Egs. (116) and (117), is given by
d(x,t)=f(x—ct), w(x,t)=0¢/ot =—cf'(x—ct). (1344, b)
The numerical results are shown in Figs. 12-18. According to the results in Figs. 12-17, the stability and accuracy of
IMP1 is much higher than EUL and RK2 in case of a bell-shape initial value. In Fig. 18, IMP1, IMP2 and IMP3 are
compared in case of a triangular initial value. Although the accuracy was higher in the order of IMP1, IMP2 and IMP3,
large difference was not observed among the three solutions.
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6. CONCLUSIONS

The stability and accuracy of the numerical integration of the time-evolution equation has a crucial importance in
solving the unsteady partial differential equation. Crank-Nicholson [1] and Rosenbrock [2] have discussed not only the
stability but also the accuracy theoretically. In the present paper, the same problems were discussed again from the
different viewpoint and verified by the numerical results.

The Runge-Kutta methods are widely used in the numerical integration. However, in some cases, the stability is not
sufficient. In these cases, the implicit method is effective in increasing the stability.

New implicit methods were proposed to increase stability and accuracy of the solution of the time-evolution equation.
The stability of various methods including Runge-Kutta method was discussed theoretically and numerically, and the
numerical examples were shown to show the effectiveness of the New Implicit methods.

As implicit methods, we proposed implicit method using linear approximation (IMP1), one using parabolic
approximation (IMP2) and one using cubic approximation (IMP3). In the case of linear problem, IMP1 is identical to the
implicit method by Crank and Nicholson [1]. However, the algorithms of the higher approximation become difficult,
although the implicit methods increase the stability drastically. Of course, the accuracy is also increased. Since, the
accuracy is increased by using finer spatial mesh, the most practical way to increase the accuracy and the stability in the
solution of unsteady boundary value problems may be to use IMP1 and the smaller spatial mesh size.

The effects of nonlinearity on the implicit methods were also discussed. Unsteady Burgers’ equation was solved
numerically using the Euler Methods, RK2 and IMP1. IMP1 gave the best results both in accuracy and stability.
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APPENDIX A. STABILITY ANALYSIS BY CRANK-NICHOLSON’S METHOD [1]

We study the stability of the problem discussed in Section 2.1.2 according to a method by Crank and Nicholson [1].
The differential equation is given by
—=—u+f. Al
m (A)
First, we use Euler method using central difference is used for the numerical integration of Eq. (A.1). Then, the
solution u,, at time step t, =ndt satisfies the following difference equation:

u,, —U,, =—2dtu, +dtf,. (A2)
Let u; be a solution of Eg. (A.2) with the computational error Au, , namely
u,=u,+Au, . (A3)
Substituting Eq. (A.3) into Eqg. (A.2), we have
Au,, —Au, , =—2dtAu,. (A4)
If we assume
Au, = A", (A5)
we obtain
e —e ™ " —_2dt or sinh(kdt) =—dt. (A6, 7)
Equation (A.7) means k <0, and Au, isderived as
Au, = A" + B(-1)"e "™, (A.8)

The first term Ae™™ converges to zero, and the second term B(—1)"e ™™ alternates sign in successive time steps and

increase magnitude exponentially. Hence, the solution of Eq. (A.2) oscillates with increasing amplitude.
If we use Euler method given by the following difference equation:

u,,, —u, =—dtu +dtf_, (A9)
then, we have
Au,,, —Au, =—dtAu, . (A.10)
Substituting Eq. (A.5) into Eqg. (A.10), we obtain
Aekmdt _ pgkndt _ _gppkndt o gkt 1 _gt (A11,12)

Hence, if O<dt<l , Au,=Ae""" converges to zero. However, if dt>1, then, k becomes complex:
ek =1—dt =—(dt—1) =" D7 So, we have

Au,, = Ae"" = Ae"®P) = (~1)" Ae™ = (-1)" A(dt -1)". (A.13)
Hence, if 1<dt <2 or 2<dt, then, Au,, converges to zero or diverges to infinity alternating sign in successive time

steps, respectively.
If we use implicit method, the difference equation is given by

U, —U, :—%dt(un +un+1)+% f(n+0.5dt) . (A.14)
or
1 1 1
(1+Edt)un+1 :(1—Edtjun +§ f(n+0.5dt). (A.15)
Substituting Eq. (A.3) into Eq. (A.15), we have
(1+%dt)Aun+1 = (1—%dtjAun. (A.16)
Substituting Eq. (A.5) into Eq. (A.16), we obtain
(1+%dtjAek(”*”d‘ = (l—%dt)Aek”‘“ or e = [1—;dtJ / (1+;dt] . (A.18)

Since 0<e*" <1, then, k <0, and Au, converges always to zero.
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APPENDIX B. FORMULAE OF NUMERICAL INTEGRATION OF A CUBIC FUNCTION
Equation (64) is explained below:

[ f O y00)dx

(X B Xn+]/3)(x B Xn+2/3)(x B Xn+1) (X B Xn)(x B Xn+2/3)(x B Xn+1)

+
3
J‘XM (Xn - Xn+1/3)(xn - Xn+2/3)(Xn - Xn+1) " (Xn+]/3 - Xn)(Xn+1/3 - Xn+2/3)(xn+]/3 - Xn+1)

il (X_Xn)(x_xn+]/3)(x_xn+1) (X_Xn)(x_xn+l/3)(x_Xn+2/3)
n+l (

dx

4

s (Xn+2/3 - Xn)(xn+2/3 - Xn+1/3)(xn+2/3 - Xn+1) Xni — Xn)(Xn+l - Xn+1/3)(xn+1 - Xn+2/3)
F (X s Xoias Xy Xni/ar Xoia) F(Xqs Xoias %o Xni2/30 Xnia)
(%0 = Xous) 06 = X)X = Xpa) " (X
1 (Xq s Xpu10 Xy Xnsy3s Xni1) + (X0 X0, X, Xnsy/3s Xn+2/3)
e (Xn+2/3 - Xn)(xn+2/3 - Xn+1/3)(xn+2/3 - Xn+1) i (Xn+l — X )(Xn+1 - Xn+1/3)(xn+l - Xn+2/3)

n

n+y3 Xn)(xn+1/3 - Xn+2/3)(xn+1/3 = Xp1) . (B.1)

+ f

where

1(@.b,my,m,,my) = [ (x—m,)(x —m,)(x — m;)dx

= Jj[x3 —(m, +m, +m)x* + (mm, +m,m, +m,m,)x — n11m2m3]dx

1., 1 , 1 , xb
= Zx —g(ml+m2+m3)x +E(mlm2+m2m3+m3ml)x —m,m,m,X

X=a

- %(b“ —a“)—%(ml +m, +m,)(b? —a3)+§<mlmz 4 mym, + mym,)(b? —a%) —mym,m,(b—a) (B.2)
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