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_________________________________________________________________________________ 

ABSTRACT—The stability and accuracy of the numerical integration of the time-evolution equation obtained by 

discretizing an unsteady partial differential equation with respect to space variables has a crucial importance in 

solving the unsteady partial differential equation numerically. The second and fourth order Runge-Kutta methods are 

widely used in the numerical integration. However, in some cases, the stability is not sufficient. New implicit methods 

are proposed to increase stability and accuracy of the solution of the time-evolution equation. Three new implicit 

methods, that is, implicit method using linear approximation (IMP1), one using parabolic approximation (IMP2) and 

one using cubic approximation (IMP3) are proposed. In the case of linear problem, IMP1 is identical to the implicit 

method by Crank and Nicholson. The stability of various methods including Runge-Kutta method is discussed 

theoretically and numerically, and the numerical examples are shown to show the effectiveness of the Implicit 

methods. It is proposed that the most practical way to increase both the accuracy and the stability in the solution of 

unsteady boundary value problems may be to use IMP1 and the smaller spatial mesh size. 
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1. INTRODUCTION 

If an unsteady partial differential equation is discretized with respect to the space variables, a time-evolution equation 

with the multi unknown variables is obtained. The stability and accuracy of the numerical integration of the time-

evolution equation has a crucial importance in solving the unsteady partial differential equation. Crank and Nicholson [1] 

and Rosenbrock [2] have discussed not only the stability but also the accuracy theoretically. In the present paper, the 

same problems are discussed again from the different viewpoint and verified by the numerical results. 
The second and fourth order Runge-Kutta methods are widely used in the numerical integration. However, in some 

cases, the stability is not sufficient. Implicit method is effective in increasing the stability. New implicit methods are 

proposed to increase stability and accuracy of the solution of the time-evolution equation. The stability of various 

methods including Runge-Kutta method is discussed theoretically and numerically, and the numerical examples are 

shown to show the effectiveness of the New Implicit methods. 

2. SOLUTION AND PROPERTY OF IMPLICIT METHOD 

2.1. Implicit method 

Let’s consider the numerical integration of a differential equation using a one-dimensional example: 

),( utf
dt

du
  in 0t                                                                             (1) 

with the initial condition: 

0uu   at 0t .                                                                                (2) 

Equation (1) is approximated as 

))5.0(,5.0(1 dttudttf
dt

uu
nn

nn 
  at dttt n 5.0 ,                                              (3) 

where )( nn tuu  . 

If we use an approximation: 

)(5.0)5.0( 1 nnn uudttu ,                                                                     (4) 

then, we have 

dtuudttfuu nnnnn ))(5.0,5.0( 11   .                                                           (5) 
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If ),( utf  is a linear function of u , we can obtain a difference equation to determine 1nu . Even if ),( utf  is a nonlinear 

function of u , we can solve this equation by iteration. A solution based on the approximation given by Eq. (5) is called 

an implicit solution. 

If approximation: 

)),(5.0,5.0())(5.0,5.0())(5.0,5.0( 11 nnnnnnnnnnn utfdtudttfdtuudtudttfuudttf                (6) 

is used, it becomes the second order Runge-Kutta method 

dtutfdtudttfuu nnnnnn )),(5.0,5.0(1  .                                                      (7) 

The second order Runge-Kutta method is very close to this method but different. Runge-Kutta method is an explicit 

solution. On the other hand, Euler solution is given by 

dtutfuu nnnn ),(1  .                                                                           (8) 

  Using Taylor expansion, we have 

)(
82

3
2

2121211 dtO
dt

u
dt

uuu nnnn   ,   )(
82

3
2

212121 dtO
dt

u
dt

uuu nnnn   .                   (9a, b) 

Hence, we obtain 

)(
2

21
21 dtO

uu
u nn

n 


 
 ,   )( 21

21 dtO
dt

uu
u nn

n 


 
 .                                                 (10a, b) 

From Eq (10), the accuracy of Eq. (4) is estimated as 

)())(5.0,5.0( 3

11 dtOdtuudttfuu nnnnn   .                                                 (11) 

The second order Runge-Kutta method is also )( 3dtO  approximation. 

Let’s consider the property of the implicit and explicit solutions through examples. 

2.1.1. Example 1 

A problem is defined as 

uutf
dt

du
 ),(  in 0t ,   1u  at 0t .                                                    (12a, b) 

The exact solution is given by 
teu  .                                                                                      (13) 

Hence, we have 

n

dtdtn

n ueeu  



)1(

1 .                                                                           (14) 

From Eq. (5), the implicit solution is given by 

dtuuuu nnnn )(5.0 11     or  nn u
dt

dt
u

5.01

5.01
1




 .                                             (15, 16) 

When 1dt  

nnn udtdtudtdtdtu )5.01()25.05.01)(5.01( 22

1   .                                    (17) 

From Eq. (7), the solution of the second order Runge-Kutta method is given by 

dtdtuuuu nnnn )5.0(1    or  nn udtdtu )5.01( 2

1  .                                     (18, 19) 

On the other hand, Euler solution is given by 

    nn udtu )1(1  .                                                                             (20) 

In this example, the exact, implicit and Runge-Kutta solutions show the similar tendencies.  

2.1.2. Example 2 
A problem is defined as 

uutf
dt

du
 ),(  in 0t ,    1u  at 0t .                                                   (21a, b) 

The exact solution is given by 
teu  .                                                                                 (22) 

Hence, we have 

n

dtdtn

n ueeu 

  )1(

1 .                                                                    (23) 

From Eq. (5), the implicit solution is given by 

dtuuuu nnnn )(5.0 11     or  nn u
dt

dt
u

5.01

5.01
1




 .                                        (24, 25) 

When 1dt  
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nnn udtdtudtdtdtu )5.01()25.05.01)(5.01( 22

1   .                                  (26) 

From Eq. (7), the second order Runge-Kutta solution is given by 

dtdtuuuu nnnn )5.0(1   or nn udtdtu )5.01( 2

1  .                                  (27, 28) 

On the other hand, Euler solution is given by 

nn udtu )1(1  .                                                                        (29) 

In this example, the exact, implicit, Euler and Runge-Kutta solutions show the quite different tendencies. When dt  

tends to  , nn uu 1  tends to 0 , 1 ,   and   for the exact, implicit, Euler and Runge-Kutta solutions, 

respectively.  The implicit solution does not diverge for an arbitrary dt . However, the Euler and Runge-Kutta solutions 

diverge when 11 dt  and 15.01 2  dtdt , respectively. Hence, by making 1nu  in f  unknown, the stability of 

the numerical calculation increases drastically, and much larger dt  can be used in comparison with explicit methods 

such as Euler method and Runge-Kutta method. 

The stability analysis using Crank-Nicholson’s method [1] was conducted for this example in Appendix A. An 

interesting result is obtained.  

2.2. Numerical example 

A problem is defined as 

u
dt

du
  in 0t , 0u  at 0t .                                                    (30a, b) 

The exact solution is given by 

1 teu .                                                                           (31) 

The numerical results are shown in Fig. 1. EUL, IMP and RK2 refer to Euler method, Implicit method and Runge-

Kutta method of 2nd order, respectively. Exact means the exact solution. IMP corresponds to IMP1 in section 4. 

 
Figure 1: Comparison of various solutions ( ydtdu   for 0t , 0)0( u ) 

The accuracy of the solutions increase as dt  becomes smaller. The accuracy of the implicit solution is the highest, and 

the Runge-Kutta solution is the next. That of the Euler method is much worse. 

3. GENERAL LINEAR PROBLEM 

3.1. Implicit solution of General linear problem for single unknown variable 

If ),( utf  is a linear function of u  or )()(),( tbutautf  , namely 

    )()( tbuta
dt

du
 ,                                                                         (32) 

then, we have 

    )5.0(
2

)5.0( 11 dttb
uu

dtta
dt

uu
n

nn
n

nn 



  .                                               (33) 

Rewriting Eq. (33), we derive 

     




















 dtdttbudtdtta

dtdtta

u nnn

n

n )5.0()5.0(
2

1
1

)5.0(
2

1
1

1
1 .                              (34) 

3.2. Implicit solution of general linear problem for multiple unknown variables 
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In the case of multiple unknown variables )(tui , ,2,1,0i , the superscript is used to show the time step )(nt , 

,2,1,0i . Hence, 
)(n

iu  refers to )( )(n

i tu , and  )(nu  means a column vector  T)(

1

)(

0 nn uu . A matrix with element 

jiA , ,2,1,0i , ,2,1,0j  is denoted by  A . 

If the differential equation is given by: 

          )()()( tbuta
dt

du
tA 









,                                                                 (35) 

then, we obtain 

     )5.0(
2

)5.0()5.0( )(
)()1(

)(
)()1(

)( dttb
uu

dtta
dt

uu
dttA n

nn
n

nn
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.                            (36) 

Rewriting Eq. (36), we have 

       )5.0()5.0(
2

)5.0()5.0( )(1)(
)()1(

)(1)(
)()1(

dttbdttA
uu

dttadttA
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uu nn
nn

nn
nn








 








  






.              (37) 

Hence, we derive 

                               












1
1)()1( )5.0()5.0(

2
dttadttA

dt
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)5.0()5.0()5.0()5.0(

2

)(1)()()(1)( dttbdttAdtudttadttA
dt

I nnnnn .                     (38) 

3.2.1. A numerical example:  

A problem is defined as 
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 at 0t .                                     (39a, b) 

The exact solution is given by 

tt ee
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.                                                                 (40) 

For the exact solution (Exact), we have from Eq. (40), we have 






















































)(2

)(
)(2)(

)(

1

)(

0

11

23

1

2

1

3
nt

ntntnt

n

n

e

e
ee

u

u
,                                                (41a) 
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Hence, we obtain 
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For the implicit solution (IMP1),  A ,  a  and  b  in Eq. (38), are given as 
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a ,   0b .                                                            (43) 

Hence, we have 
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For Euler solution (EUL), we have 
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For the second order Runge-Kutta solution (RK2), we have 
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From Eqs. (42b), (44b), (45) and (46),  Tnn uu )1(

1

)1(

0

  is expressed by  Tnn uu )(

1

)(

0  as 
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.                                                                                   (47) 

In Fig. 2, jiC s are compared in various solutions. In Fig. 3-5, 0u  and 1u  are compared in various solutions. The 

accuracy of the solution is higher in the order of IMP1. RK2 and EUL. 

 
Figure 2: Stability criteria of numerical procedure 

 

 
Figure 3: EUL 
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Figure 4: RK2 

 
Figure 5: IMP1 

4. A NEW IMPLICIT METHOD 

From Eq. (1), we have 




 
11

1 ))(,(
nt

nt
n

nt

nt
nn dttutfudt

dt

du
uu .                                                      (48) 

4.1. Constant approximation 

If ))(,( tutf  is approximated by a constant in 1 nn ttt : 

 ),())(,( 2121  nn utftutf ,                                                                   (49) 

where 21nt  and 21nu  are defined as dttt nn 5.021   and )( 2121   nn tuu , respectively, then, we have 

))(5.0,(),())(,( 1212121

1




 nnnnn

nt

nt
uutfdtutfdtdxtutf .                                       (50) 

Substituting this into Eq. (50), we obtain 

))(5.0,( 1211   nnnnn uutfdtuu .                                                             (51) 

This approximation is equal to Eq. (5). 

4.2. Linear approximation 

If ))(,( tutf  is approximated by linear function of t  in 1 nn ttt : 
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then, we have 
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dttutf .                                                       (53) 

Substituting this into Eq. (48), we obtain 

 ),(),(
2

111   nnnnnn utfutf
dt

uu .                                                           (54) 

1nu  can be obtained by iteration.  

4.3. Parabolic approximation 

If ))(,( tutf  is approximated by the second order function of t  in 1 nn ttt : 
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then, we have 
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If )(xu  is approximated by 
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Hence, we obtain 
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Substituting Eq. (56) into Eq. (48), we derive 

 ),(),(4),(
6

1121211   nnnnnnnn utfutfutf
dt

uu ,                                             (60) 

where 21nu  is approximated by Eq. (59). 1nu  may be obtained by iteration. 

4.4. Cubic approximation 

If ))(,( tutf  is approximated by the third order function of t  in 1 nn ttt : 
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where 

dttt nn
3

1
31  , dttt nn

3

2
32  ,                                                               (62a) 

)( nn tuu  , )( 3131   nn tuu , )( 3232   nn tuu , )( 11   nn tuu                                          (62b) 

),( nnn utff  , ),( 313131   nnn utff , ),( 323232   nnn utff , ),( 111   nnn utff ,                       (62c) 

then, we have (see Appendix B) 

11,3232,3131,0,
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fFfFfFfFdttutf ,                                             (63) 

where 
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If )(tu  is approximated by a cubic function: 

32 )()()))((,()()( nnnnnnnn ttqttptttutftutu  ,                                                 (65) 

then, we have 
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where 
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q nnnnn   .                       (67a, b) 

Eq. (67) is obtained by solving 
32

1 ))(,()()( dtqdtpdttutftutu nnnnnn  ,   
2

11 32))(,())(,( dtqdtpxutftutf nnnnnn  .            (68a, b) 

)( 1ntu  is approximated by 

11,3232,3131,0,1 )()(   nnnnnnnnnn fFfFfFfFtutu .                                             (69) 

4.5. Numerical example 

4.5.1. Linear case 
We check the effect of the implicit method by a linear problem such as  

udtdu   in 0t ,   1u  at 0t .                                                       (70a, b) 

The exact sokution is given by 
teu  .     (71) 

Various numerical results are compared in Table 1. In the table, EUL, RK2, RK4, IMP1, IMP2, IMP3 and Exact refer 
to Euler method, 2nd order Runge-Kutta method, 4th order Runge-Kutta method, Implicit method using linear 

approximation, Implicit method using parabolic approximation, Implicit method using cubic approximation and exact 

solution, respectively. The accuracy is higher in the order of column. 

 

Table 1: Comparison of numerical results of linear problem 

t EUL RK2 IMP1 IMP2 RK4 IMP3 Exact 

0 1 1 1 1 1 1 1 

0.5 0.5 0.625 0.600006 0.607143 0.606771 0.606554 0.606531 

1 0.25 0.390625 0.360013 0.368623 0.368171 0.367911 0.367879 

1.5 0.125 0.244141 0.216014 0.223807 0.223395 0.22316 0.22313 

2 0.0625 0.152588 0.129594 0.135882 0.13555 0.13536 0.135335 

2.5 0.03125 0.095367 0.077748 0.082499 0.082248 0.082103 0.082085 

3 0.015625 0.059605 0.046644 0.050088 0.049905 0.0498 0.049787 

3.5 0.007813 0.037253 0.027998 0.030412 0.030281 0.030206 0.030197 

4 0.003906 0.023283 0.016806 0.018465 0.018374 0.018322 0.018316 

4.5 0.001953 0.014552 0.010066 0.011212 0.011149 0.011113 0.011109 
5 0.000977 0.009095 0.006029 0.006807 0.006765 0.00674 0.006738 

5.5 0.000488 0.005684 0.003611 0.004132 0.004105 0.004088 0.004087 

6 0.000244 0.003553 0.002182 0.002508 0.002491 0.002479 0.002479 

6.5 0.000122 0.00222 0.001318 0.001522 0.001511 0.001504 0.001503 

7 0.000061 0.001388 0.000796 0.000926 0.000917 0.000912 0.000912 

7.5 0.000031 0.000867 0.000465 0.000563 0.000556 0.000554 0.000553 
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8 0.000015 0.000542 0.00027 0.000342 0.000338 0.000336 0.000335 

8.5 0.000008 0.000339 0.000156 0.000208 0.000205 0.000204 0.000203 

9 0.000004 0.000212 0.000107 0.000125 0.000124 0.000124 0.000123 

9.5 0.000002 0.000132 0.000057 0.000075 0.000075 0.000074 0.000075 

10 0.000001 0.000083 0.000007 0.000045 0.000046 0.000045 0.000045 

 

4.5.2. Nonlinear example 
We check the effect of the implicit method by nonlinear problem such as  

2udtdu   in 0t ,   1u  at 0t .                                                         (72a, b) 

The exact solution is given by 

1

1






t
u .                                                                                      (73) 

Various numerical results are compared in Table 1. The accuracy is higher in the order of column. 

Table 2: Comparison of numerical results of nonlinear problem 

t EUL RK2 IMP1 IMP2 IMP3 RK4 Exact 

0 -1 -1 -1 -1 -1 -1 -1 

0.5 -0.5 -0.71875 -0.65683 -0.66993 -0.66703 -0.66668 -0.66667 

1 -0.375 -0.54494 -0.49188 -0.50244 -0.50025 -0.50003 -0.5 

1.5 -0.30469 -0.43416 -0.39381 -0.40174 -0.40017 -0.40003 -0.4 
2 -0.25827 -0.35926 -0.32859 -0.3346 -0.33346 -0.33335 -0.33333 

2.5 -0.22492 -0.3058 -0.28198 -0.28668 -0.28581 -0.28573 -0.28571 

3 -0.19962 -0.26592 -0.247 -0.25075 -0.25007 -0.25001 -0.25 

3.5 -0.1797 -0.23511 -0.21976 -0.22282 -0.22228 -0.22223 -0.22222 

4 -0.16355 -0.21062 -0.19796 -0.20049 -0.20005 -0.20001 -0.2 

4.5 -0.15018 -0.19072 -0.1801 -0.18222 -0.18186 -0.18183 -0.18182 

5 -0.1389 -0.17422 -0.1652 -0.16701 -0.1667 -0.16667 -0.16667 

5.5 -0.12926 -0.16034 -0.15257 -0.15414 -0.15387 -0.15385 -0.15385 

6 -0.1209 -0.14849 -0.14175 -0.14311 -0.14288 -0.14286 -0.14286 

6.5 -0.11359 -0.13827 -0.13236 -0.13356 -0.13335 -0.13334 -0.13333 

7 -0.10714 -0.12936 -0.12413 -0.1252 -0.12502 -0.125 -0.125 
7.5 -0.1014 -0.12153 -0.11686 -0.11782 -0.11766 -0.11765 -0.11765 

8 -0.09626 -0.11459 -0.11041 -0.11127 -0.11113 -0.11111 -0.11111 

8.5 -0.09163 -0.10839 -0.10462 -0.1054 -0.10528 -0.10527 -0.10526 

9 -0.08743 -0.10283 -0.09942 -0.10013 -0.10001 -0.1 -0.1 

9.5 -0.08361 -0.09781 -0.09471 -0.09535 -0.09525 -0.09524 -0.09524 

10 -0.08011 -0.09326 -0.09042 -0.09101 -0.09092 -0.09091 -0.09091 

 

5. APPLICATION OF NEW IMPLICIT METHODS TO SOLUTION OF PARTIAL DIFFERENTIAL 

EQUATION 

5.1. Diffusion equation 

5.1.1. Diffusion in a still fluid 
The initial-boundary value problem of Diffusion equation is defined by 

2

2

x

u

t

u









  in Lx 0 ,                                                                         (74) 

)()0,( xfxu  ;   0),0( Utu  ,  LUtLu ),( .                                                     (75a, b) 

We divide the computational region into N  elements 1 ii xxx , where 

N

L
dx  ;   idxxi  ,  Ni ,,1,0  .                                                              (76a, b) 

We use the difference operations to approximate the spatial derivatives. If we denote ),( txu i  as )(tui , then, we have 

 112
2

1
  iii

i uuu
dxdt

du
 ,  Ni ,,1,0  ,                                                           (77) 

)()0( ii xfu  ;   00 const)( Utu  ,  LN Utu  const)( .                                          (78a, b) 
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Equations (77) and (78) can be rewritten as 

 ua
dxdt

du
][

2












,                                                                                 (79) 

where 

   T111  Nuuuu  ;   














otherwise0
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1&1for1

ij

iij

a ji   for 1,,2,1  Ni  .                          (80a, b) 

From Eq. (79), the following time-progressive equations for Euler method (EUL), Implicit method using linear 

approximation (IMP1), Runge-Kutta method of the 2nd order (RK2) and Implicit method using parabolic approximation 

(IMP2) are given below, where iu  at time step n  is denoted as 
)(n

iu . 

EUL: 
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,                                     (81) 

where    0011   and    1001 N . 

IMP1: 
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RK2: 
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.                            (83b) 
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  or eliminating  )21( nu  
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.                                               (85) 

The initial condition is given by  

    )()0(

ii xfu   for Ni ,,1,0  .                                                                      (86) 

The exact solution of the initial-boundary value problem, Eqs. (74) and (75) is given by 






































1

2

00 sinexp)(),(
m

mL x
L

m
t

L

m
a

L

x
UUUtxu


 ,                                         (87a) 

where 
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 .                                     (87b) 

The numerical results are shown in Tables 3 and Fig. 6. In Tables 3,  is the kinematic viscosity, and symbols 〇 and ☓ 

means whether the calculation is conducted normally or diverged, respectively. The stability of IMP1 is much higher 

than EUL and RK2. In Fig. 6, the accuracy is compared among EUL, RK2 and IMP1. The accuracy of IMP1 is high.  
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Table 3: 0f , 10 U , 0LU , 1L , 089.0 , 5.2max t  

 EUL RK2 IMP1 

 N=20 N=40 N=80 N=20 N=40 N=80 N=20 N=40 N=80 

dt=0.0025 〇 〇 ☓ 〇 〇 ☓ 〇 〇 〇 

dt=0.005 〇 ☓ ☓ 〇 ☓ ☓ 〇 〇 〇 

dt=0.01 〇 ☓ ☓ 〇 ☓ ☓ 〇 〇 〇 

dt=0.1 ☓ ☓ ☓ ☓ ☓ ☓ 〇 〇 〇 

dt=1 ☓ ☓ ☓ ☓ ☓ ☓ 〇 〇 〇 

 
Figure 6: Comparison of accuracy of the solutions by IMP1 ( hatf , 00 U , 0LU , 1L , 20N , 01.0dt , 1t

, 089.0 ) 

5.1.2. Diffusion in a flow with uniform flow 
If there is a flow in the fluid, the initial-boundary value problem of Diffusion equation is defined by 

2

2

x

u

x

u
V

t

u














  in Lx 0 ,                                                                (88) 

)()0,( xfxu  ;   0),0( tu ,  0),( tLu ,                                                       (89a, b) 

where V  is the velocity of the uniform flow. 

We divide the computational region into N  elements as given by Eq. (76). We use the difference operations to 

approximate the spatial derivatives. If we denote ),( txu i  as )(tui , then, we have 

   11211 2
1

2

1
  iiiii

i uuu
dx

uu
dx

V
dt

du
 , Ni ,,1,0  ,                                     (90) 

)()0( ii xfu  ;   0)(0 tu ,  0)( tuN .                                                       (91a, b) 

Equations (90) and (91) can be rewritten as 

   ua
dx

ub
dx

V

dt

du
][][

2 2












,                                                                (92) 

where  u  and  a  are given by Eq. (80), and  b  is defined by 















otherwise0

1for1

1for1

ij

ij

b ji  for 1,,2,1  Ni  .                                                       (93) 

From Eq. (92), the following time-progressive equations for Euler method (EUL), Implicit method using linear 

approximation (IMP1), Runge-Kutta method of the 2nd order (RK2) and Implicit method using parabolic approximation 

(IMP2) are given below, where iu  at time step n  is denoted as 
)(n

iu . 

EUL: 
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where    0011   and    1001 N . 
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RK2: 
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The initial condition is given by  

)()0(

ii xfu   for Ni ,,1,0  .                                                                   (99) 

The exact solution of the initial-boundary value problem, Eqs. (88) and (89), is given by 
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 ,                                               (100a) 

where 
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 .                                                            (100b) 

The numerical results are shown in Figs. 7, 8 and 9. The initial condition )(xf  is a pulse-like function given by 

))2(8())2(8( xLxLELxLxE  . The stability of IMP1 and IMP2 is much higher than EUL and RK2. In Figs. 

7 and 8, the accuracy is compared among EUL (Central), EUL (Upwind), IMP1 (Central) and IMP1 (Upwind). The 

accuracy of IMP1 is very high. In Fig. 9, the accuracy is compared between IMP1 and IMP2. The accuracy of IMP2 is 

higher than that of IMP1. 

5.2. Burgers’ equation 

The initial-boundary value problem of Burgers’ equation is defined by 

2

2

x

u

x

u
u

t

u














  in  x ,                                                               (101) 

)()0,( xfxu  ; 0),(  tu .                                                               (102a, b) 

In the numerical calculation, we replace the inifinite region  x  with a computational region LxL  . We 

divide the computational region into N  elements 1 ii xxx , where 

N

L
dx

2
 ;   idxLxi  ,  Ni ,,1,0  .                                                      (103a, b) 

We use the difference operations to approximate the spatial derivatives. If we denote ),( txu i  as )(tui , then, we have 
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Asian Journal of Engineering and Technology (ISSN: 2321 – 2462) 

Volume 02 – Issue 02, April 2014  

Asian Online Journals (www.ajouronline.com)  151 

 

 

 
Figure 7: Comparison of accuracy of the solutions by EUL ( like"-pulse")( xf , 1V , 1L , 0025.0dt , 1.0t , 

00089.0 ) 

 
Figure 8: Comparison of accuracy of the solutions by IMP1 ( pulse"")( xf , 1V , 1L , 0025.0dt , 1.0t , 

00089.0 ) 

 
Figure 9: Comparison of accuracy of the solutions between IMP1 and IMP2 ( pulse"")( xf , 1V , 2L , 01.0dt , 

4.0t , 00089.0 ) 
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)()0( ii xfu  ;   0)(1  tu ,  0)(1  tuN .                                                    (105a, b) 

Equations (77) and (78) can be rewritten as 
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The boundary condition is included in  a . 

From Eq. (94), the following time-progressive equations for Euler method (EUL), Implicit method using linear 

approximation (IMP1), Runge-Kutta method of the 2nd order (RK2) and Implicit method using parabolic approximation 

(IMP2) are given below, where iu  and i  at time step n  are denoted as 
)(n

iu  and 
)(n

i , respectively. 
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i  is given by 
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The initial condition is given by  



 


otherwise,0

1||if),sin(
)0(

xx
u

i

i


 for Ni ,,1,0  .                                             (115) 

The boundary condition is included in  a .  )1( n  is determined by iteration. 

The exact solution of the initial-boundary value problem, Eqs. (101) and (102), is given in Ref. [3]. 

The numerical results are shown in Tables 4 and 5 and Figs. 10 and 11. In Tables 4 and 5,  is the kinematic 

viscosity, and symbols 〇 and ☓ means whether the calculation is conducted normally or diverged, respectively. The 

stability of IMP1 is much higher than EUL and RK2. In Figs. 10 and 11, the accuracy is compared among EUL, RK2 and 

IMP1. The accuracy of IMP1 is very high. 

Table 4: 100N , 5max t  

 EUL RK2 IMP1 

 1.0  01.0  005.0  1.0  01.0  005.0  1.0  01.0  005.0  

dt=0.001 〇 〇 ☓ 〇 〇 ☓ 〇 〇 ☓ 

dt=0.01 ☓ 〇 ☓ ☓ 〇 ☓ 〇 〇 ☓ 

dt=0.1 ☓ ☓ ☓ ☓ ☓ ☓ 〇 〇 ☓ 
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Table 5: 200N , 5max t  

 EUL RK2 IMP1 

 1.0  01.0  005.0  1.0  01.0  005.0  1.0  01.0  005.0  

dt=0.001 〇 〇 〇 〇 〇 〇 〇 〇 〇 

dt=0.01 ☓ 〇 〇 ☓ 〇 ☓ 〇 〇 〇 

dt=0.1 ☓ ☓ ☓ ☓ ☓ ☓ 〇 〇 ☓ 

 

 
Figure 10: Comparison of accuracy ( 200N , 2L , 01.0dt , 01.0 ) 

 
Figure 11: Effects of N  and   on the accuracy (IMP1, 2L , 001.0dt ). 

5.3. Wave equation 

Let x and t be one-dimensional space coordinate and time, and ),( tx  be a solution of a initial and boundary value 

problem of a wave equation: 

0
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2

2

22

2











xct


 in  x ,                                                             (116) 

)()0,( xfx  , 0)0,( xt ; 0),(  t ,                                                  (117a, b) 

where c  is the velocity of wave. 

We approximate  x  by LxL   and the discretization of the space is given by Eq. (103). If we denote 

),( txi  as )(ti , then, Eqs. (116) and (117) is approximated for Ni ,,1,0   as 
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Equations (118) and (119) can be rewritten for Ni ,,1,0   as 
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)()0( ii xf , 0)0( i ; 0)(1  t , 0)(1  tN .                                           (121a, b) 

Equation (107) is further rewritten as 
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where 

   T10 N  ,     T10 N  ,                                        (123a, b) 

and ][a  is defined by Eq. (109). The boundary condition is included in  a . 

From Eq. (122), the following time-progressive equations for Euler method (EUL), Implicit method using linear 

approximation (IMP1), Runge-Kutta method of the 2nd order (RK2), Implicit method using parabolic approximation 

(IMP2) and Implicit method using cubic approximation (IMP3) are given below, where i  and i  at time step n  are 

denoted as )(n

i  and )(n

i , respectively. 
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RK2: 
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Substituting Eq. (130b) into Eq. (130a) 
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The initial condition is given by  
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10
exp

L
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i  for Ni ,,1,0  .                                                           (133) 

The boundary condition is included in  a .  )1( n  and  )1( n  are determined by iteration. 

The exact solution of the initial-boundary value problem, Eqs. (116) and (117), is given by 

)(),( ctxftx  , )(),( ctxfcttx   .                                             (134a, b) 

The numerical results are shown in Figs. 12-18. According to the results in Figs. 12-17, the stability and accuracy of 

IMP1 is much higher than EUL and RK2 in case of a bell-shape initial value. In Fig. 18, IMP1, IMP2 and IMP3 are 

compared in case of a triangular initial value. Although the accuracy was higher in the order of IMP1, IMP2 and IMP3, 

large difference was not observed among the three solutions. 
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Figure 12:  , EUL, L=10, N=100, tmax=5 

 
Figure 13:  , EUL, 10L , 100N , 5max t  

 
Figure 14:  , RK2, 10L , 100N , 5max t  
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Figure 15:  , RK2, 10L , 100N , 5max t  

 
Figure 16:  , IMP1, 10L , 100N , 5max t  

 

 
Figure 17:  , IMP1, 10L , 100N , 5max t  
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Figure 18: Comparison of IMP1, IMP2 and IMP3 of  , 10L , 100N , 1.0dt , 5max t  

6. CONCLUSIONS 

The stability and accuracy of the numerical integration of the time-evolution equation has a crucial importance in 

solving the unsteady partial differential equation. Crank-Nicholson [1] and Rosenbrock [2] have discussed not only the 

stability but also the accuracy theoretically. In the present paper, the same problems were discussed again from the 

different viewpoint and verified by the numerical results. 
The Runge-Kutta methods are widely used in the numerical integration. However, in some cases, the stability is not 

sufficient. In these cases, the implicit method is effective in increasing the stability. 

New implicit methods were proposed to increase stability and accuracy of the solution of the time-evolution equation. 

The stability of various methods including Runge-Kutta method was discussed theoretically and numerically, and the 

numerical examples were shown to show the effectiveness of the New Implicit methods. 

As implicit methods, we proposed implicit method using linear approximation (IMP1), one using parabolic 

approximation (IMP2) and one using cubic approximation (IMP3). In the case of linear problem, IMP1 is identical to the 

implicit method by Crank and Nicholson [1]. However, the algorithms of the higher approximation become difficult, 

although the implicit methods increase the stability drastically. Of course, the accuracy is also increased. Since, the 

accuracy is increased by using finer spatial mesh, the most practical way to increase the accuracy and the stability in the 

solution of unsteady boundary value problems may be to use IMP1 and the smaller spatial mesh size. 

The effects of nonlinearity on the implicit methods were also discussed. Unsteady Burgers’ equation was solved 
numerically using the Euler Methods, RK2 and IMP1. IMP1 gave the best results both in accuracy and stability. 
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APPENDIX A. STABILITY ANALYSIS BY CRANK-NICHOLSON’S METHOD [1] 

We study the stability of the problem discussed in Section 2.1.2 according to a method by Crank and Nicholson [1]. 

The differential equation is given by 

fu
dt

du
 .                                                                              (A.1) 

First, we use Euler method using central difference is used for the numerical integration of Eq. (A.1). Then, the 

solution nu  at time step ndttn   satisfies the following difference equation: 

nnnn fdtudtuu   211 .                                                                    (A.2) 

Let nu  be a solution of Eq. (A.2) with the computational error nu , namely 

nnn uuu  .                                                                             (A.3) 

Substituting Eq. (A.3) into Eq. (A.2), we have 

nnn udtuu   211 .                                                                    (A.4) 

If we assume 
kndt

n Aeu  ,                                                                              (A.5) 

we obtain 

dtee kdtkdt 2  or dtkdt )sinh( .                                                        (A.6, 7) 

Equation (A.7) means 0k , and nu  is derived as 

kndtnkndt

n eBAeu  )1( .                                                                     (A.8) 

The first term kndtAe  converges to zero, and the second term kndtn eB  )1(  alternates sign in successive time steps and 

increase magnitude exponentially. Hence, the solution of Eq. (A.2) oscillates with increasing amplitude. 

If we use Euler method given by the following difference equation: 

nnnn fdtudtuu 1 ,                                                                       (A.9) 

then, we have 

nnn udtuu  1 .                                                                       (A.10) 

Substituting Eq. (A.5) into Eq. (A.10), we obtain 
kndtkndtdtnk dtAeAeAe  )1(    or   dtekdt 1 .                                              (A.11, 12) 

Hence, if 10  dt , kndt

n Aeu  1  converges to zero. However, if 1dt , then, k  becomes complex: 

idtkdt edtdte  )1ln()1(1 . So, we have 

nnnaniankndt

n dtAAeAeAeu )1()1()1()(

1    .                                           (A.13) 

Hence, if 21  dt  or dt2 , then, nu1 converges to zero or diverges to infinity alternating sign in successive time 

steps, respectively. 

If we use implicit method, the difference equation is given by 
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Substituting Eq. (A.3) into Eq. (A.15), we have 

nn udtudt 
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Substituting Eq. (A.5) into Eq. (A.16), we obtain 

kndtdtnk AedtAedt 
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Since 10  kdte , then, 0k , and nu  converges always to zero. 
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APPENDIX B. FORMULAE OF NUMERICAL INTEGRATION OF A CUBIC FUNCTION 

Equation (64) is explained below: 
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