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_________________________________________________________________________________ 

ABSTRACT— Recent years, many fuzzy or probabilistic database models have been built for representing and 

handling imprecise or uncertain information of objects in real-world applications. However, relational database 

models combining the relevance and strength of both fuzzy set and probability theories have rarely been proposed. 

This paper introduces a new relational database model, as a hybrid one combining consistently fuzzy set theory and 

probability theory for modeling and manipulating uncertain and imprecise information, where the uncertainty and 

imprecision of a relational attribute value are represented by a fuzzy probabilistic triple, the computation and 

combination of relational attribute values are implemented by using the probabilistic interpretation of binary relations 

on fuzzy sets, and the elimination of redundant data is dealt with by coalescing -equivalent tuples. The basic concepts 

of the classical relational database model are extended in this new model. Then the relational algebraic operations are 

formally defined accordingly. A set of the properties of the relational algebraic operations is also formulated and 

proven. 

 

Keywords— Fuzzy probabilistic triple, - equivalence, uncertain and imprecise information, relational algebraic 
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_________________________________________________________________________________ 

 

1. INTRODUCTION 

As we know, the information that we have about the real world may be uncertain and imprecise. Although the 

classical database models, including the relational database model and object-oriented database model, are useful for 

modeling, designing, and implementing large-scale systems, they are restricted in representation and handling of 

uncertain and imprecise information ([3], [5]). For example, the classical relational database model cannot deal with 

queries such as “find all patients whose daily treatment costs are high”; nor “find all players who are 90-95% likely to be 

the top scorers of the English Premier League in the year 2020”, etc., where “high” is an imprecision notion ([11], [26]) 

and “90-95% likely” expresses an uncertainty degree ([9]). 

Up to now, there have been many non-classical relational database models researched and developed to overcome the 

limitations of the classical database models. Some models (e.g. [7], [8], [10], [12], [16], [19], [20], [22], [27], [28]) using 

only the probability theory could represent and handle uncertain information but not imprecise information of objects. 

Some other models (e.g. [11], [13], [14], [15], [21], [23]) using only the fuzzy set theory could express and manipulate 

imprecise information but not uncertain information of objects. 

In reality, information may contain both uncertainty and imprecision. For example, the query “find all patients who 

are old and at least 80% likely catch a lung cancer or tuberculosis” contains both imprecise and uncertain information. In 

such a case, the above-cited models cannot be applied. However, relational database models combining both the fuzzy set 

theory and probability theory for modeling objects involving both uncertain and imprecise information are rare.   

In [24], the authors proposed a fuzzy probabilistic relational database model to represent and deal with uncertain and 

imprecise information of objects in real-world applications. In this model, each attribute of a tuple in a relation was 

assigned to a precise value with a probability inferred from the possibility distribution of probability values associated 

with the tuple. In other words, each tuple in a relation was associated with a fuzzy number as a possibility distribution on 

the interval [0, 1] representing the aggregated probability for the single value that each attribute in the tuple of the 

relation can take. Also, in this model, the authors defined the notion of the equivalence of tuples to combine them in 

relational algebraic operations as the projection, intersection, union and difference. However, in the real world, there are 
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situations in which we do not know exactly the value of each attribute, although we know that the attribute may take one 

of the values, which can be vague, in a certain set.  

In [16], the authors introduced a probabilistic relational database model named PRDB. It was able to represent 

situations in which we do not know exactly the value of each attribute, but we know the probability interval for it taking 

one of the values in a candidate set. It means that the model could overcome the shortcoming of the model in [24]. 

However, the PRDB model could not express and deal with vague information. In [25], the authors extended the model 

in [24] by allowing relational attributes could take set or tuple type values. However, like the model in [16], this model 

could not represent and deal with vague information. In [6], the authors proposed a model, where the relational attributes 

could take a fuzzy set value and each tuple had a probability interval to belong to a relation. The notion of the 

equivalence of tuples were also defined in this model. However, in [6], only the selection operation was defined while all 

other algebraic operations are missing.  

In [17], the authors extended the PRDB model in [16] with fuzzy set values, resulting in a fuzzy probabilistic 

relational database model, called FPRDB, that could represent and handle both uncertain and vague information. 

Nevertheless, in [17], only the selection operation was built while all other algebraic operations are missing.  

The model in [18] was an extension of the model in [17] with a complete set of basic fuzzy probabilistic relational 

algebraic operations, however, in [18], the keys of relational schemas were defined to be certain and precise values. 

These led to the inconsistency in definitions of some relational algebraic operations such as the operations of the 

projection, intersection, union and difference of relations and caused information loss for objects in a database. In this 

paper, using the concept of fuzzy probabilistic triples introduced in [4] and the probabilistic interpretation of binary 

relations on fuzzy sets presented in [17], we propose an uncertain and fuzzy relational database model, denoted UFRDB, 

as a hybrid one combining probability theory and fuzzy set theory, where the notion of the uncertainty and imprecision of 

attribute values, and of the equivalence of relational tuples are defined as the basis to build UFRDB algebraic operations 

and overcome the shortcoming of the model in [18] for representing and manipulating both imprecise and uncertain 

information in practice.   

The mathematical basis for UFRDB is summarized in Section 2. The data model of UFRDB are presented in Section 

3. Sections 4 and 5 respectively present the UFRDB algebraic operations and their properties. Finally, Section 6 

concludes the paper and outlines further research directions. 

2. BASIC PROBABILITY AND FUZZY SET DEFINITIONS 

This section presents some notions of probability and fuzzy sets as a mathematical foundation for extending the 

classical relational database model (CRDB) to the UFRDB model.  

2.1 Mass Assignment and Probability of Fuzzy Binary Relations 

For a probabilistic interpretation of binary relations on fuzzy sets, the mass assignment based on the voting model of 

fuzzy sets in [1] and [2] is defined as follows. 

Definition 1. Let A = i=1, n j=1, mi
 xi,j : yi be a normal fuzzy set on a domain U, where n, mi N, and yi  yj if i  j, i 

=1,…, n and j =1,…, mi. The mass assignment corresponding to A is a mapping mA: 2U [0, 1] that is defined by mA(z1) 

= y1–y2, …, mA(i=1, jzi) = yj–yj+1,…, mA(i=1, nzi) = yn, where zi = j=1, mi
{xi,j}. 

We note that, the mass assignment mA(z1) = y1–y2, …, mA(i=1, jzi) = yj–yj+1,…, mA(i=1, nzi) = yn can be denoted by mA 

= z1: y1–y2, …, i=1, jzi: yj–yj+1,…, i=1, nzi: yn. 

As in ([4], [17]), the probabilistic interpretation of a binary relation on fuzzy sets is then defined as the probability for 

the relation being true as below. 

Definition 2. Let A be a fuzzy set on a domain U, B be a fuzzy set on a domain V, and  be a binary relation from =, , 

, , ,  assumed to be valid on (UV). The probabilistic interpretation of the relation A  B, denoted by prob(A  B), 

is a value in [0, 1] that is defined by SU, TV p(u  v| uS, vT).mA(S).mB(T), where mA, mB are the mass assignments 

corresponding to A and B, respectively, and p(u  v| uS, vT) is the conditional probability of u  v given uS and vT. 

Intuitively, given fuzzy propositions “x is A” and “y is B”, prob(A  B) is the probability for x  y being true. 

Definition 3. Let A and B be two fuzzy sets on a domain U. The probabilistic interpretation of the relation AB, 

denoted by prob(AB), is a value in [0, 1] that is defined by S,TU p(u  T| uS).mA(S).mB(T), where mA, mB are the 

mass assignments corresponding to A and B, respectively, and p(u  T| uS) is the conditional probability for u  T 

given uS. 

The intuitive meaning of prob(A  B) is that, given a fuzzy proposition “x  A”, prob(A B) is the probability for x 

 B being true. In other words, it is the fuzzy conditional probability of xB given xA. 
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Example 1. Let about_6 = 5: 0.9, 6: 1.0, 7: 0.9 and about_7 = 6: 0.9, 7: 1.0, 8: 0.9 be the fuzzy sets on the real 

number set R, then the mass assignments corresponding to about_6 and about_7 are mabout_6 =6:0.1, 5, 6, 7:0.9 and 

mabout_7 = 7:0.1, 6, 7, 8:0.9. The probabilistic interpretation of about_7  about_6 is computed as follows:  

   prob(about_7about_6)= p(u6u7).mabout_7(7).mabout_6(6) +   

      p(u6u 6,7,8).mabout_7(6,7,8).mabout_6(6) + 

          p(u5,6,7u 7).mabout_7(7).mabout_6(5,6,7) + 

          p(u5,6,7u6,7,8).mabout_7(6,7,8).mabout_6(5,6,7) 

           = 0 0.10.1 + 1/30.90.1 + 10.10.9 + 2/30.90.9  = 0.66. 

2.2 Combination Strategies of Probability Intervals 

Let two events e1 and e2 have probabilities in the intervals [L1, U1] and [L2, U2], respectively, then the probability 

intervals of the conjunction event e1  e2, disjunction event e1  e2, and difference event e1  e2 can be computed by 

alternative strategies. In this work, we employ the conjunction, disjunction, and difference strategies given in [9] as 

presented in Table 1, where , , and ⊖ denote the conjunction, disjunction, and difference operators, respectively. 

Table 1: Definitions of probabilistic combination strategies 

Strategy Operators 

Ignorance 

([L1, U1]ig[L2, U2]) = [max(0, L1 + L2 – 1), min(U1, U2)] 

([L1, U1]ig[L2, U2]) = [max(L1, L2 ), min(1, U1 + U2)] 

([L1, U1]⊖ig[L2, U2]) = [max(0, L1 –U2 ), min(U1, 1– L2)] 

Independence 

([L1, U1]in[L2, U2]) = [L1 . L2, U1 . U2] 

([L1, U1]in[L2, U2]) = [L1+L2  – (L1.L2), U1+U2 – (U1.U2)] 

([L1, U1]⊖in[L2, U2]) = [L1 . (1 – U2), U1  . (1– L2)] 

Positive correlation 

([L1, U1]pc[L2, U2]) = [min(L1, L2), min(U1, U2)] 

([L1, U1]pc[L2, U2]) = [max(L1, L2), max(U1, U2)] 

([L1, U1]⊖pc[L2, U2]) = [max(0, L1– U2), max(0, U1 –L2)] 

Mutual exclusion 

 

([L1, U1]me[L2, U2]) = [0, 0] 

([L1, U1]me[L2, U2]) = [min(1, L1+ L2), min(1, U1 + U2)] 

([L1, U1]⊖me[L2, U2]) = [L1, min(U1, 1 – L2)] 

In the following sections, the notation [L1, U1]  [L2, U2] is used to denote L1  L2 and U1  U2 whereas the notation 

[L1, U1]  [L2, U2] is for L2  L1 and U1  U2. Also, a single probability value  can be treated as the probability interval 

[, ]. 

2.3 Combination Strategies of Fuzzy Probabilistic Triples 

For representing imprecise and uncertain attribute values in UFRDB, we use the notion of fuzzy probabilistic triples 

in [4] and [17] extended from probabilistic triples in [9] and is defined as below.  

Definition 4. Let X be a non-empty set. A fuzzy probabilistic triple on X is defined to be of the form V, , , where V is 

a finite subset of X, and  and  are respectively lower and upper bound probability distributions on V.  

In UFRDB, the sets X and V can consist of fuzzy set values. Informally, a fuzzy probabilistic triple V, ,  assigns 

to each element x  V a probability p(x) where (x)  p(x)  (x) to represent the uncertainty degree that an object may 

take the value x in V, which can be an imprecise value.   

Example 2. Suppose the daily treatment cost of a patient is estimated within about 6 or 7 (USD) with a probability for 

each between 0.4 and 0.6. Then this information can be represented by the fuzzy probabilistic triple V, ,  = 

{about_6, about_7}, 0.8u, 1.2u, where about_6 and about_7 are fuzzy sets given as in Example 1, defining the 

imprecise treatment costs of the patient and u is the uniform distribution over V = {about_6, about_7}. Here, 0.8u and 

1.2u are respectively the probability distributions  and  with (x) = 0.8u(x) = 0.8(1/2) = 0.4 and (x) = 1.2u(x) = 

1.2(1/2) = 0.6, x  V = {about_6, about_7}.  

For building UFRDB algebraic operations, we employ combination strategies of fuzzy probabilistic triples in [4]. We 

note that, here h(v) denotes the height of a fuzzy set v, whereby v is a normal fuzzy set if and only if h(v) = 1. 

Definition 5. Let fpt1 = V1, 1, 1 and fpt2 = V2, 2, 2 be two fuzzy probabilistic triples, and  be a probabilistic 

conjunction strategy. Then the conjunction of fpt1 and fpt2 under , denoted by fpt1  fpt2, is the fuzzy probabilistic triple 

fpt = V, , , such that: 

1. V = v = v1v2  v1V1, v2V2, h(v) = 1, [1(v1), 1(v1)]  [2(v2), 2(v2)]  [0,0]}, and 

2. [(v), (v)] = me: v1V1,v2V2,v = v1v2
 [1(v1), 1(v1)]  [2(v2), 2(v2)], for every vV, where me is the mutual 

exclusion probabilistic disjunction strategy. 
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We note that, unlike the combination strategies of probabilistic triples in [9], where each v1 and v2 in V1 and V2 

respectively is elementary and non-fuzzy, here v1 and v2 may be fuzzy sets, since there can be more than one pair (v1, v2) 

 V1×V2 such that v = v1v2. So the probability intervals for those pairs must be combined using the mutual exclusion 

probabilistic disjunction strategy me in the above computation of [(v), (v)]. 

Example 3. Let fpt1 = {about_40, about_50}, u, u and fpt2 = {about_50, about_60}, 0.8u, 1.2u be fuzzy probabilistic 

triples, where about_40, about_50 and about_60 are fuzzy sets with h(about_40  about_60)  1, then fpt1 in fpt2 with 

the independence probabilistic conjunction strategy is the fuzzy probabilistic triple fpt = about_50, 0.2u, 0.3u.  

Next, the disjunction and difference of fuzzy probabilistic triples in turn are defined as below. 

Definition 6. Let fpt1 = V1, 1, 1 and fpt2 = V2, 2, 2 be two fuzzy probabilistic triples, and  be a probabilistic 

disjunction strategy. Then the disjunction of fpt1 and fpt2 under , denoted by fpt1  fpt2, is the fuzzy probabilistic triple 

fpt = V, , , such that: 

1. V = PQR, where P = v1V1 |v2V2: h(v1v2) = 1}, Q = {v2V2 |v1V1: h(v1v2) = 1}, and R = {v1v2 | 

v1 V1, v2  V2, h(v1v2) = 1}, and 

                    [1(v), 1(v)], vP 

2. [(v), (v)] =    [2(v), 2(v)], vQ 

          me:v1V1,v2V2,v =v1v2[1(v1), 1(v1)] [2(v2), 2(v2)],vR. 

Definition 7. Let fpt1 = V1, 1, 1 and fpt2 = V2, 2, 2 be two fuzzy probabilistic triples, and ⊖ be a probabilistic 

difference strategy. Then the difference of fpt1 and fpt2 under ⊖, denoted by fpt1 ⊖ fpt2, is the fuzzy probabilistic triple 

fpt = V, , , such that: 

1. V = P  Q, where P = {v1 V1 | v2 V2: h(v1v2) = 1}, Q = {v = v1v2 | v1 V1, v2 V2, h(v1v2) = 1 and [1(v1), 

1(v1)] ⊖ [2(v2), 2(v2)]  [0, 0]}, and  

     [1(v), 1(v)], vP  

2. [(v), (v)] = 

         me:v1V1,v2V2,v=v1v2[1(v1),1(v1)]⊖[2(v2), 2(v2)],vQ. 

3. PROPOSED UFRDB MODEL 

As for CRDB, the schema and relation are the fundamental concepts in the UFRDB model.  

3.1 UFRDB Schemas 

A UFRDB schema describes a set of relational attributes and their associated sets of fuzzy probabilistic triples 

representing possible values of objects in UFRDB, as defined below. 

Definition 8. A UFRDB schema is a pair R = (U, ), where  

1. U = {A1, A2, …, Ak} is a set of pairwise different attributes. 

2.  is a function that maps each attribute A  U to the set of all fuzzy probabilistic triples on the value domain of A.  

Note that as in CRDB ([3], [5]), for simplicity, the notation R(U, ) and then R can be used to denote R = (U, ). In 

addition, the value domain of each attribute A is denoted by dom(A).  

3.2 UFRDB Relations 

A UFRDB relation is an instance of a UFRDB schema in which each attribute may take imprecise and uncertain 

values represented by a fuzzy probabilistic triple as in the following definition. 

Definition 9. Let U = {A1, A2, …, Ak} be a set of k pairwise different attributes. A UFRDB relation r over the schema 

R(U, ) is a finite set {t  t = (V1, 1, 1, V2, 2, 2,…, Vk, k, k)}, in which each element t is a list of k fuzzy 

probabilistic triples such that Vi, i, i belongs to the set (Ai) and Vi  , for every i =1, 2,…, k.  

Each element t in the relation r over R(U, ) is called a tuple on U. For each tuple t, the fuzzy probabilistic triple Vi, 

i, i represents the imprecise and uncertain value of the attribute Ai of the tuple t. We write t.Ai to denote Vi, i, i. For 

each subset of attributes X  {A1, A2, …, Ak}, the notation t[X] is used to denote the rest of t after eliminating the fuzzy 

probabilistic triples of those attributes that do not belong to X.    

As in [3], [6] and [8], our UFRDB adopts the closed world assumption. It means that, for each attribute Ai and v  

dom(Ai)–Vi, the probability for Ai taking v is 0. In addition, each precise (or crisp) value v  Vi is considered as a special 

fuzzy set on dom(Ai) with the membership function v(v) =1 and v(x) = 0 x  dom(Ai) and x  v.  
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Example 4. Assuming a schema PATIENT, where U = {P_ID, P_NAME, P_AGE, P_DISEASE, P_COST}, a simple 

relation PATIENT (over PATIENT) about patients at the clinic of a hospital is shown in Table 2. In the relation, the 

attributes P_ID, P_NAME, P_AGE, P_DISEASE, and P_COST respectively describe the information about the 

identifier, name, age, disease, and daily treatment cost of each patient. In reality, while being diagnosed, the actual 

disease of a patient may be still uncertain. Similarly, during the treatment process, the daily treatment cost for a patient 

can be just an estimation. It is noted that, for each attribute AU in the schema PATIENT(U, ), (A) includes all 

fuzzy probabilistic triples on the value domain of A (Definition 8). In addition, for simplicity, each fuzzy probabilistic 

triple V, u, u, with V ={v} and u is the uniform distribution over V, will be represented as a single value v. Because if an 

attribute takes such a fuzzy probabilistic triple, then, actually it only takes a value v with the probability is 1 (Definition 

4). In other words, the attribute certainly takes the value v. 

Table 2: Relation PATIENT 

P_ID P_NAME P_AGE P_DISEASE P_COST 
P215 John {65}, u, u lung cancer, tuberculosis, 0.8u, 1.2u 30, 35, 0.7u,  1.3u 

P226 Paul 
{middle_aged,  

approx_40}, u, u 
hepatitis, cirrhosis, 0.9u, 1.3u {about_6, about_7, 0.8u, 1.2u 

P238 Ann {old}, u, u cholecystitis, u, u {8}, u, u 

P382 Selena {young}, u, u bronchitis, u, u {about_7, u, u 

In real-world applications, fuzzy set values of attributes of the relation PATIENT, such as about_6, about_7, 

approx_40, young, middle_aged, and old, should be defined compatibly and consistently with the meaning of the 

information represented by them. For this simple example of Definition 9, one can define about_6 = 5: 0.9, 6: 1.0, 7: 

0.9 and about_7 = 6: 0.9, 7: 1.0, 8: 0.9 as fuzzy set values representing the likely imprecise daily treatment costs of 

the patient Paul who has hepatitis or cirrhosis. Similarly, approx_40 =39: 0.9, 40: 1.0, 41: 0.9, and middle_aged, old, 

young whose membership functions depicted as below could be used as fuzzy set values representing the imprecise ages 

of the patients Paul, Ann and Selena, respectively. 
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Now, the notion of an uncertain and fuzzy relational database is defined as follows. 

Definition 10. An uncertain and fuzzy relational database over a set of attributes is a set of UFRDB relations 

corresponding to the set of their UFRDB schemas. 

Note that, if we only care about a unique relation over a schema then we can unify its symbol name with its schema’s 

name. 

3.3 UFRDB Equivalent Tuples 

As we know, the classical relational database model does not allow redundant tuples in a relation, i.e., those whose 

respective attribute values are equal. For non-classical relational database models, different tuples in a relation, whose 

respective attribute values are approximately equal, are considered as redundant tuples and should be handled by 

eliminating or coalescing. Such redundant tuples, in the models [24] and [27], were called value-equivalent tuples, an 

extended notion of the notion about the equality of tuples in the classical relational database model. For the model in 

[24], where relational attributes could take only precise values and the uncertain membership degree of tuples was a 

possibility distribution of probability values, the authors introduced the notion of value-equivalence. Two tuples were 

said to be value-equivalent if and only if their respective relational attribute values are equal. Then they should be 

coalesced into a single tuple with the same relational attribute values and the combined uncertain membership degree as 

the sum of their ones. Similarly, identical tuples as the result of the projection, union, intersection and difference 

operations were also coalesced. 

For the model in [27], where the relational attribute values were precise and the uncertain membership degree of each 

tuple was a single probability value, the authors added the notion of -equality. Two tuples were said to be -equal if and 

only if they are value-equivalent, as defined in [24], and the absolute difference of their probabilistic attribute values is 

less than . 
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For our UFRDB model, in order to be coherent with its fuzzy probabilistic framework, where relational attribute 

values can be proper fuzzy sets associated with probability distributions, we introduce a probability measure for two 

values of the same attribute in two different tuples being equal and evaluate the likelihood of the value equality of two 

tuples and propose the notion of -equivalence as in the following definitions.  

Definition 11. Let R(U, ) be a UFRDB schema, t1 and t2 be two tuples on U, A be an attribute of U, and  be a 

probabilistic conjunction strategy. The probability interval for the values of the attribute A of two tuples t1 and t2 being 

equal under , denoted by p(t1.A = t2.A), is [vV (v).prob(v1 = v2), min(1, vV (v).prob(v1 = v2))], where t1.A = V1, 

1, 1, t2.A = V2, 2, 2 and [(v), (v)] = [1(v1), 1(v1)]  [2(v2), 2(v2)], v = (v1, v2)  V = V1  V2. 

Definition 12. Let R(U, ) be a UFRDB schema, t1 and t2 be two tuples on U, and [0, 1]. Then t1 and t2 are said to be 

- equivalent on U with respect to a probabilistic conjunction strategy , denoted by t1  t2, if and only if AU p(t1.A= 

t2.A)  . 

Intuitively, the concept of the -equivalence is to coalesce two UFRDB tuples in a relation under some probabilistic 

combination strategy if their equality likelihood is greater than or equal to a certain threshold , or not to coalesce them 

otherwise. The number  is called an equivalent threshold of tuples on U. It is easy to see that the definition of equal 

tuples in the classical relational database model is a special case of our definition with  = 1.  

Example 5. Let t1= (P302, Mary, {21}, u, u, bronchitis, u, u, {about_7, u, u) and t2= (P302, Mary, {21}, u, u, 

bronchitis, u, u, {about_6, about_7, 0.8u, 1.2u) be two tuples on the set of the attributes U = {P_ID, P_NAME, 

P_AGE, P_DISEASE, P_COST} of the schema PATIENT in Example 4, then in AU p(t1.A=in t2.A) = [1, 1]in[1, 1]in 

[1, 1]in [1, 1]in[0.232, 0.348] = [0.232, 0.348] under the independence probabilistic conjunction strategy in, where 

p(t1.P_COST =in t2.P_COST) = [0.232, 0.348], p(t1.A =in t2.A) = [1, 1], AU, A  P_COST (Definition 11). So, t1 and 

t2 are equivalent on U under every equivalent threshold  [0, 0.232] and the independence probabilistic conjunction 

strategy in.   

In the rest of this paper, we implicitly assume that for each UFRDB relation r over a schema R(U, ), there exists a 

number   (0, 1] such that there are not any two tuples in r being equivalent under the threshold  (i.e.  is an equivalent 

threshold of tuples on U). 

4. UFRDB ALGEBRAIC OPERATIONS 

As for CRDB ([3], [5]), the basic relational algebraic operations on UFRDB are the selection, projection, Cartesian 

product, join, intersection, union, and difference. We now extend those operations of CRDB for UFRDB taking into 

account imprecise and uncertain values of relational attributes.  

4.1 Selection 

For defining the selection operation, we present the formal syntax and semantics of selection conditions by extending 

those definitions of CRDB with probability and fuzzy set values. We start with the syntax of selection expressions as in 

the following definition. 

Definition 13. Let R be a UFRDB schema and X be a set of relational tuple variables. Then selection expressions are 

inductively defined and have one of the following forms: 

1. x.A  c, where x  X, A is an attribute in R,  is a binary relation from {=, , , , , , }, and c is a single value 

or a fuzzy set.   

2. x.A1 = x.A2, where x  X, A1 and A2 are two different attributes in R, and  is a probabilistic conjunction strategy.  

3. E1  E2, where E1 and E2 are selection expressions on the same relational tuple variable, and  is a probabilistic 

conjunction strategy. 

4. E1  E2, where E1 and E2 are selection expressions on the same relational tuple variable, and  is a probabilistic 

disjunction strategy. 

Example 6. Consider the schema PATIENT in Example 4, the selection of “all patients who get cirrhosis and pay the 

daily treatment cost of about 6 USD” can be expressed by the selection expression x.P_DISEASE = cirrhosis  

x.P_COST  about_6. 

In UFRDB, each selection condition is a logical combination of selection expressions with probability intervals to be 

satisfied as in the following definition.  

Definition 14. Let R be a UFRDB schema. Then selection conditions are inductively defined as follows: 

1. If E is a selection expression and [L, U] is a subinterval of [0, 1], then (E)[L, U] is a selection condition. 

2. If  and  are selection conditions on the same tuple variable, then , (  ), (  ) are selection conditions. 
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Example 7. Given the schema PATIENT in Example 4, the selection of “all patients who are old with a probability of at 

least 0.5 and have lung cancer with a probability of at least 0.9” can be done using the selection condition (x.P_AGE  

old)[0.5, 1.0]  (x.P_DISEASE = lung cancer)[0.9, 1.0]. 

The probabilistic interpretation (i.e., semantics) of selection expressions is defined by extending those definitions of 

CRDB with the probabilistic combination strategies and binary relations on fuzzy sets as follows. 

Definition 15. Let R be a UFRDB schema, r be a relation over R, x be a tuple variable, and t be a tuple in r. The 

probabilistic interpretation of selection expressions with respect to R, r and t, denoted by probR,r,t, is the partial mapping 

from the set of all selection expressions to the set of all closed subintervals of [0, 1] that is inductively defined as follows:  

1. probR,r,t(x.A  c) = [vV (v).prob(v  c), min(1, vV (v).prob(v  c))], where t.A = V, , .  

2. probR,r,t(x.A1 = x.A2) = [vV (v).prob(v1 = v2), min(1, vV (v).prob(v1 = v2))], where t.A1 = V1, 1, 1, t.A2 = 

V2, 2, 2 and [(v), (v)] = [1(v1), 1(v1)]  [2(v2), 2(v2)], v = (v1, v2)  V = V1V2. 

3. probR,r,t(E1  E2) = probR,r,t(E1)  probR,r,t(E2). 

4. probR,r,t(E1  E2) = probR,r,t(E1)  probR,r,t(E2). 

Intuitively, probR,r,t(x.A  c) is the probability interval for the attribute A of the tuple t having a value v such that v  c, 

while probR,r,t(x.A1 = x.A2) is the probability interval for the attributes A1 and A2 of the tuple t having values v1 and v2, 

respectively, such that v1 = v2. 

Example 8. Let R denote the schema PATIENT and r denote the relation PATIENT in Example 4. Consider the second 

tuple in r, denoted by t2. By Definition 3, one has prob(about_6  about_6) = 0.94 and prob(about_7  about_6) = 

0.66. Consequently, probR,r,t
2
(x.P_COST  about_6) = [0.8u(about_6).prob(about_6  about_6) + 

0.8u(about_7).prob(about_7 about_6), min(1, 1.2u(about_6).prob(about_6  about_6) + 1.2u(about_7).prob(about_7 

 about_6))] = [0.80.50.94 + 0.80.50.66, min(1, 1.20.50.94 + 1.20.50.66)] = [0.64, 0.96].  

On the basis of the probabilistic interpretation of selection expressions, the satisfaction of selection conditions in 

UFRDB is defined as below.  

Definition 16. Let R be a UFRDB schema, r be a relation over R, and t  r. The satisfaction of selection conditions under 

probR,r,t is defined as follows:  

1. probR,r,t ⊨ (E)[L,U] if and only if (iff) probR,r,t(E)[L,U]. 

2. probR,r,t ⊨  iff probR,r,t ⊨  does not hold.    

3. probR,r,t ⊨    iff probR,r,t ⊨  and probR,r,t ⊨ . 

4. probR,r,t ⊨    iff probR,r,t ⊨  or probR,r,t ⊨ . 

Note that, in the classical relational database model, the concepts of selection expression and selection condition are 

identical, where probability intervals [L, U] in selection conditions being always equal to [1.0, 1.0]. This also means that 

the satisfaction of selection conditions in the classical relational database model is a special case of that in UFRDB.  

Now, the selection operation on a relation in UFRDB is defined as follows. 

Definition 17. Let R be a UFRDB schema, r be a relation over R, and  be a selection condition over a tuple variable x. 

The selection on r with respect to , denoted by (r), is the relation r* = t  r  probR,r,t ⊨  over R, including all 

satisfying tuples of the selection condition . 

Example 9. Consider the relation PATIENT in Example 4. Then, the query “Find all patients who have cirrhosis with a 

probability between 0.4 and 0.7 and pay the daily treatment cost of about 6 USD with a probability of at least 0.6” can be 

done by the selection operation (PATIENT) with  = (x.P_DISEASE = cirrhosis)[0.4, 0.7]  (x.P_COST  

about_6)[0.6, 1.0].  

Only the second tuple (P226, Paul, {middle_aged, approx_40}, u, u, hepatitis, cirrhosis, 0.9u, 1.3u, {about_6, 

about_7, 0.8u, 1.2u) in Example 4 satisfies , because probR,r,t
2
(x.P_DISEASE = cirrhosis) = [0.45, 0.65]  [0.4, 0.7] 

and by Example 8 probR,r,t
2
(x.P_COST  about_6) = [0.64, 0.96]  [0.6, 1.0]. 

For the other tuples, one has probR,r,t
i
(x.P_DISEASE = cirrhosis) = [0, 0]  [0.4, 0.7], i  2. Thus, those tuples do 

not satisfy . 

4.2 Projection 

A projection of a UFRDB relation on a set of attributes is a new UFRDB relation where only the attributes in that set 

are considered for each tuple of the new relation. Moreover, equivalent tuples under a chosen threshold should be 

coalesced into a tuple in the result relation by probabilistic combination strategies. The projection operation of a UFRDB 
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relation is extended from the projection operation of a CRDB relation with uncertain and imprecise values of relational 

tuples and is defined as follows. 

Definition 18. Let R(U, ) be a UFRDB schema, r be a relation over R, L be a subset of attributes of U,  and  be 

probabilistic disjunction and conjunction strategies with respect to the same combination alternative,  [0, 1] be an 

equivalent threshold on L. The projection of r on L under ,  and , denoted by L(r), is the relation r* over the 

schema R* determined by: 

1. R* = (L, *) and *(A) = (A), A  L.  

2. r* = {t* | t*.A = u.A …w.A, A  L,  u, …, w r such that  ti, tj  {u, …, w}, ti[L] tj[L]}. 

We note that the combination alternative of a probabilistic combination strategy can be the “ignorance”, 

“independence”, “positive correlation” or “mutual exclusion” as in Table 1. 

Example 10. Consider the relation DIAGNOSE over the schema DIAGNOSE(U, ) as in Table 3, where U = {P_ID, 

D_ ID, P_AGE, P_DISEASE} and middle_aged, approx_40 are the fuzzy sets given in Examples 4. The set (A) for 

each attribute A in the schema DIAGNOSE(U, ) consists of all fuzzy probabilistic triples V, ,  on dom(A). Then 

the projection of DIAGNOSE on L = {D_ID, P_AGE, P_DISEASE} under in, in and the equivalent threshold  = 0.2 

is the relation r* = Lin0.2in
(DIAGNOSE) over the schema R* = (L, *) computed as in Table 4, where *(A) = (A), 

A  L. 

Table 3: Relation DIAGNOSE 

P_ID D_ID P_AGE P_DISEASE 
P388 D102 {30}, u, u hepatitis, gall-stone, 0.8u, 1.2u 

P245 D025 {middle_aged, approx_40}, 0.9u, 1.4u cholecystitis, u, u 

P237 D102 {30, 31}, u, u hepatitis, u, u 

Table 4: Relation Lin0.2in
(DIAGNOSE) 

D_ID P_AGE P_DISEASE 

D102 
{30, 31}, , , where (30) = 

(30)=1, (31)= (31)=0.5 

hepatitis, gall-stone, , , where (hepatitis) = 

(hepatitis)=1, (gall-stone) = 0.4, (gall-stone)=0.6 

D025 {middle_aged, approx_40}, 0.9u, 1.4u cholecystitis, u, u 

We note that two tuples t1 and t3 in Table 3 are equivalent on L = {D_ID, P_AGE, P_DISEASE} under the threshold  

= 0.2 and the independence probabilistic conjunction strategy in and they are projected on L and coalesced into the tuple 

t1 under the independence probabilistic disjunction strategy in in Table 4. However, if we chose another equivalent 

threshold   0.3, for instance  = 0.5, then there does not exist any equivalent tuples on L under  and the result of the 

projection operation is the relation Lin0.5in
(DIAGNOSE) as in Table 5.    

Table 5: Relation Lin0.5in
(DIAGNOSE) 

D_ID P_AGE P_DISEASE 
D102 {30}, u, u hepatitis, gall-stone, 0.8u, 1.2u 

D025 {middle_aged, approx_40}, 0.9u, 1.4u cholecystitis, u, u 

D102 {30, 31}, u, u hepatitis, u, u 

4.3 Cartesian Product 

For the Cartesian product of two UFRDB relations, as in CRDB, we assume the set of attributes of their schemas are 

disjoint and every k-tuple t = (V1, α1, β1,…,  Vk, αk, βk) is an un-ordered list. The Cartesian product of two UFRDB 

relations is extended from the Cartesian product of two CRDB relations as follows.  

Definition 19. Let U1, U2 be two sets of attributes that have not any common element, R1(U1, 1), R2(U2, 2) be two 

UFRDB schemas, r1, r2 be two relations over R1 and R2, respectively. The Cartesian product of r1 and r2, denoted by r1  

r2, is the relation r over R, determined by:  

1. R = (U, ), where U = U1  U2, (A) = 1(A) if A U1 and (A) = 2(A) if AU2. 

2. r = {t | t.A = t1.A if A  U1, t.A = t2.A if A  U2, t1  r1, t2  r2}. 

4.4 Join 

The join of two UFRDB relations is extended from the natural join of two CRDB relations with probability and fuzzy 

set values as following definition. 
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Definition 20. Let U1 and U2 be two sets of attributes such that if they have the same name attributes, respectively in 

those two sets then such attributes have the same value domain. Let R1(U1, 1) and R2(U2, 2) be two UFRDB schemas, 

r1, r2 be two relations over R1 and R2, respectively and  be a probabilistic conjunction strategy. The join of r1 and r2 

under , denoted by r1 ⋈ r2, is the relation r over the schema R, determined by: 

1. R = (U, ) where U = U1  U2, (A) = 1(A) if A U1- U2, (A) = 2(A) if A  U2 - U1 and (A) = 

1(A)=2(A) if A U1U2.  

2. r = {t | t.A = t1.A if A  U1  U2, t.A = t2.A if A  U2  U1, t.A = t1.A  t2.A if A  U1  U2 and t1.A  t2.A  , , 

β, t1  r1, t2  r2}. 

Example 11. Given two UFRDB relations DOCTOR1 and DOCTOR2 as in Tables 6 and 7, where young, approx_40 and 

middle_aged are the fuzzy sets given in Example 4. Then, the result of the join of them under the probabilistic 

conjunction strategy in and the standard intersection of fuzzy sets (by Definition 5) is the relation DOCTOR1 ⋈⊗in 

DOCTOR2 computed as in Table 8. Here, the names of each relation and its schema are identical, the set of fuzzy 

probabilistic triples (A) for each attribute A in the schemas consists of all fuzzy probabilistic triples on dom(A). 

Table 6: Relation DOCTOR1 

D_ID D_AGE 
D005 {middle_aged, approx_40}, 0.7u, 1.3u 

D093 {young}, u, u 

D102 {55, 56}, u, u 

Table 7: Relation DOCTOR2 

D_NAME D_AGE 
Alice {30, 31}, 0.8u, 1.2u 

George {approx_40}, u, u 

Peter {54, 55}, u, u 

Table 8: Relation DOCTOR1 ⋈⊗in DOCTOR2 

D_ID D_NAME D_AGE 
D005 George {approx_40}, 0.35u, 0.65u 

D102 Peter {55}, 0.25u, 0.25u 

We note that middle_aged  approx_40 = approx_40, so {middle_aged, approx_40}, 0.7u, 1.3u in {approx_40}, 

u, u = {approx_40}, 0.35u, 0.65u. Consequently, the tuple t1 in Table 8 is the result of the join of the tuple t1 in Table 6 

and the tuple t2 in Table 7. 

4.5 Intersection, Union and Difference 

The intersection, union and difference of two UFRDB relations over the same schema is a UFRDB relation over that 

schema, where two equivalent tuples under a threshold , respectively of those two relations are coalesced into a tuple in 

the result relation by a probabilistic combination strategy. Thus, the operations are an extension of the intersection, union 

and difference of two CRDB relations with probability and fuzzy set values. The intersection, union and difference of 

two UFRDB relations in turn are defined as below. 

Definition 21. Let R(U, ) be a UFRDB schema, r1 and r2 be two relations over R,  be a probabilistic conjunction 

strategy, and [0, 1] be an equivalent threshold on U. The intersection of r1 and r2 under  and , denoted by r1 r2, is 

the relation r over R(U, ) defined by r = {t | t.A = t1.A  t2.A, t1  r1, t2  r2, A  U, such that t1  t2 and t1.A  t2.A  

, , β}.  

Example 12. Consider two UFRDB relations DIAGNOSE1 and DIAGNOSE2 over the same schema DIAGNOSE(U, 

) as in Tables 9 and 10, where U = {P_ID, D_ID, P_AGE, P_DISEASE}, approx_42 = 41: 0.9, 42: 1.0, 43: 0.9, 

young, approx_40 and middle_aged are fuzzy set given in Example 4. The set (A) for each attribute A in the schema 

DIAGNOSE(U, ) consists of all fuzzy probabilistic triples V, ,  on dom(A). Then the intersection of DIAGNOSE1 

and DIAGNOSE2 under in and the equivalent threshold  = 0.194 is the relation DIAGNOSE10.194inDIAGNOSE2 

computed as in Table 11. 

Here, we note that the tuple t1 in Table 9 and the tuple t2 in Table 10 are equivalent on U = {P_ID, D_ID, P_AGE, 

P_DISEASE} under the threshold  = 0.194 and the independence probabilistic conjunction strategy in (because in AU 

p(t1.A=in t2.A) = [1, 1]in[1, 1]in [0.194, 0.301]in [1, 1] = [0.194, 0.301]), consequently they are coalesced into the tuple 
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t1 under in in the Table 11. In addition, it easy to see that the tuple t2 in Table 11 is the result of coalescence of the tuple 

t3 in Table 9 and the tuple t1 in Table 10.  

Table 9: Relation DIAGNOSE1 

P_ID D_ ID P_AGE P_DISEASE 
P234 D102 {approx_40}, u, u hepatitis, u, u 

P217 D093 {middle_aged, approx_40}, 0.6u, 1.2u lung cancer, tuberculosis, 0.8u, 1.2u 

P383 D105 {69}, u, u lung cancer, u, u 

Table 10: Relation DIAGNOSE2 

P_ID D_ ID P_AGE P_DISEASE 
P383 D105 {69}, u, u lung cancer, u, u 

P234 D102 {approx_40, approx_42}, 0.9u, 1.4u hepatitis, u, u 

P242 D025 {young}, u, u cholecystitis, cirrhosis, 0.7u, 1.3u 

Table 11: Relation DIAGNOSE10.194inDIAGNOSE2 

P_ID D_ ID P_AGE P_DISEASE 
P234 D102 {approx_40}, 0.45u, 0.7u hepatitis, u, u 

P383 D105 {69}, u, u lung cancer, u, u 

However, if we chose the equivalent threshold  =1.0, then only the tuple t3 in Table 9 and the tuple t1 in Table 10 are 

equivalent on U under  and the result of the intersection operation is the relation DIAGNOSE11.0inDIAGNOSE2 as in 

Table 12. 

Table 12: Relation DIAGNOSE11.0inDIAGNOSE2 

P_ID D_ ID P_AGE P_DISEASE 
P383 D105 {69}, u, u lung cancer, u, u 

Definition 22. Let R(U, ) be a UFRDB schema, r1 and r2 be two relations over R,  and  be probabilistic disjunction 

and conjunction strategies with respect to the same combination alternative, and [0, 1] be an equivalent threshold on 

U. The union of r1 and r2 under ,  and , denoted by r1 r2, is the relation r over R(U, ) defined by r = {t1  r1 | 

there is not any tuple t2  r2 such that t1  t2}{t2  r2 | there is not any tuple t1  r1 such that t2  t1}{t | t.A = t1.A  

t2.A, t1  r1, t2  r2, A  U such that t1  t2}.  

Definition 23. Let R(U, ) be a UFRDB schema, r1 and r2 be two relations over R, ⊖ and  be probabilistic difference 

and conjunction strategies with respect to the same combination alternative, and   [0, 1] be an equivalent threshold on 

U. The difference of r1 and r2 under ⊖,  and , denoted by r1 ⊖ r2, is the relation r over R(U, ) defined by r = {t1  

r1 | there is not any tuple t2  r2 such that t1  t2}{t | t.A = t1.A ⊖ t2.A, t1  r1, t2  r2, A  U such that t1  t2 and t1.A 

⊖ t2.A  , , β}.  

Example 13. Given two UFRDB relations DIAGNOSE1 and DIAGNOSE2 over the same schema DIAGNOSE(U, ) as 

in Tables 9 and 10 of Example 12. Then the difference of DIAGNOSE1 and DIAGNOSE2 under ⊖in, in and the 

equivalent threshold  = 0.194 is the relation DIAGNOSE10.194⊖ininDIAGNOSE2 computed as in Table 13. 

Table 13: Relation DIAGNOSE10.194⊖ininDIAGNOSE2 

P_ID D_ ID P_AGE P_DISEASE 
P217 D093 {middle_aged, approx_40}, 0.6u, 1.2u lung cancer, tuberculosis, 0.8u, 1.2u 

Meanwhile, if the chosen equivalent threshold   0.194, for instance  = 1.0, then the result relation 

DIAGNOSE11.0⊖ininDIAGNOSE2 computed as in Table 14.     

Table 14: Relation DIAGNOSE11.0⊖ininDIAGNOSE2 

P_ID D_ ID P_AGE P_DISEASE 
P234 D102 {approx_40}, u, u hepatitis, u, u 

P217 D093 {middle_aged, approx_40}, 0.6u, 1.2u lung cancer, tuberculosis, 0.8u, 1.2u 

5. PROPERTY OF ALGEBRAIC OPERATIONS 

In this section, we propose some properties of the UFRDB algebraic operations as an extension from those in 

CRDB. Clearly, these properties say that our UFRDB model is coherent and consistent. 
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Proposition 1. Let R be a UFRDB schema, r be a relation over R, 1 and 2 be two selection conditions. Then 

    1
(2

(r)) = 2
(1

(r)) = 12
(r)     (1) 

where, the last expression assumes that 1 and 2 have the same tuple variable. 

Proof: Let r1 = 1
(r), r2 = 2

(r) and r12 = 12
(r). Then for each tr, we have 

1
(2

(r)) = tr2  probR,r2,t⊨ 1 

     = tr  (probR,r,t⊨ 2)  (probR,r2,t⊨ 1) 

              = tr  (probR,r,t⊨ 2)  (probR,r,t⊨ 1) (because of r2 r) 

       = tr  probR,r,t ⊨ 1 2    (Definition 16)  

      = 12
(r).  

So, 1
(2

(r)) = 12
(r) is proven. The equation 2

(1
(r)) = 21

(r) is proven similarly. Since 12  

21 (the logical conjunction of selection conditions are commutative), hence 12
(r) = 21

(r). Therefore, 

we have 1
(2

(r)) = 2
(1

(r)) and so 1
(2

(r)) = 2
(1

(r)) = 12
(r). Thus, Proposition 1 is proven. 

Proposition 2. Let R be a UFRDB schema, r be a relation over R,  and  be probabilistic disjunction and conjunction 

strategies with respect to the same combination alternative, A and B be two subsets of attributes of R, A  B and [0, 1] 

be an equivalent threshold on B. Then 

A(B(r)) = A(r)      (2)      

Proof: Because A  B, so AB = A and sides of (2) are the relations over the same schema (Definition 18). Moreover, it 

is due to A  B, so -equivalent tuples on B are also -equivalent on A with respect to  (Definition 12). From that, we 

are easy to see A(B(r)) = AB(r) = A(r) under the equivalent threshold  and the same combination 

alternative of  and . Thus, the equation (2) is proven.  

Proposition 3. Let R1, R2 and R3 be the UFRDB schemas such that if they have the same name attributes then such 

attributes have the same value domain, r1, r2 and r3 be relations over R1, R2 and R3 respectively,  be a probabilistic 

conjunction strategy. Then 

r1 ⋈ r2 = r2 ⋈ r1                 (3) 

          (r1 ⋈ r2) ⋈ r3 = r1 ⋈ (r2 ⋈ r3)          (4) 

The equations (3) and (4) say that the join operation of UFRDB relations is commutative and associative. 

Proof: Clearly, r1 ⋈ r2 and r2 ⋈ r1 are two relations over the same schema. By Definition 5, the conjunction of fuzzy 

probabilistic triples is commutative (due to the commutativity of probabilistic conjunction strategies and the intersection 

of fuzzy sets). So, by Definition 20, we have r1 ⋈ r2 = r2 ⋈ r1.  

By Definition 20, the results of two sides of (4) are the relations over the same schema. Moreover, the intersection of 

fuzzy sets has the associativity, by Definition 5, it follows that the conjunction of fuzzy probabilistic triples is 

associative. From the associativity of the classical relational join and by Definition 20, it is easy to see that the join of 

UFRDB relations is associative. Thus, it results in (r1 ⋈ r2) ⋈ r3 = r1 ⋈ (r2 ⋈ r3).   

Because the Cartesian product is a particular case of the join (Definition 20), we have the straight corollary of 

Proposition 3 below.   

Corollary 1. Let R1, R2 and R3 be UFRDB schemas such that each pair of them has not any common attribute, r1, r2 and 

r3 be relations over R1, R2 and R3 respectively. Then 

        r1  r2 = r2  r1       (5) 

(r1  r2)  r3 = r1  (r2  r3)     (6) 

Proposition 4. Let R be a UFRDB schema, r1, r2 and r3 be relations over R,  and  be probabilistic conjunction and 

disjunction strategies with respect to the same combination alternative, [0, 1]. Then   

                 r1 r2 = r2  
r1      (7) 

   (r1  
r2)  

r3 = r1  
(r2  

r3)     (8) 

 r1 r2 = r2  r1        (9) 

 (r1  
r2)  

r3 = r1  
(r2  

r3)          (10)   

The equations of (7), (8), (9) and (10) say that the intersection and union of relations in UFRDB are commutative and 

associative.  

Proof: The equations in the proposition are proven respectively as follows: 

Equations (7) and (8): For every equivalent threshold  chosen, then the equivalent tuples in relations do not change. 

Moreover, from the commutativity and associativity of the intersection of fuzzy sets, it follows the commutativity and 
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associativity of the conjunction of fuzzy probabilistic triples and the commutativity and associativity of the intersection 

of UFRDB relations under the equivalent threshold  and the probabilistic conjunction strategy . From that and by 

Definition 21, it follows Equations (7) and (8).  

Equations (9) and (10): As for the equations (7) and (8), under an equivalent threshold  chosen, then the equivalent 

tuples in relations do not change. From the commutativity and associativity of the union, intersection of fuzzy sets, the 

disjunction of fuzzy probabilistic triples (Definition 6), by Definition 22, it follows the union of UFRDB relations being 

commutative and associative under the equivalent threshold  and the same combination alternative of  and . Thus, 

we have the equations (9) and (10). 

6. CONCLUSION 

In this paper, we have proposed a hybrid relational database model, called UFRDB, for representing and manipulating 

imprecise and uncertain information. UFRDB has been built by extending and generalizing the classical relational 

database model, where the relational attribute value is defined as a fuzzy probabilistic triple, the computation and 

combination of relational tuples are implemented by using the mass assignment, the probabilistic interpretation of binary 

relations on fuzzy sets and the combination strategies of fuzzy probabilistic triples. A notion of the equivalence of 

relational tuples has been proposed for eliminating redundant tuples and the consistency of relatons. The data model and 

basic relational algebraic operations for UFRDB have been formally defined accordingly. A set of basic properties of the 

algebraic operations in UFRDB have also been proposed and proven completely.  

Towards applying UFRDB in practice, we will build a management system for UFRDB with the familiar querying 

and manipulating language like SQL that is able to represent and handle imprecise and uncertain information in the real 

world. 
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