
Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658)

Volume 06– Issue 04, August 2018

Asian Online Journals (www.ajouronline.com) 30

Multithread Affinity Scheduling Using a Decision Maker

Shatha Jawad1, Ronald P. Uhlig2, Bhaskar Sinha3,*, Mohammad Amin4, Pradip Peter Dey5

1 National University

San Diego, California, USA

2 National University

San Diego, California, USA

3 National University

San Diego, California, USA

4 National University

San Diego, California, USA

5 National University

San Diego, California, USA

*

Corresponding author’s email: bsinha [AT] nu.edu

ABSTRACT— In a multiprocessor-multithread Operating System (OS), scheduling has two dimensions. The

operating system has to decide which thread to run and which Central Processing Unit (CPU) to run it on. Assume

the threads are independent and each thread has a priority, the operating system selects a thread with the highest

priority and assigns it to the first free CPU. Usually, each CPU has its private cache. To increase the throughput of the

system, it is preferred to use affinity scheduling. The affinity scheduling concept is to make an effort to have a thread

run on the same CPU it ran on the last time. The existing affinity scheduling is implemented by using a two-level

scheduling algorithm. In this paper a new approach is designed to implement independent multithread scheduling on

a multiprocessor system. The design approach uses a decision maker to compute a new priority for each ready thread

according to the thread pre-priority and affinity. The results show that by using the new priority, the goal of having

affinity is satisfied in addition to taking the pre-priority of the thread in consideration. Also, the design approach

reduces the scheduling time because it implements affinity scheduling and priority scheduling by employing a one

level scheduling algorithm.

 Keywords---- Affinity, cache memory, multiprocessor scheduling, operating systems, priority, throughput

1. INTRODUCTION

Computer systems can be made faster and more reliable by using a multiprocessor. This multiprocessor may

share a common Random Access Memory (RAM) and each processor may have its own private cache. To gain the

benefits of multiprocessing, all modern operating systems support multithreaded processes. With kernel threads, the

kernel is aware of all the threads and can pick and choose among the threads belonging to a process. On a uniprocessor,

scheduling is one dimensional with one question: “which thread should be run next” [1,2,3,4]. On a multiprocessor

system, the scheduling has two dimensions with two questions: which thread to run and which processor to run it on. The

threads may be related to each other or may not be related. As Tanenbaum & Bos [1] say, “In some systems, all of the

threads are unrelated, belonging to different processes and having nothing to do with one another”. Different processes

have unrelated threads, each thread can be scheduled without regard to the other ones. As a thread executes on a

processor, it develops "affinity" to this processor by filling its cache with data and instructions during execution. Some

multiprocessors take this effect into account and use what is called affinity scheduling [5]. Subramaniam & Eager [6]

proposed two algorithms to implement "affinity scheduling". The two proposed algorithms are: (1) dynamic partitioned

affinity scheduling and (2) wrapped partitioned affinity scheduling. An experimental study of these algorithms has been

done and found them to perform well in this context.

mailto:bsinha@nu.edu

Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658)

Volume 06– Issue 04, August 2018

Asian Online Journals (www.ajouronline.com) 31

L
1

-
I

L
1

-
D

C

o
re

 1

L
1

-
I

L
1

-
D

C

o
re

 2

L
1

-
I

L
1

-
D

C

o
re

 n

In 1995, Torrellas Tucker, and Gupta [7] did a study on a bus-based multiprocessor executing a variety of workloads

and they showed that affinity scheduling reduces the number of cache misses by 7-36%, resulting in execution time

improvements of up to 10%. Also, they showed that it is relatively simple to add affinity scheduling to the existing

schedulers. So far, a number of research efforts have been carried out on CPU scheduling problems on different

applications by using fuzzy logic [8,9,10,11]. All of these efforts tried to improve the performance of the overall system,

such as CPU utilization, throughput , turnaround time, waiting time, and response time. But all of these efforts were

working on process scheduling not on the thread scheduling.

In this paper a new approach is designed to implement independent multithread scheduling on a multiprocessor

system. The design approach uses a decision maker to compute a new priority for each ready thread according to the thread

pre-priority and affinity.

The remainder of this paper is organized as follows: Section 2 describes the type of multiprocessor system used in

this research. Section 3 demonstrates the multithreading system, and the type of threads considered in this research. A

description of the existing scheduling algorithms related to independent threads is also covered in this section. The

proposed Multithread Affinity Scheduling by using a Decision Maker and the result are presented in section 4. Section 5

presents the conclusions of this research effort. Sections 6 and 7 are the acknowledgements and references respectively.

2. MULTIPROCESSOR SYSTEM

Tightly coupled multiprocessor systems contain multiple CPUs that are connected at the bus level and share full

access to a common RAM unit, as shown in Figure 1. [1,12].

 CPU CPU RAM

Cache L1 Cache L1

 Bus

Figure 1: Bus Based Multiprocessors

Chip multiprocessors, also known as multi-core computing, involves more than one processor placed on a single chip

and is considered as an extreme form of tightly coupled multiprocessing. Typically, each core consists of all of the

components of an independent processor, such as registers, Arithmetic Logic Unit (ALU), pipelined hardware, control

unit, and Level 1 (L1) instruction and data caches as shown in Figure 2. Level 2 (L2) cache is shared by all ALUs.

There are various approaches for implementing tightly coupled multiprocessor operating systems, but most modern

multiprocessor systems use the approaches of splitting the operating system into multiple independent critical regions

that d o not interact with one another [1].

. . .

Cache L2

Figure 2: Chip Multiprocessor

Each critical region is protected by its own mutex, so that only one CPU at a time can execute it. That means, the CPU

scheduler is running in only one CPU.

Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658)

Volume 06– Issue 04, August 2018

Asian Online Journals (www.ajouronline.com) 32

3. SCHEDULING METHOD FOR INDEPENDENT MULTITHREAD

All modern operating systems support multithread processes [1,5]. There are two levels of thread: a user level thread

and a kernel level thread. User level thread is visible to the application while kernel level thread is visible to the OS

only. The OS kernel is aware of all the threads and can pick and choose among the threads belonging to the process. To

get the benefits o f a multiprocessor system, multithreading software is used. However, the scheduling algorithm becomes

more complex with these systems. On a uniprocessor, scheduling is one dimensional, which means that the only

scheduling that the OS worries about is, “which thread should be run next?” On a multiprocessor system, scheduling has

two dimensions: the scheduler needs to decide which thread should run and on which CPU. This makes the scheduling

more complex. Another issue that should be taken into consideration is that in some systems all of the threads are unrelated,

they belong to different processes and operate independent of each other [1].

The simplest scheduling algorithm that is used by operating systems for scheduling independent threads is time

sharing. In this method, the OS has a single system-wide data structure for ready threads. Each thread has a priority, so

there will be a set of lists, list for thread with priority one, a list for thread with priority two, and so on. The best way to

gain the benefit of having multiple threads is to execute them on a tightly coupled multiprocessor system with a single

scheduling data structure used b y all CPUs. In this way, no CPU will be idle while another CPU is busy all the time. The

idea of the time sharing scheduling algorithm is, when one of the CPUs becomes idle, the OS will select a thread from a

list with the highest priority and assign it to this CPU. If the list for the highest priority is empty, the operating system

selects a thread from the next priority list and so on. The problem with this scheduling algorithm is, when thread x is

working for long time on CPU y, CPU y’s cache will be full of thread x’s blocks. If thread x gets to run again soon, it

may perform better if it is run s on CPU y, because most or all of its blocks are still in the cache of CPU y. Some

multiprocessor systems use affinity scheduling [1]. The main idea of affinit y scheduling uses the idea of a time sharing

scheduling algorithm and tries to assign the ready thread to the same CPU that was used by this thread last time. The

existing affinity scheduling is implemented by using a two-level scheduling algorithm [5]. In this algorithm, each CPU

gets its own collection of threads. When a thread becomes ready, it is assigned to a CPU which has a lower load and the

thread will stay on the list of this CPU. The assignment of the thread to the CPU is considered the top level of the

algorithm. The actual scheduling of the threads is the bottom level of the algorithm and it is done by each CPU

separately, using any type of scheduling algorithm, such as priority scheduling.

4. PROPOSED SCHEDULING ALGORITHM

In this research a new approach is designed to implement independent multithread scheduling on a tightly coupled

multiprocessor system. The new approach is designed to improve the existing time sharing scheduling algorithm and to

reduce the problem which is related to the cache memory as explained in the previous section. In this new approach, the

OS has a single system wide data structure for ready threads. Each thread has its pre-priority. Every time a thread is

assigned to a CPU, the OS registers the name of the CPU that is used by each thread in a specific table called the Cache

Affinity Table. In this approach, when one of CPUs is idle, a new priority will be calculated, by using a decision maker,

for each ready thread by using its pre-priority and the period of time that the thread was running on that CPU. The

operating system uses the new priority to select a thread with the highest priority and assigns it to this idle CPU.

The proposed algorithm has been simulated on different kinds of systems and with different scenarios, some of them

are explained below.

4.1 Scenario 1

Each thread has a pre-priority, which ranges between 0 and 2. The thread with priority 2 has the highest priority. The

OS registers in the cache affinity table the information about the names of CPUs that have been used by each thread during

the last two running periods of this thread in each CPU. According to the information about the threads running during

the last two running periods and the pre-priority, the designed decision maker algorithm which is built by using fuzzy

logic, calculates a new priority for each ready thread. And according to the new priority, the OS selects a thread with

highest new priority and assigns it to the idle CPU. Table 1 shows the new priority for all situations that any thread may

have. Affinity is represented as a number. 2 means, the thread used the idle CPU in its last two running periods, 1 means,

the thread used the idle CPU in its last running period, and 0 means, this thread did not use this CPU before.

Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658)

Volume 06– Issue 04, August 2018

Asian Online Journals (www.ajouronline.com) 33

P
ri

o
ri

ty

Table 1: Thread’s new priority with respect to 3 levels of thread’s pre-priority and Affinity number

Thread’s pre-priority

Affinity

Thread’s new priority

2

2

2

1

1

1

0

0

0

2

1

0

2

1

0

2

1

0

2

1.683209

1.359619

1.778382

1.439837

1.275323

1.574439

1.019714

0.583277

Figure 3, shows the new priority value with respect to the pre-priority. The result shows, for example, that a thread

with priority 2 (the highest priority) and its affinity is 0 or 1, now has a new priority less than a thread with priority 1 but

has affinity

2. That means, the proposed algorithm, increased the pre-priority for a thread which has affinity 2 and in this way the

blocks which are found in the cache of this idle CPU and are related to this thread can be used again without losing time

to read them from the RAM. Also, the proposed algorithm still takes into consideration the pre-priority.

2.5

2

1.5

1

0.5

0

2 1 0 2 1 0 2 1 0

Affinity

New Priority Pre- Priority

 Figure 3: The new priority compared with pre-priority by using scenario 1 that has 3 levels of pre-priority and 3

levels of Affinity.

4.2 Scenario 2

Each thread has a pre-priority, which ranges between 0 and 2. The thread with priority 2 has the highest priority. The

OS registers in the cache affinity table the information about the name of CPUs that have been used by each thread during

the la st running period. According to the information about the thread running during the last running period and the pre -

priority, the designed decision maker algorithm which is built by using fuzzy logic, calculates a new priority for each

ready thread. And according to the new priority, the OS selects a thread with the highest new priority and assigns it to an

idle CPU. Table 2 shows the new priority for all situations that any thread may have. Affinity represented as a number. 1

means, the thread used the idle CPU in its last running period and 0 means, this thread didn’t use this CPU before.

Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658)

Volume 06– Issue 04, August 2018

Asian Online Journals (www.ajouronline.com) 34

P
ri

o
ri

ty

Table 2: Thread’s new priority with respect to 3 levels of thread’s pre-priority and Affinity number

Thread’s pre-priority

Affinity

Thread’s new priority

2

2

1

1

0

0

1

0

1

0

1

0

2

1.7456

1.9632

1.2368

1.4544

1.2

Figure 4, shows the new priority value with respect to the pre-priority. The result shows, for example, that a thread

with pre-priority 1 and affinity 1, gets a new priority larger than the new priority for a pre-priority 2 and affinity 0. At the

same time it’s new priority is larger than the new priority of thread which had pre-priority 0 and affinity 1. That

means, the proposed algorithm, increased the pre-priority for a thread which has affinity 1, and in this way the blocks

which are found in the cache of this idle CPU and are related to this thread can be used again without losing time to read

them from the RAM. Also, the proposed algorithm still takes in consideration the pre-priority.

2.5

2

1.5

1

0.5

0
1 0 1 0 1 0

Affinity

Pre-Priority New Priority

Figure 4: The new priority compared with pre-priority by using scenario 2 that has 3 levels of pre-priority and 2 levels of

Affinity.

4.3 Scenario 3

Scenario 3 is similar to the first scenario in terms of number of affinity but with 7 levels of pre -priority which is

ranging between 0 and 6. The thread with pre-priority 6 has the highest priority and the thread which has pre-priority 0,

has the lowest pre-priority. Table 3 shows the new priorities that have been calculated by using the designed decision

maker algorithm and it covers all situations that any thread may have. Figure 5, shows that the results of the algorithm’s

calculation of the new priority for each thread from the pre-priority level and the affinity number.

Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658)

Volume 06– Issue 04, August 2018

Asian Online Journals (www.ajouronline.com) 35

P
ri

o
ri

ty

Table 3: Thread’s new priority with respect to 7 levels of thread’s pre-priority and Affinity number

Thread’s pre-priority

Affinity

Thread’s new priority

6

6

6

5

5

5

4

4

4

3

3

3

2

2

2

1

1

1

0

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

5.696677154

5.447117567

4.726736269

5.487970949

5.016795279

4.463912846

4.869723105

4.255560599

3.915115751

4.800272356

4.085338175

3.370403995

4.255560599

3.915115751

3.300953246

3.706763504

3.153881071

2.682705402

3.443940082

2.723558783

7

6

5

4

3

2

1

0
2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0

Affinity

Pre- Priority New priority

Figure 5: The new priority compared with pre-priority by using scenario 3 that has 7 levels of pre-priority and 3 levels of

Affinity.

Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658)

Volume 06– Issue 04, August 2018

Asian Online Journals (www.ajouronline.com) 36

P
ri

o
ri

ty

4.4 Scenario 4

Each thread has a pre-priority, which ranges between 0 and 6. Each affinity has 4 levels and each level is represented

as a number. Number 3 means, the thread used the idle CPU in its last two running periods, number 2 means, the thread

used the idle CPU in its last running period, number 1 means, the thread used the idle CPU in the period before the last

running period, and number 0 means, this thread didn’t use this CPU before. Figure 6, shows that the proposed

algorithm calculated the new priority for each thread as expected with respect to the pre-priority level and the affinity

number.

7

6

5

4

3

2

1

0
3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

Affinity

Pre- Priority New priority

Figure 6: The new priority compared with pre-priority by using scenario 4 that has 7 levels of pre-priority and 4 levels of

Affinity.

5. CONCLUSION

The main benefit of OS threads is to speed up the execution time of the processes. And to get the benefit of threads

it is better to execute them on a multiprocessor system. Implementing threads in the OS kernel, makes the operating

system have a thread table that keeps track of all threads in the system. Also, the OS is responsible for thread scheduling

on multiprocessors. The relation between threads define the scheduling method that should be used by the OS. In this

paper, independent threads are considered. Time sharing scheduling is the most used scheduling method for independent

threads. The problem of the existing method (time sharing scheduling) is, it cannot get the benefit of having the internal

cache on each CPU. There is already a solution for this problem which is known as affinity scheduling, but this

scheduling method is implemented by using two levels and each CPU will be assigned a list of threads to keep each

thread working on the same CPU. The proposed algorithm in this research improves on the time sharing scheduling

method while retaining the benefit of having an internal cache on each CPU.

The proposed approach, will keep one list for the kernel, and the threads can run on any idle CPU. The OS keeps

track of all information about each thread and when a CPU becomes idle, the OS uses a decision maker to compute a

new priority for each thread by taking into consideration the pre-priority of each thread and the historical information of

each thread with respect to this idle CPU. The results show that by using the new priority, the goal of having affinity is

satisfied, in addition to taking the pre-priority of the thread into consideration. Also, the design approach reduces the

scheduling time because it implements affinity scheduling and priority scheduling by employing a one level

scheduling algorithm. Suggested future work is to implement the proposed approach in a real OS and compare the

results with the simulated system results.

6. ACKNOWLEDGEMENTS

As a group of National University employees, the authors also thank and gratefully acknowledge the help and

support received from the administration, staff, and faculty members at National University, School of Engineering and

Computing, during the continuing research on this subject and the preparation of this paper.

Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658)

Volume 06– Issue 04, August 2018

Asian Online Journals (www.ajouronline.com) 37

7. REFERENCES
[1]. Tanenbaum, Andrew S. and Bos, Herbert, Modern Operating Systems. Pearson, 2015

[2]. Silberschatz, Abraham and Galvin, Peter B., Operating System Concepts, Addison-Wesley Longman, 1993.

[3]. Naghibzadeh, M.. Operating System Concepts and Techniques, iUniverse, 2011.

[4]. Peterson, James L., Operating System Concepts, Addison-Wesley Longman, 1985.

[5]. Vaswani, R. and Zahorjan, J., “The Implications of Cache Affinity on Processor Scheduling for

Multiprogrammed, Shared Memory Multiprocessors”. Proceedings of the Thirteenth Symposium on

Operating Systems Principles, pages 26-40, October 1991

[6]. Subramaniam, S. and Eager, D.L., Affinity Scheduling of Unbalanced Workloads, Supercomputing '94.

Proceedings, 1994.

[7]. Torrellas, J., Tucker, A., Gupta. A., “Evaluating the Performance of Cache-Affinity Scheduling in

Shared-Memory Multiprocessors”. Journal of Parallel and Distributed Computing. Volume 24, Issue 2,

1995, Pages 139-151.

[8]. Bashir, Alam, Doja, M. N. and Biswas, R., “Improving the Performance of Fair Share Scheduling

Algorithm using Fuzzy Logic”, Proceedings of the International Conference on Advances in Computing,

Communication and Control, 2009.

[9]. Kandel, Abraham, Zhang, Yan-Qing and Henne, Marlow, “On Use Fuzzy Logic Technology in Operating

Systems”, Fuzzy Sets and Systems, Vol. 99, No. 3, 1988, pp: 241- 251.

[10]. Lim, Sungsoo and Sung-Bae, “Intelligent OS Process Scheduling Using Fuzzy Inference with User

Models”, IEA/AIE 2007, LNAI 4570, pp. 725–734, 2007.

[11]. Jawad, Shatha and Al-Aubidy, Kasim. “Design and Evaluation of a Fuzzy-Based CPU Scheduling

Algorithm”, CCIS 70, p. 45 ff, Information Processing and Management, Springer, 2010.

[12]. Stallings, William. “Computer Organization and Architecture Designing for Performance”, 10 edition, 2016.

