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_________________________________________________________________________________ 

ABSTRACT— This article details the effect of Gaussian smoothing parameter (spread) on the performance of 

Probabilistic Neural Networks (PNN). Two (2) different Genetic Algorithms (GAs) were used to optimize the PNN 

spread in order to avoid under and over fitting. In this work there is a novel combination of Cellular Neural Networks 

(CNN), Probabilistic Neural Networks (PNN) and GA to address the present challenges on automatic identification of 

plant species. Such problems include misclassification species of plants that are similar in shapes and image 

segmentation speed. In this work, GA was used in both feature selection and PNN parameter optimization.  The GA 

developed herein improved the performance of the PNN. This work serves as a framework for building image 

classification or pattern recognition system. 
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1. INTRODUCTION 

In agricultural domain, the issue of precision agriculture is becoming more popular since it is economical in terms of 

time and money and also enforces environmental protection [24].  According to [5], there are at least 250,000 to 

270,000 plant species around the world.  The traditional recognition of these plant species is carried out by manual 

matching of the plants features, relating to components of the plant, such as leaves, flowers, and bark [16]. The 

manual approach to plant classification is tedious and tiring. As a result of this, attempts to automate this process 

have been made using features of plants extracted from images as input parameters to various classifier systems [9] 
& [17]. In this paper, a technique to argument already existing techniques of plant identification system is described. 

The main contribution of this paper is to increase the classification speed and accuracy of the existing systems by 

incorporating Cellular Neural Networks for image segmentation, genetically optimized PNN and use image 

descriptors with strong discriminating capability. In summary, this paper employ Genetic Algorithm (GA) to 

optimize PNN parameter and then combination of this classification model is fed with Zernike Moments and Fourier 

Descriptors. 

2. CELLULAR NEURAL NETWORKS 

Cellular Neural Networks (CNN) are variants of ANNs having neighbourhood communication as the main 

distinguishing feature [7]. CNN (an electrical circuit shown in Figure 1) was invented in 1988 by Chua and his 
graduate student Yang at the Department of Electrical Engineering and Computer Sciences, university of California, 

Berkeley [6]. A standard CNN topological structure is made up of an NM  or rectangular array of cells ),( jiC (or 

dynamic components) with Cartesian coordinates NjMiji )1(1,)1(1),,(  as shown in [13] and [1] (see Figure 

3). CNN is a hybrid model, sharing features from both Cellular Automata and Artificial Neural Networks [13]. The 
circuit structure and element values of all cells of a CNN are homogenous. Equation 2.0 governing the   behaviour of 

a CNN cell circuit is a dynamical system (or Ordinary Differential Equation (ODE)) derived from   evolution laws 

and circuit theory as shown in Figures 1 and 2. The output of the circuit (also called the amplifier), is given in 

Equation 2.1  
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ijx    the internal  state of cell (i,j) 

kly    the output of cell (k,l) 

klu   the input to cell (k,l) 

ijz    the threshold of cell (i,j) 

C(i,j)   the set of cells in the CNN 

Sr(i,j)   the set of cells in the sphere of influence of cell (i,j) 

A(i,j; k,l) and B(i,j; k,l) are functional, which are the feedback and input synaptic 

operators respectively 

The expression for the output )(tyij  is  

)1)(1)(())(()(
2
1  txtxtxfty ijijijij

                                                                               (2.1) 

which is similar to the nonlinear function. Other functions of x  are also possible since this is the 

activation function [7]. It is note-worthy,by the reason of voltages measured across the circuit, that 

the constraint ,1)0( ijx Mi 1 ; Nj 1 , and  ,1)0( iju    Mi 1 ; Nj 1   are 

fundamentally imposed on the internal state of neuron ),( ji  and input of neuron ),( ji . 

 

 
Figure 1: Circuit Representing Cellular Neural Networks ([1,6,7,13]) 

 

 
 

Figure 2: The Block Diagram of a CNN Cell   ([1,6,7,13]) 
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Figure 3: CNN square grid    ([1,6,7,13]) 

 

The original equation developed by [7] is given as  
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where                                                                                                                                                     

I Independent voltage source, C Linear Capacitor, xR Linear Resistor. It was later adapted to general 

ordinary differential equations (ODE) in equation (2.0). 

 

 

                                         

3. THE FLAVIA DATASET 

The source of images of leaves used in this study is images of leaves found in the Flavia dataset which is publicly 

available [25]. The Flavia dataset is a constrained set of leaf images taken against a white background and without 

any stem present. The species in the dataset have a varying number of instances as shown [2]. The dataset has 1907 

images of 32 species of plants. For this study, the dataset was divided into two disjoint sets, each of which contains 
1587 images and 320 images for both training and test set respectively.  

4. FEATURES GENERATED FROM THE FLAVIA DATASET 

 
4.1 Image Pre-Processing  
The images found in [25] are first pre-processed. The original colored images are converted to grayscale images using the 

formular  in Equation  4.1. One output of this conversion is shown in Figure 4. 
 

0.114B0.587G0.299R1 f                                        (4.1) 

 

4.2 Image segmentation using CNN 
Next to image pre-processing, we employ CNN edge detection templates in Equation 4.2 These templates are the matrix 

coefficient of the systems of equations in 2.0 & 2.1. The outputs of the segmentation stage are finally passed on to feature 

extraction modules using FDs and ZM. 
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Figure 4: Image pre-processing and segmentation using CNN 

 

4.3 Feature extraction: Fourier Descriptors and Zernike Moments  
Fourier descriptors (FD) methods have been traditionally used for shape recognition and are part of general methods used 

in encoding various shape signatures [4, 10, 23]. The Fourier Transform (FT) and its inverse are described in [14, 12] 
respectively by formulas in Equations 4.3 and 4.4 
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Where 21  and  are frequency variables of the image pixels representing the periods of F . The original image of 

the plant’s leaf can re-constructed  by using the inverse FT given as Equation 4.4  
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It’s assumed that a 2D image is given or generated from 3D image through appropriate color-to-grayscale conversion 

methods such as found in Equation 4.1. The 2D image generated can then be represented as 
 ZNMwhereNjMiyxf ii ,,,)1(1,)1(1),,( . A grayscale image is produced from using the formular  in 

Equation 4.1. The edge output from which the boundary pixels are extracted is shown in Figure 4. 

 

4.4 Computation of Fourier Descriptors  
The FD is used in describing the boundary of shapes in 2D images using FT. The steps needed  to compute FDs in this 

work are as given in the subsections following.  

 
 1. Boundary Parametization:  

The boundaries of the image are given as the set )},(),...,,(),,(),,{( 332211 NN yxyxyxyx  containing N ordered 

points/pixels. 
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2. Boundary Tracing: 
Any arbitrary point, say, ),( 00 yx  is chosen as the starting point and the travesal (tracing) of all the boundaries to the left 

and right of point  ),( 00 yx .  A complete list of boundary pixels will thus be obtained after this. 

 

3. Complex representation of boundary points: 

The boundary pixels set NjNiyx ji )1(0,)1(0),,(   is then represented as complex variables 

1,)1(1,)1(0),( 2  jNmNnjyx mn
. 

 

3. Application of Fourier Transform: 
 Next to complex representation above, appropriate Fourier Transform such as FFT or DFT ([15]) is applied to it. The 

coefficient thus obtained is called Fourier Descriptors (FDs). 

 

4. Invariant FDs: 

Let the Fourier descriptors be given as .,...,,, 321 NFDFDFDFD . To achieve invariant properties with respect to 

rotation, scaling, and translation, the following steps are performed: 

(a) Set 01 FD  

(b) Divide the remaining FDs  by the first of the remaining FDs . This implies that 

2
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4.5 Zernike moments 

The Zernike moment can be defined as a set of complete complex orthogonal basis functions that are square integrable 

and that are defined over the unit disk. If we are given the ordered pair ),,( mn which represents the order of the Zernike 

function, then the ZMI , according to [2] ZM can be defined mathematically as Equation 4.5 
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  are the image pixel radial vector and angle between the it and  x-axis respectively.  
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The detailed about ZM and its computation can be found in the companion paper [2].  
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4.6 Complete Feature set 

The complete feature set for this work comprises of 10 ZMs and 10 FDs, making 20 features all together. The GA 

employed in this work (also used by the companion paper [3]) was used to reduce the entire feature set to new 

dataset containg only 8 feature set which is more economical for the concerned image classification system shown in 
Figure 8. 

 

5.0  PROBABILISTIC NEURAL NETWORK (PNN) and GENETIC ALGORITHM (GA) 

5.1  Probabilistic Neural Networks (PNN) 

Probabilistic Neural Network (PNN) is a feed forward Neural Network that uses kernel methods for density estimation in 

a multi-category problem and which was introduced by D.F Specht [2, 20]. PNN is an approximation to Bayes classifier 

The detailed and pseudocode about PNN can be seen in the companion paper [2].  The functionalities of a PNN depend 

on the standard deviation of the underlying Gaussian distribution. This parameter, commonly called PNN spread or 

smoothing parameter is a determinant of the receptive width of the Gaussian window for the pdf of the training set. The 

PNN spread, when it is too small, can cause the PNN to overfit (be very selective), since each training data point will 

have too much influence and when it is too large, can cause the PNN to be under selective. Striking the balance between 

underfitting and overfitting is the main rational for tunning the PNN spread. In this section, the focus is on how to use 

Genetic Algorithm (GA) to optimize the smoothing parameter (spread) of the PNN Classifier to further improve the 
classification accuracy of the PNN. The parameters setting for the GA are shown in Table 1. The detailed explanation on 

GA can be found also in the companion paper [3]. 

5.2  Genetic Algorithm (GA) 

 GA is a class of optimization technique that imitate the natural evolution process human biological genetics. GA 

involves several functions which are iteratively invoked to manipulate initial population of chromosomes (solution 

candidates)  to generate new population [3]. The basic functions (operations) involved in the GA used herein are defined  

and explained in the following subsections.  

1. Chromosome encoding: Direct decimal encoding is employed to represent the smoothing parameter. To this end, a set 

of real random numbers are generated in the GA to represent the initial population. The dimension of the initial 
population is PopSize x GenomeLength, where GenomeLength = 1, PopSize = 50 for GA1 configuration and 100 for 

GA2. 

 

2. Fitness evaluation: Each chromosome is evaluated using classification error from the PNN Classifier itself. This is 

shown in Algorithm 1. The actual classification error is computed from the confusion matrix generated from the PNN 

Classifier using the Training Set, Test Set, ClassInformation and the PNN Spread. 

 

3. Selection mechanisms: The aim of selection mechanism in GA is to make sure the population (solution candidates) is 

being constantly improved over all fitness values. The selection mechanism helps the GA in discarding bad spread values 

and keeping only the best individuals. The employed scheme herein is tournament selection of size 2, where two 

chromosomes are selected from the population after the Elite kids are taken out and the best of the two chromosomes, 

(using fitness ranking), is selected. Tournament selection is performed iteratively until the new population is filled up. 
Tournament scheme was used for both GAs in this work. 

 

4. Genetic operators: For GA1-PNN uniform mutation and heuristic crossover were used as genetic operators while for 

GA2-PNN (our implementation), gaussian mutation and arithmetic crossover were used. Both mutation operators 

(uniform and gaussian) perturb each chromosome by adding a random number from the appropriate or associated 

distribution to each parent from the tournament selection. The parameter for the GA mutation operator are shown in 

Table 1. The heuristic crossover on the other hand, returns a child chromosome lying on the straight line containing the 

two parents chromosomes. It uses fitness values of the two parent chromosomes to determine the direction of the search. 

Thus the offsprings produced by the heuristic crossover is: 

 

Child1 = )(* 212 PPRDP   

Child2 = 
1P  

where RD is a random number between 0 and 1 and 
21 , PP  are the two parent chromosomes 

( 1P  is the best parent, and 2P  is the worst). Arithmetic crossover also linearly combines two 

parent chromosomes to produce new offsprings but according to the following equations: 

Child1 = aP1 + (1-a)P2 
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Child2 = (1-a)P1 + aP2 

 
5. GA stopping criteria:  

The two stopping criteria used for these GA are: (1) maximum number of generation and (2) number of GA iteration. 

These are already listed in Table 1. 
 
 

Algorithm 1 Fitness Function Evaluation 

1: procedure FITFUNCTION() 

2: Parameters: TrainingSet, TestSet and the ClassInformation. 

3: Input Spread from the GAPopulationFunction. 

4: PNNClassify(TrainingSet, TestSet, ClassInformation, Spread)   FitnessValue. 

5: Output FitnessValue. 

6: end procedure 

 

 

Algorithm 2 Pseudocode for GAPNNSpreadOptimizer 

1: procedure GAPNNSPREADOPTIMIZER(PNNPARAMETERS, GAPARAMETERS) 

2: Generate Initial population of PNN Spread. 

3: Set GA()Parameters as shown in Table 1. 

4: Set Counter = 1 

5: Do 

6: Simulate GA() 

7: Output best chromosome   Spread and store its value in a variable ListOfChromosomes. 

8: Counter = Counter + 1 

9: Until Counter = M, where M = Number of GA simulation needed. 

10: Output   ListOfChromosomes. 

11: end procedure 

 

 
 

Figure 5: GA Optimization for PNN 
 

Algorithm 3 Pseudocode for PNNAccuracy versus PNNSpread Plot 

1: procedure PERFORMANCE(TRAININGSET,TESTSET,CLASSINFORMATION,LISTOFCHROMOSOMES) 

2: Input: TrainingSet, TestSet, ClassInformation, ListOfChromosomes. 

3: Set M = length(ListofChromosomes). 

4: Set Counter = 1 

5: Do 

6: spread = ListOfChromosomes(Counter) 

7: Accuracy(Counter) = PNNClassify(TrainingSet, TestSet, ClassInformation, spread) 

8: Counter = Counter + 1 

9: Until Counter = M. 

10: Graph   Plot(ListOfChromosomes, Accuracy). 

11: end procedure 
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Figure 6: Variation of PNN Accuracy with GA-Based Smoothing Parameters 

 

Table 1: Parameter configuration for the GAs 

GA 1Parameter Value GA2 Parameter Value 

 Population size 50 Population size 50 

Genomelength 1 Genomelength 1 

Population type Real Population type Real 

Fitness Function PNN-Based Classification Error Fitness Function PNN-Based Classification Error 

Number of Generations 100 Number of Generations 100 

Crossover Heuristic Crossover Crossover Arithmetic Crossover 

Crossover fraction 0.8 Crossover fraction 0.8 

Mutation Uniform Mutation Mutation Uniform Mutation 

Mutation fraction 0.01 Mutation fraction 0.01 

Selection scheme Tournament of size 2 Selection scheme Tournament of size 2 

Elite count 2 Elite count 2 

 

 

6.0 DESIGN OF IMAGE CLASSIFICATION SYSTEM 

The steps involved in the design of the classification system shown in Figure 8 are described in Figure 7. These steps are 

pretty much the same with most image classification systems. The novelty of this study is seen in the Image segmentation 

module and the optimization module for the PNN classifier. The entire implementation (including the GUI) was done 

using MATLAB 2013a. 
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Figure 7: Learning system based on PNN Classifier 

 
 

 
 

Figure 8: Classification result using an unknown plant specie as a test image 
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Figure 9: Regression of Predicted Species on the Actual Species 

 

7: EXPERIMENTAL VALIDATION 
The approach used in validating the PNN Classifier is the k-Fold Cross Validation (k-Fold CV) with k = 10. Generally, a 

cross validation (CV) is a method of partitioning the feature space into training and testing sets . The detailed of the CV 

algorithm is shown in the companion papers [2, 3]. Herein, the models are fitted using training set, while the fitted 

models are validated through testing set by measuring the error predicted. The training set and testing set are both disjoint 

to ensure that the testing set for evaluating the model (in our case, PNN Classifier), are not used in fitting the model [8]. 

 

8: RESULTS AND OBSERVATION 

 

8.1 Genetically optimized PNN 
The two GA approaches for the optimization of PNN reported different PNN spread. This difference is traceable to the 

difference in the mode of implementation of the two GAs. The MATLAB Toolbox GA (GA1) reported PNN spread 

value as 0.0354 while our GA (GA2) implementation gave 0.060. The best classification accuracy was associated with 

GA implementation. The accuracies for GA1 and GA2 are respectively 92.01% and 92.62%. 

 

8.2 Image Classification System 
The training set consists 8 features from 1587 images while the test set consists of 8 features from 320 images.  GA was 

used to reduce the original feature space from 20 to 8. There are10 samples per each species in the test set. The system in 

this work was built to be more robust and with improved classification accuracy. CNN segmentation method helped in 

improving the speed of the entire system. Some of the species in found in ([2, 3]) are very similar in shape and as a result 

of this, some of them were wrongly classified as belonging to another species. Among such are those of Class 16 
(Osmanthus Fragrans), Class 19 (Cinnamomium Japonicum), and Class 26 (Mangletia Fordiana Olive). The shapes of 

leaves belonging to Class 8, Class 10, and Class 4 are similar. The PNN classifier wrongly classified 1 instances 

belonging to Class 1 as 2 instances of class 21. The species in Class 9 were wrongly classified as species in Classes 4, 6 

and 10. The effect of the PNN spread (smoothing parameter) on the performance of the PNN classifier is also 

demonstrated in Figure 6, where the classification accuracy of the PNN varies with the values of the spread. A spread 

value of 0 is not prefarable to avoid overfitting and to show the true classification ability of the PNN. Also, the PNN 

becomes approximately equal to kNN (k Nearest Neighbor) in functionality when the spread is taken as zero. As part of 

our contribution, GA was used to optimize the PNN spread used for this work . To validate the system shown in Figure 8, 

a 10-fold CV was used to partition the feature space into training data and test data. Further metrics used for the PNN 

here are regression curve, recall (sensitivity) and precision. The regression plot (linear regression of the target with 

respect to the output of the classifier) for the 32 species is shown in Figure 9. A good classifier should have the R 
coefficient in the regression curve close to value 1. The equation in the regression plot is given as y = 0.92x+0.0026, 

where y = output, x = target, indicates that a good accuracy since the value of R is 0.92 (very close to 1). The confusion 

value ( the fraction of species misclassified) for the PNN classifier was 0.0750. This implies 24 out of 320 instances were 

wrongly classified. The average values for False Negative Rate (FNR), False Positive Rate, True Positive Rate (TPR), 
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True Negative Rate (TNR) for all the classified species of plants are respectively given as {0.0026, 0.0699, 0.9301, 

0.9974}. Again these values indicate the classification strength of our system. 

 

 

9: CONCLUSION AND FUTURE DIRECTION 
The main challenge normally encountered in the use of PNN for classification is the choice of PNN spread. This spread 

is the standard deviation for the underlying pdf of the given training set. Choose this value arbitrarily is not good to avoid 

under and over fitting. It’s quite interesting to observe the GAs bringing out the best spread that will not cause the PNN 

to overfit or underfit. The plot of PNN accuracy against the PNN spread for the two approaches are shown in Figure 6. 

The peak accuracy for all the two plots were based on the spread value 0.0354 and 0.060 obtained by the two GAs. The 
spread reported by MATLAB GA Toolbox (GA1) were 0.0354 with accuracy 92.01% while our GA implementation 

slightly improved accuracy to 92.62%. Further improvement to this work could be in the area of using another classifier 

and / or more discriminating features than ZMs and FDs. Images of fruits and flowers of the plants may also be 

amalgamated to the database to avoid misclassifications. 

 

 

 
 

10. REFERENCES 

[1] H O Babatunde, C O Akanbi, O G Fadare, A A Eludire, O B Aluko, and O G Egbedokun. On numerical 

simulation of a boundary-valued neuronal model. World J of Engineering and Pure and Applied Sci, WJEPAS, 

20(2):20–25, 2012. 

 

[2] Oluleye Babatunde, L. Armstrong, J Leng, and D Diepeveen. Zernike moments and genetic algorithm: 

Tutorial and application. British Journal of Mathematics and Computer Science, 4(15):2217–2236, 2014. 

 

               [3] Babatunde Oluleye, Armstrong Leisa,  Leng  Jinsong, and Diepeveen Dean (2014). A Genetic                     

                     Algorithm-Based Feature Selection. International Journal of Electronics and Communication  and Computer   

                     Engineering, IJECCE 5(4); 889-905 

 

[4] T Z Charles and Z R Ralph. Fourier descriptors for plane closed curves. IEEE Transactions on Computers, 

C-21(3):269–281, 1972. 

 

[5] Pornpanomchai Chomtip, Kuakiatngam Chawin, Supapathranon Pitchayuk, and Siriwisesokul Nititat. Leaf 

and flower recognition system (e-botanist). IACSIT International Journal of Engineering and Technology, 
3(4):10–15, 2011. 

 

[6] L O Chua and T Roska. Cellular neural networks and vision computing. Cambridge University Press, 2002. 

 

[7] L O Chua and L Yang. Cellular neural networks: theory and applications. IEEE Trans on Circuits and 

System, 35(10):1257–1272, 1988. 

 

[8] B Clarke, E Fokoue, and H Zhang. Principles and theory for data mining and machine learning. Springer 

Series in Statistics;  

 http://www.amazon.com/Principles-Machine-Learning-Springer-Statistics/dp/0387981349:Page 798, 2009. 

 

[9] James S Cope, David Corney, Jonathan Y Clark, and Paul W Remagnino. Plant species identification using 
digital morphometrics: A review. Digital Imaging Research Centre, Kingston University,London,UK and 

Department of Computing, University of Surrey, Guildford Surrey, UK, pages 1–21, 2011. 

 

[10] Z Dengsheng and Lu Guojun. A comparative study on shape retrieval using fourier descriptors with 

different shape signatures. Gippsland School of Computing and Information Technology,Monash 

University,Australia, 2000. 

 

[11] R Ercsey, M Maria, Z Nda, and T Roska. Statistical physics on cellular neural network  computers. Physica 

D: Nonlinear Phenomena, 237(9):2051–2068, 2008. 

 

[12] J. B. Fourier. The Analytical Theory of Heat. The Universal Press, 1878. 



Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658) 
Volume 02 – Issue 04, August 2014 

 

Asian Online Journals (www.ajouronline.com)  101 

 

 

[13] B Hezekiah, A T Akinwale, and O Folorunso. A cellular neural networks- based model for edge detection. 

Journal of Information and Computing Science, 5(1):003–010, 2010. 

 

[14] MathWorks. Matlab neural network toolbox documentation. MathWorks. Inc. [Online]. Available:, 2007. 

 
[15] Mathworks. Signal processing toobox (discrete fourier transform (dft)). MathWorks. Inc, 2009. 

 

[16] K Meeta, K Mrunali, P Shubhada, P Prajakta, and B Neha. Survey on techniques for plant leaf 

classification. International Journal of Modern Engineering Research (IJMER), 1(2):538–544, 2012. 

 

 [17] K K Pahalawatta. A plant identification system using both global and local features of plant leaves. MSc 

Thesis at the department of Computer Science and Software Engineering, University of Canterbury, New 

Zealand, pages 1–127, 2008. 

 

[18] Emanuel Parzen. On estimation of a probability density function and mode. Annals of Mathematical 

Statistics, Vol 33, Issue 3:1065–1076, 1962. 

 
[19] T Roska, A Zarandy, and C Rekeczky. Cellular neural networks. CRC Press LLC, 2003. 

 

[20] D F Specht. Probabilistic neural networks for classification, mapping, or associative memory. IEEE 

International Conference on Neural Networks, 1(2):525–532, 1988. 

 

[21] M.R Teague. Image analysis via the general theory of moments. J. Optical Soc. Am. 70, page 920-930, 

1980. 

 

[22] Arif Thawar, Krekor Zyad Shaaban, Lala, and Baba Sami. Object classification via geometric, zernike and 

legendre moments. Journal of Theoretical and Applied Information Technology, Vol 7. No 1:31–37, 2009. 

[23] Karrels Tyler. Fourier descriptors: Properties and utility in leaf classification. ECE 533 Fall 2006 
 

[24] B.; Stefan L.; Karsten B. & Andreas Z. Urilch, W.; Peter. Plant species classication using a 3d lidar sensor 

and machine learning. Ninth International Conference on Machine Learning and Applications, pages 339–345, 

2010. 

 

[25] Stephen Gang Wu, Forrest Sheng Bao, Eric You Xu, Yu-Xuan Wang, Yi-Fan Chang, and Qiao-Liang 

Xiang. A leaf recognition algorithm for plant classification using probabilistic neural network. IEEE 7th 

International Symposium on Signal Processing and Information Technology, Cario, Egypt; ArXiv 0707.4289 v1 

[ CS.AI], 2007. 

 

[26] Yonqing Xin, Pawlak Miroslaw, and X L. Simon. Image reconstruction with polar zernike moments. 

ICARPR 2005, LNCS 3687, pages 394–403, 2005. 

 

 


