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_________________________________________________________________________________ 

ABSTRACT— The propose of this study is to develop hardware and position algorithms completely integrated with 

the sensorial systems of robots to determine exactly the position of soccer robots in the playing field. These algorithms 

detail how to configure controllers to determine the movement of robots during the match. 

The study initially introduces some concepts of stereo reconstruction and triangulation in Computer Vision 

approaching, and provides an introduction to the calibration of cameras and types of triangulation. Finally is 

considers a structure to integrate camera systems with the movements of robots. An Experiment is shown which 

calculates the distance between robots and yours position in the real world. 
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1. INTRODUCTION 

According to Truco and Verri [6] in the visual systems of animals, including man, the process of image formation 

begins with light rays coming from the outside world and impinging on the photoreceptors in the retina. The process of 
image formation in computer vision begins with de same light rays entering the camera through an angular aperture, and 

light intensities are registered (figure 1). 

 

Figure 1- Elements of Imaging Device 

1.1 - Camera Model 

In the pinhole camera model [6][8], light enter from a scene or a distant object, but only a single ray enters from any 

particular point. In a physical pinhole camera, this point is then “projected” on to an imaging surface [2]. As a result, the 

image on this image plane (also called the projective plane) is always in focus, and the size of the image relative to the 

distant object is given by a single parameter of the camera: it’s focal length. In the case our idealized pinhole camera, the 
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distance from the pinhole aperture to the screen is precisely the focal length. This is shown in Figure 2, where f is the 

focal length of the camera, Z is the distance from the camera to the object, X is the length of the object, and x is the 

object’s image on the imaging plane. In the figure, we can see from the similar triangles that –x/f = X/Z, where 

 

Z

X
fx   [1] 

 

 

Figure 2- Pinhole Camera Model 

The projection of the points in the physical world into the camera can be summarized by the following simple 

formula:  

 

MQq      [2] 
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Multiplying this out, we find that w = Z, and so, since the point q is in homogeneous coordinates, we should divide 

through by w (or Z) in order to return to equation [1]. The minus sign disappears because we are now looking at the non-

inverted image on the projective plane in front of the pinhole rather than the inverted image on the projection screen 

behind the pinhole, (Figure 2). 

 

1.2 - Camera Calibration  

One of the main goals of computer vision is to understand the visible world by inferring 3D properties from 2D 

images [6]. In the context of stereo imagery, the first step that needs to be performed in the process of recovering 3D 

information from 2D images is known by the term calibration. Camera calibration is the process of computing the 

internal camera geometric and optical characteristics, and modelling the relationship between 2D images and the 3D 

world. Many types of calibration methods are presented in available literature.  

Available literature suggests that they can be grouped into three main categories: traditional methods, self-calibration 

and active-motion based methods. The former method, the one that will be reviewed, is performed by observing a 

calibration object whose exact geometry in 3D space is known with precision. This method provided by Zhang [2] is of 

particular research interest, since it provides similar methodology to the one implemented by OpenCV platform, as well a 
common ground for data comparison. 
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Figure 3 - Point Position in Real Space 

The calibration object used in this study is a classic flat grid of alternating black and white squares that is usually 

called a “chessboard”(even though it need not have eight squares, or even an equal number of squares, in each direction), 

(Figure 4). 

 

 

Figure 4- Chessboard Calibration Camera 

 

Let us consider a 3D point in world coordinates P = (X, Y ,Z)T . We are assuming that the world reference system is 

known to readers. This 3D point may coincide with the center of projection of the camera (Although in general it does 
not need to). We shall let Pc = (Xc, Yc ,Zc )T be the coordinates of the same point, this time in the camera reference 

frame, with Zc > 0 if the point is to be visible. The origin of the camera frame is its center of projection, and the Z axis is 

the optical axis. The extrinsic parameters of the camera are then the translation vector and the rotation matrix that effect 

the transformation from the world point to the same point in the frame of reference of the camera [12]: 
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where, 

    Xc = r11X + r12Y + r13Z + Tx 

Yc = r21X + r22Y + r23Z + Tx    [5] 
  Zc = r31X + r32Y + r33Z + Tx 

 

Are the intrinsic parameters,  
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is the focal length in effective horizontal pixel size units 
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(ox , oy ) , the coordinates of the image center, and 
k1 , the radial distortion coefficient. 

Combining the equations, we obtain: 
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Where in formula [8] assuming that the location of the image center (ox , oy) is known and that radial distortion can 

be ignored, the difficulty that presents itself to estimate fx , α, R, and T from image points (xi,yi)T which are the projection 

of N known world points Pi=(Xi,Yi,Zi)T obtained from the calibration pattern, in world coordinates.  

This point in the image plane reference frame is: 
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1.3- Reconstruction by Triangulation 

Simple reconstruction by triangulation is possible if the intrinsic and extrinsic parameters of the stereo system are 

known. Let us assume that we have a perfectly undistorted, aligned, and measured stereo rig as shown in Figure 5: two 

cameras whose image planes are exactly coplanar with each other, with exactly parallel optical axes (the optical axis is 

the ray from the center of projection) that are a known distance apart, and have equal focal lengths fl = fr. Also, let us 

assume for now that the principal points cx left and cx right have been calibrated to have the same pixel coordinates in 

their respective left and right images. A principal point is where the principal ray intersects the imaging plane. This 

intersection depends on the optical axis of the lens.  

The image plane is rarely aligned exactly with the lens and so the center of the image is almost never exactly aligned 

with the principal point. With a perfectly undistorted aligned stereo rig and known correspondence, the depth Z can be 
found from the similar triangles; the principal rays of the images begin at the centers of projection Ol and Or and extend 

through the principal points of the two image planes at cl and cr 
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Figure 5 – Stereo Images Par 

In this case, taking xl and xr to be the horizontal positions of the points in the left and right imager (respectively)  the 
depth is inversely proportional to the disparity between these views, where the disparity is defined simply by d = xl – xr. 

This situation is shown in Figure 5, where we can easily derive the depth Z by using similar triangles. Referring to the 

figure 5, we have: 
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Since depth is inversely proportional to disparity, there is obviously a nonlinear relationship between these two terms. 

When disparity is near 0, small disparity differences make for large depth differences. When disparity is large, small 

disparity differences do not change the depth by much. The consequence is that stereo vision systems have high depth 
resolution only for objects relatively near the camera. Figure 6 shows the 2D and 3D coordinate systems for stereo 

vision. Like in a right-handed coordinate system, if you point your right index finger in the direction of X and bend your 

right middle finger in the direction of Y, then your thumb will point in the direction of the principal ray. The left and right 

imager pixels have image origins at upper left in the image, and pixels are denoted by coordinates (xl, yl) and (xr, yr), 

respectively.  

 

 

Figure 6 - Stereo Coordinate System 
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The center of projection is at Ol and Or and principal rays intersect the image plane at the principal point (cx, cy). 

After mathematical rectification, the cameras are row-aligned (coplanar and horizontally aligned), displaced from one 

another by T, and of the same focal length f. Mathematically it is possible to find image projections and distortion maps 

that will rectify the left and right images into a frontal parallel arrangement. When designing your stereo rig, it is best to 

arrange the cameras approximately frontal parallel and as close to horizontally aligned as possible. This physical 

alignment makes mathematical transformations more manageable. The mathematical alignment can produce extreme 
image distortions and so reduce or eliminate the stereo overlap area of the resulting images. Thus we, need synchronized 

cameras. This is a major problem for many cameras viewing in live images. With epipolar geometry, it is possible to 

have located corresponding points on the two or more stereo pairs of cameras. This geometry derives from Essential and 

Fundamental Matrix for stereo systems.  

2. LABORATORY IMPLEMENTATION 

This study presents two experiments in techniques to locate robots in the soccer field. The first presents results for 

two cameras in stereo systems to calculate the distance to the robots with a marker calibrator. In the second we propose a 

structure with six cameras for locating robots in the field during a game of soccer. These methods and materials are 

shown above, [9]. The robot used is the NAO standard platform league for the ROBOCUP, shown in figure 7. 

NAO is a programmable, 58cm tall humanoid robot with the following key components: 

 Body with 25 degrees of freedom (DOF) whose key elements are electric motors and actuators 

 Sensor network, including 2 cameras, 4 microphones, sonar rangefinder, 2 IR emitters and receivers, 1 inertial board, 

9 tactile sensors, and 8 pressure sensors 

 Communication devices, voice synthesizer, LED lights, and 2 high-fidelity speakers 

 Intel ATOM 1,6ghz CPU (located in the head) that runs a Linux kernel and supports Aldebaran’s proprietary 

middleware (NAOqi) 

 Second CPU (located in the torso) 

 27,6-watt-hour battery that provides NAO with 1.5 or more hours of autonomy,.  

 

 

Figure 7 - NAO Soccer Robot Platform 

 

The cameras for this experiment are the optitrack V100-R2, with specifications: 

 Pixel Size : 6 μm × 6 μm 

 Imager Size : 4.5 mm × 2.88 mm 

 Imager Resolution : 640 × 480(0.3 MP) 

 Frame Rate: 25, 50, 100 FPS 

 Default Lens: 4.5mm F#1.6 

• Horizontal FOV: 46° 

• Vertical FOV: 35° 
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The calibration of cameras is done with OpenCV algorithms using the chessboard model shown in Figure 8. In this 

image OpenCV provides a convenient method for handling this common task. The function cvDrawChessboardCorners() 

draws the corners found by cvFindChessboardCorners() onto an image that you provide. If not all of the corners are 

found, the available corners will be represented as small red circles. If the entire pattern is found, then the corners will be 

painted in different colours (each row will have its own colour) with connected bylines representing the identified corner 

order.  

 

Figure 8 - Camera Chessboard Calibration 

After the calibration process, other functions can use like, Stereo Correspondence and Stereo Calibration, both of 

which are tested in this project. A general diagram of the robotic system and the calibrated cameras is shown in figure 9. 

In this instance, only one robot is used to calculate the distance of the marker for future estimates of real positions in the 

soccer field. The robots have a constant height; in this case the Z coordinate for word systems is 60cm. To determine 

different positions in this axis, the bar marker is used and different distances are obtained. The positions and height of 
cameras up the center of the soccer field (reference XYZ in real world terms) are known. The systems propose working in 

real-time. This means that, when a robot walks the distance measured changes and the new position is calculated. The 

data are used to correct de position of the robot and to validate the embedded algorithms. These algorithms are often is a 

strategic player in the real game as simulated on desktops and in exhaustive tests. 

 

Figure 9 - General Schematic 

Figure 10 illustrates in detail the image and object identification of a marker on the head of a robot. This marker is a 

reflective infrared object. The cameras detect this marker and convert it into XY positions for Left and Right images. 

Objects witch are not reflective are not detected and are discarded. Note that for both cameras 0 and 1 only de marker is 

detected other elements in view are ignored.  
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Figure 10 – Robot Image in Camera Identification 

In order to estimate the distance in different height levels, a marker calibrator is used. Figure 11 shows the marker 

and the distance Z0, Z1, Z2 and Z3 for the stereo system. 

 

Figure 11 – Calculation of Distance and 3D Position 

In another test, six cameras are used to estimate the position of robots in a simulated game of soccer. For this situation 

there is a new arrangement as shown in Figure 12. 

 
      (a)                (b) 

Figure 12 – (a) Reference Position System for Two Teams in a Game of Robot Soccer. (b) Top View. 
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All cameras are synchronized and a computer identifies and triangulates the positions of two teams of soccer robots 

(6 robots). This information is obtained and filed in a data file system. These files stay to be read for the robots team, 

[10][11]. 

3. RESULTS 

Table 1, shows the estimated distance to four markers for the arrangement shown in Figure 11. The column 

“Calculated” shows the values obtained by calculating distance with triangle algebra. The column “Results” shows the 

values obtained directly from the reconstructed algorithms for triangulation. The percentage error is shown in the last 

column of the table. 

Table 1 – Distance Results 

Distance X 
cam0 

Y 
cam0 

X 
cam1 

Y 
Cam1 

Calculated Results Error (%) 

Z0 77.02 245.02 582.18 261.52 2332.38 2545.00 2.13 

Z1 60.76 172.62 599.09 188.47 2193.17 2388.00 1.95 

Z2 42.59 90.88 617.42 105.87 2088.06 2236.22 1.48 

Z3 22.60 0.42 636,71 10.98 2022.37 2093.76 0.71 

 

Figure 13(a) shows the results of the calculations of distance. The data source is shown in Figure 14.  The error is 

around 2.5% for this test. In a system like that in Figure 12, where six cameras are used, many cameras provide many 

different positions for markers. In this case it is possible to do calculate an average value for data and reduce the error. 

Figure 14 shows the software development for this project. The platform is Windows, and Visual Studio, C++ is the 

language used. 

 

   
                    (a)                   (b) 

Figure 13 – (a) Distance From Position of Markers ;(b) Errors in Calculated Distances 

 

4. CONCLUSIONS 

The results obtained from the laboratory experiments show that this system is able to determine the position of robots 

in a soccer field. It is clear that position is more precise for robots near the center of cameras. Like in equation [8] the 

relation of disparity ( d = xl – xr) is inversely proportional to depth. There is clearly a non-linear relationship between 

these two terms. When disparity is near 0, small disparity differences make for large differences in depth. When disparity 

is large, small disparity differences much. The consequence is that stereo vision systems have high depth resolution only 

for objects relatively near to the cameras. Figure 13-(b) clearly demonstrates that errors are minor for markers near to 

cameras, and major for markers far from of cameras. This is less of a  problem when many cameras are used because an 
average result can be used. Another process under investigation is the use of Neural Networks to estimate the 3D real 

position for robots in the soccer field. 



Asian Journal of Computer and Information Systems (ISSN: 2321 – 5658) 
Volume 02 – Issue 03, June 2014 

 

Asian Online Journals (www.ajouronline.com)  72 

 

 

Figure 14- Software for Location Markers with 6 Cams 
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