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ABSTRACT— A metaheuristic algorithm is an algorithmic framework at a high level, independent of problems, 

which offers a set of recommendations or strategies to develop heuristic optimization algorithms.  

Evolutionary computation and other metaheuristics have long been focused on the trade-off between exploration and 

exploitation. This subject is present in a wide range of domains, including modeling and prediction, search and 

optimization, machine learning and cognition, and many more situations where uncertainty is present. The trade-off 

between exploration and exploitation is crucial for all optimization techniques. Efficient optimization and lower 

computing costs can be achieved by striking a fair balance between both.  

The paper introduces a study that discusses metaheuristic algorithms and previous studies in three areas: 1) What 

elements of metaheuristic facilitate exploration and exploitation; 2) When and how exploration control is applied. 3) 

how to find a balance between the two. 
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1. INTRODUCTION 

It has been shown that the most useful methods for solving challenging hard optimization problems are the 

metaheuristics (MHs) family. The MH algorithm is an algorithmic framework that is high-level and independent of 

problems. It offers a collection of principles or tactics for creating heuristic optimization algorithms. Over the past few 

decades, a wide variety of MHs have been presented. The majority of MHs were devoted to applications and 

experimental research. Exploration and exploitation are the two fundamental search behaviors employed in MH 

algorithms in general and swarm intelligence in particular. While exploitation refers to searching the area around a 

promising region, exploration refers to finding an unexplored area of the viable region [1, 2].  

Although MHs are capable of both exploration and exploitation, it has frequently been discovered that they are stuck 

in a local rather than global optima. The primary cause is the challenge of appropriately balancing the two abilities, 

exploitation and exploration. 

The terms "exploration" and "exploitation" have been defined differently in the literature on MHs. Exploration and 

exploitation are interpreted as global and local search, respectively, from an inherent viewpoint. This explanation 

unquestionably captures a facet of their characters, however based just on search scope, it is unreliable to differentiate 

between exploration and exploitation because there is no universally accepted cutoff point for what constitutes "local." 

Strictly limiting exploration to stay inside the entire search space is a clear-cut but pointless approach, and any search 

inside a smaller space will be seen as exploitation.  

Exploration and exploitation in machine learning algorithms represent the gathering and application of knowledge, 

respectively. Some academics believe that the degree of randomness can distinguish between exploitation and 

exploration. In order to obtain knowledge about unknown problems, Chen et al. classified two types of behavior: 

exploration and exploitation [3]. The information acquisition process was viewed as a sampling process that 

progressively transforms an optimization problem from a "black-box model" into a "whitebox." Chen states that a 

sampling behavior is considered exploratory if and only if its sampling point is created without reference to the data 

gathered by previous sampling points. In the same way, sampling behavior involves exploitation of the corresponding 
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generation. In general, exploitation refers to the ability to find high quality solutions inside the search regions, while 

exploration refers to the capacity to visit numerous and diverse regions of the search space. 

A search algorithm ought to achieve a tactical balance between these two potentially conflicting objectives. The 

majority of conventional MHs consist of multiple components for both exploration and exploitation. Evolutionary 

computation and other machine learning fields have long been interested in the trade-off between exploration and 

exploitation. This subject is present in a wide range of domains, including modeling and prediction, search and 

optimization, machine learning and cognition, and many more situations where uncertainty is present. The trade-off 

between exploration and exploitation is crucial for all optimization techniques. Efficient optimization and lower 

computing costs can be achieved by striking a fair balance between both [4, 5]. 

The paper introduces a study that discusses metaheuristic algorithms and previous studies in three areas: 1) What 

elements of metaheuristic facilitate exploration and exploitation; 2) When and how exploration control is applied. 3) how 

to find a balance between the two. 

2. METAHEURISTIC ALGORITHMS CHARACTERISTICS 

Throughout the past 20 years, metaheuristic techniques have grown in popularity and been used in a variety of 

scientific and industrial fields. The following factors account for this popularity [6]:  

- Simplicity: The majority of them were motivated by straightforward ideas about natural occurrences, animal 

behavior, or evolutionary theory. Because of its simplicity, scientists and researchers are able to replicate a wide 

range of natural notions, enhance existing meta-heuristics, combine two or more of them, or suggest new meta-

heuristics.  

- Flexibility: The meta-heuristics can be readily applied to a wide range of problems without requiring any 

special structural modifications. They also view problems as black boxes. This indicates that the input and 

output of a system are its most crucial components for a meta-heuristic.  

- Gradient-Free (Derivation-Free) Mechanism: Metaheuristics optimize problems stochastically, meaning that 

random solutions are first found and the derivative of search spaces does not need to be calculated in order to 

discover the optimum.  

- Avoiding Local Optima: Meta-heuristics are more effective in avoiding local optima. Because metaheuristics 

are stochastic, stagnation in local solutions is avoided and the entire search space is searched. Therefore, it 

appears that using meta-heuristics to optimize problems with a large number of local optima is an effective 

approach.  

Meta-heuristic algorithms are able to provide reasonable results in a suitable amount of time. The solution obtained 

may not always be appropriate, just as meta-heuristic algorithms may not always guarantee the best answers. Put another 

way, depending on the application to which an evolved algorithm is employed, its overall performance may vary. 

Although an algorithm can be highly effective in solving a particular problem, it might not be the best option for another 

one. As previously stated, the meta-heuristic algorithm is run on random inputs and obtained outputs, and it is not reliant 

on the problem. Having an effective algorithm that can produce reasonable and quality solutions is the goal.  

3. TYPES OF MHs 

Based on the manipulation of the solutions, three basic classes of MHs may be identified. Iteratively, local 

search MHs tweak a single solution slightly. Constructive MHs build solutions out of their component pieces. 

Population-based MHs create novel solutions by combining old ones repeatedly. These classifications don't have to be 

mutually exclusive, though, as many MH algorithms use concepts from several classes. We refer to these techniques as 

hybrid MHs [5, 2]. 

3.1 Local Lookup MHs 

Iterative improvement, also known as local search (LS), identifies effective solutions by repeatedly modifying a 

single answer, known as the current solution. This class of MHs gets its name from these changes, which are called 

movements and are usually "small" (such that neighboring solutions are relatively close to each other according to a 

natural metric). The neighborhood of a given solution is the set of solutions that can be acquired by making a single 

move on that solution. Different move types can be established depending on how the solution is represented. Every kind 

of relocation creates a different neighborhood structure. The current answer is swapped out for one from its 

neighborhood in each cycle. The move strategy, also known as the search strategy, is the rule that is applied to choose the 

new current solution. The steepest ascent or descent approach, which chooses the best move from the neighborhood, is a 

popular search technique. MHs who employ this tactic are frequently referred to as hill-climbers. The option that little 

enhances the present solution is chosen using the mildest descent/ascent approach. Other move strategies include the first 

improving approach, which, naturally, depends on the sequence in which the moves are checked, chooses the first step 

that makes the existing solution better. 
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Instances of this group include, in order to explore the solution space, Tabu search (TS) keeps track of a short-

term memory (tabu list), Variable Neighborhood Search (VNS) algorithms systematically explore different 

neighborhoods to escape local optima, and Simulated Annealing (SA) mimics the annealing process in metallurgy. 

Rather of enhancing whole solutions, constructive MHs, as their name implies, build solutions from their 

constituent parts. This is accomplished by gradually adding elements to a partial solution. Frequently, greedy algorithms 

that add the best member at each iteration are adapted into constructive maximum hierarchy algorithms. Most 

constructive MHs include a local search phase following the construction phase in order to enhance the quality of the 

final solutions. 

This category includes models that mimic the collective behavior of ant colonies, such as the greedy randomized adaptive 

search process (GRASP), pilot method, Large neighborhood search (LNS), and Ant colony optimization (ACO). 

3.2 MHs Depending on Populations 

Population-based MHs choose and combine existing solutions from a set, typically referred to as the population, 

iteratively until they identify good solutions. Evolutionary algorithms (EAs) are the most significant members of this 

class because they closely resemble the rules of natural evolution. We refer to the broad class of evolutionarily based 

MHs as evolutionary algorithms. This includes, among many other things, particle swarm optimization (PSO), which 

mimics the social behavior of particles in a swarm, genetic programming (GP), which evolves computer programs or 

solutions represented as trees, evolutionary computation (EC), evolution strategies (ES), and genetic algorithms (GA), 

which evolve a population of solutions using genetic operators like crossover, mutation, and selection. "Pure" 

evolutionary algorithms are uncommon when used to solve combinatorial optimization problems; instead, most of them 

incorporate some sort of improvement operator, most frequently in the form of local search. 

Evolutionary algorithms work with a set, or population, of solutions and employ two methods to find good 

solutions: first, they select from the population the solutions that are primarily of high quality, and then they recombine 

those solutions into new ones by using specialized operators that combine the properties of two or more solutions. 

Following recombination, new solutions are reintroduced into the population to replace older, typically lower-quality 

solutions. These new solutions may need to meet requirements like feasibility or minimum quality needs. Almost often, 

the operators (selection, recombination, and replacement) in evolutionary algorithms heavily rely on randomness. It is 

also common to use a mutation operator, which randomly modifies a solution, if slightly, after it has been recombined. 

The majority of evolutionary algorithms reflect the population's optimal solution after repeatedly iterating through the 

stages of selection, recombination, mutation, and replacement. For evolutionary algorithms to guarantee that the best 

solutions endure over multiple iterations while maintaining population diversity, some sort of "population management" 

is usually necessary. 

3.4 Hybrid MHs 

There has been a trend in recent years to see MH frameworks as general ideas or components that can be applied 

to the development of optimization techniques [7]. Since most modern MH algorithms integrate concepts from several 

classes, the term "hybrid MH" has lost most of its ability to discriminate. Specialized heuristics are used by many recent 

MHs to effectively tackle subproblems generated by the MH. In a similar vein, a significant amount of local search MHs 

begin the neighborhood search by using a construction phase to identify an initial solution, or a group of initial solutions. 

Actually, the greedy randomized construction phase should be followed by a local search phase, according to the original 

GRASP MH description [8].  Recombination operators from the family of evolutionary algorithms are combined with 

local search MHs in algorithms that fall within the memetic algorithms class [9]. 

 

4. FACTORS AFFECT THE TRADE-OFF OF EXPLORATION VS EXPLOITATION IN MH SEARCH 

In addition to the MH's strategy, a number of problem- and implementation-related factors also influence the 

trade-off between exploration and exploitation. The following are significant variables in MH algorithms that impact the 

exploration-exploitation trade-off [10, 1]:  

- Problem complexity: Exploration becomes more difficult in high-dimensional spaces due to the large size of the 

solution space. To successfully navigate complicated landscapes, algorithms may need to strike a balance between 

exploring multiple regions and exploitation of interesting spots. 

- Search Space Topology: The trade-off may be impacted by the existence of several local optima. While broad 

exploration may be necessary to avoid local optima, algorithms should also take use of effective solutions to increase the 

likelihood of convergence towards a global optimum. 

- Algorithmic factors: including crossover probability and mutation rates. can have a big impact on the trade-off between 

exploration and exploitation, just like GAs. While high crossover probability may result in increased exploitation, high 

mutation rates promote exploration.  

- Maintaining diversity methods in the population: Some algorithms include methods to keep the population diverse 
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while encouraging exploration. Diversity guarantees a more complete exploration of the solution space and helps avoid 

early convergence. 

- Adaptation mechanisms: During the search, the exploration-exploitation balance can be efficiently adjusted by 

algorithms that dynamically modify parameters in response to the performance and features of the optimization issue.  

- Dynamics of the problem: Algorithms must modify their approaches in dynamic optimization problems where the 

objective function or constraints vary over time. As the issue develops, a balance between exploration and exploitation 

must be kept. 

- Quality of initial solutions: The subsequent balance between exploration and exploitation can be influenced by the 

quality of the initial solutions discovered during the early phases of the algorithm. Inadequate initial solutions could 

necessitate a greater focus on exploration.  

- Computational resources: The algorithm's capacity to explore and exploit can be impacted by the availability of 

computational resources, such as memory and time, as well as computational budget. A more concentrated strategy to 

either exploration or exploitation may be necessary because to limited resources.  

- Specific characteristics of the problem: Certain problems may contain exploitable structures that can be used to their 

advantage for effective exploitation. Designing exploration and exploitation tactics can be influenced by an 

understanding of specific characteristics of the problem at hand 

- Performance metrics: As convergence criteria, the success or convergence criteria have an impact on the trade-off 

between exploration and exploitation. Algorithms can have to strike a compromise between guaranteeing a 

comprehensive investigation of the solution space and obtaining a solution rapidly (exploitation).  

A MH algorithm's efficacy frequently rests on how well these parameters are adjusted to the specifics of the 

given optimization task. Experiments and sensitive analyses are frequently carried out by researchers and practitioners to 

gain insight into how modifications to these parameters affect the exploration-exploitation trade-off and overall algorithm 

performance.  

4.1 Evaluation of the Balance 

In order to identify suitable solutions for an optimization problem, MH algorithms employ a set of candidate 

solutions to explore the search space. The search procedure is typically directed toward search agents who have the best 

solutions [11]. This attraction results in a decrease in the distance between search agents and an increase in the effect of 

exploitation. However, the impact of the exploration process becomes more noticeable as search agents get farther apart. 

A diversity measurement called the dimension-wise diversity measurement [10] is taken into consideration in order to 

compute the increase and decrease in distance among search agents. The population diversity is defined as follows with 

this method:  

                                                                    (1) 

 

                                                                                                 (2) 

where the median(xj) denotes the population-wide median of dimension j. The search agent's dimension is denoted by Xij, 

The number of search agents in the population is represented by n, and the number of design variables in the optimization 

problem is represented by m.  

The gap between each search agent's dimension (j) and the averaged median of that dimension is known as the 

diversity in each dimension (Divj). Then, by averaging each Divj in each dimension, the diversity of the overall 

population Div is determined. Every iteration computes both values. The entire balance response can be defined as the 

portion of an MH scheme's exploration and exploitation. In every iteration, these values are calculated using the 

following models: 

 

                                                                                      (3) 

 

                                                                           (4) 

where Divmax is the highest diversity value discovered during the whole optimization procedure. The link between the 

diversity attained at the maximum and the diversity in each iteration is represented by the exploration percentage, or 
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XPL%. The level of exploitation is reflected in the XPT% percentage of exploitation. Since the concentration of search 

agents produces the difference between the maximal diversity and the current diversity of an iteration, it is calculated as 

the complemental percentage to XPL%. It is evident that elements XPL% and XPT% are complementary to one another 

and in conflict with one another. 

By employing a reference element, the median value prevents inconsistencies in the evaluation of the balance 

response. Another intriguing characteristic of the balance response is that the maximum diversity (Divmax) discovered 

throughout the optimization procedure also affects the XPL% and XPT% values. However, the filtering effect that the 

average combination of all dimensions produces is one drawback of the dimension-wise diversity index.  

5. LITERATURE REVIEW 

Here, various metaheuristic algorithms will be discussed including how they achieve the balance between 

exploration and exploitation. 

5.1 Genetic Algorithms 

Population-based search algorithms known as genetic algorithms (GAs) are modeled after the process of natural 

evolution. They iteratively develop a population of candidate solutions toward better solutions by utilizing genetic 

operators, such as selection, crossover, and mutation [12, 13]. 

i. Exploration and Exploitation in GA 

By exploring, the GA aims to discover novel solutions, uncover hidden gems, and avoid getting stuck in local 

optima. By exploiting known points, the GA hones in on promising areas, aiming for convergence toward the global 

optimum.  Here are some GA operators are their relation of the trade-off: 

- Selection Operator: The selection operator is a critical factor in this trade-off. It determines which individuals 

(genetic solutions) survive and reproduce. 

- Essence of Exploitation: Fitness-proportional selection emphasizes exploiting well-performing solutions. 

- Influence of Exploration: Linear rank selection leans toward exploration, encouraging diversity. 

- Novel Selection Scheme: Researchers have proposed a fresh approach—a selection scheme that strikes an 

optimal balance between exploration and exploitation. This scheme adjusts selection pressure dynamically, 

avoiding premature convergence and enhancing overall performance. 

Balancing exploration and exploitation in a genetic algorithm (GA) is crucial for achieving optimal results. Here 

are some strategies to implement this trade-off: 

1. Population Diversity: 

- Exploration: Maintain diversity within the population by using techniques like tournament 

selection or roulette wheel selection. These methods allow less fit individuals to survive, promoting 

exploration. 

- Exploitation: Use elitism to preserve the best solutions from one generation to the next. Elitism ensures that 

high-performing individuals are not lost during evolution. 

Strategies implemented: 

- Tournament Selection: Allows less fit individuals to survive, promoting exploration. 

- Elitism: Preserves the best solutions from one generation to the next. 

- Dynamic Parameters: Gradually adjust population size and mutation rate during evolution. 

- Niching Techniques: Penalize solutions in crowded regions to encourage diversity. 

2. Crossover and Mutation Rates: 

- Exploration: Increase the mutation rate. Mutations introduce randomness, allowing the GA to explore new 

regions of the search space. 

- Exploitation: Adjust the crossover rate. High crossover rates emphasize exploitation by combining existing 

solutions. 

3. Dynamic Parameters: 

- Exploration: Start with a larger population size and higher mutation rate. Gradually decrease these 

parameters as the GA progresses. 

- Exploitation: Decrease the population size and mutation rate over time. This encourages convergence 

toward promising solutions. 

4. Niching Techniques: 
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- Exploration: Implement crowding or fitness sharing. These methods encourage diversity by penalizing 

solutions in crowded regions of the fitness landscape. 

- Exploitation: Use speciation to maintain separate niches. Speciation prevents premature convergence by 

promoting diversity. 

5. Multi-Objective Optimization: 

- Exploration: Optimize multiple objectives simultaneously. Pareto-based approaches explore trade-offs 

between conflicting objectives. 

- Exploitation: Use dominance-based ranking to select solutions that balance multiple objectives effectively. 

The ideal balance between exploration and exploitation depends on the problem domain, the specific GA, and 

the characteristics of the fitness landscape. Hussain and Muhammad [14] presented a study aims to find a balance 

between premature convergence and population diversity in GAs. The researchers introduce a new selection scheme 

called split-based selection (SBS). This operator strikes a fine balance between two 

extremes: exploration and exploitation. It eliminates fitness scaling issues and dynamically adjusts selection 

pressure. The study evaluates the SBS operator using TSPLIB instances, demonstrating significantly improved results in 

terms of average and standard deviation values. Exploration involves venturing into new areas of the search space. 

Exploitation capitalizes on existing knowledge to refine solutions. 

Alba and Dorronsoro [15] presented a paper which explores the trade-off between exploration and exploitation 

in dynamic cellular GAs. The study investigates both static and dynamic decentralized versions of the cellular genetic 

algorithm (cGA). In cGA, individuals are situated in a specific topology and interact only with their neighbors. It 

examines how feedback from search experiences stored in an archive impacts the algorithm’s behavior. The study 

evaluates two different replacement strategies within cGA. These strategies influence how individuals are replaced 

during evolution. The proposed algorithms are tested against a benchmark of problems. the best-performing algorithm is 

compared with two state-of-the-art genetic algorithms for multi-objective optimization.  Dynamic cGAs exhibit the most 

desirable behavior in terms of efficiency and accuracy among all evaluated versions. 

Vafaee et al. [16] presented a study that focuses on maintaining a delicate balance 

between exploration and exploitation in GAs. The researchers propose a GA that emphasizes diversity. The GA uses a 

novel mutation operator with site-specific mutation rates.  Mutation rates are adjusted based on the underlying pattern of 

highly-fit solutions. The proposed approach is evaluated using benchmark problems, demonstrating its effectiveness in 

achieving the desired trade-off. 

Zhang et al. [17] presented a paper that  introduces a survival analysis method to tackle the trade-off issue. 

Results from the analysis guide the selection of appropriate solution creation operators that favor either exploration or 

exploitation. Specifically, a differential evolution recombination operator is used for exploration, while a 

novel clustering-based operator is proposed for exploitation. The developed algorithm is compared with four well-known 

multi-objective evolutionary algorithms. 

5.2 Simulated Annealing    

A stochastic search technique called "simulated annealing" (SA) mimics the annealing procedure used in 

metallurgy. Early in the search phase, it accepts worse solutions using a probabilistic acceptance criterion and then 

progressively concentrates on enhancing the objective function. [18, 19].   

5.2.1 Schedule of Annealing and Neighborhood Structure 

In SA, a temperature parameter is set and an initial solution is generated. By altering the existing solution and 

admitting new ones based on a probability function that is dependent on the objective function difference and the current 

temperature, the algorithm iteratively searches the solution space. The set of possible moves from the existing solution is 

defined by the neighborhood structure.  

5.2.2 Acceptance Criteria 

Based on the current temperature and the objective function value of the new solution, the acceptance criterion 

in SA decides whether to accept it or not. Exploration is aided by the algorithm's initial higher probability of accepting 

worse solutions. The algorithm progressively becomes more selective and concentrates on enhancing the objective 

function as the temperature drops. 

5.2.3 Exploration and Exploitation in Simulated Annealing: 

Exploration involves searching for new solutions in unexplored regions. Allows occasional uphill moves to 

explore diverse areas. While exploitation refines existing solutions to improve their fitness. Balances exploration by 

accepting better solutions. Simulated annealing dynamically balances exploration and exploitation, adapting its behavior 

to the problem domain. 
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Amine [20] presented a study which focuses on extending SA to multiobjective optimization problems 

introducing  Multiobjective Simulated Annealing (MOSA). MOSA constructs an estimated Pareto front by gathering 

nondominated solutions during exploration. Challenges include balancing exploration and exploitation due to the number 

of objective functions. Researchers propose various MOSA variants to achieve this balance. These variants adapt 

mutation rates, use clustering-based operators, and manage diversity. 

Chen [21] presented a research which introduces a strategy called “threshold convergence” to balance 

exploration and exploitation in stochastic search techniques. It enhances performance in multi-modal search spaces. This 

research contributes to achieving a delicate balance in SA by incorporating threshold-based control. Early-stage local 

search steps are “held back” by a threshold function. Preventing interference with concurrent global search mechanisms. 

Threshold convergence leads to significant performance improvements. 

5.3 Differential Evolution (DE)  

In 2005, Storn and Price introduced differential evolution as a reliable and easily parallelizable substitute for 

global optimization techniques. DE takes its concept of self-organization from the well-liked heuristic search technique, 

Nelder-Mead's simplex search algorithm [22]. DE begins with a population of randomly initialized solution vectors, just 

like other population-based metaheuristics. However, DE modifies an existing solution in the population using the 

difference vector of two randomly selected members rather than variation operators with predefined probability 

distributions [23].  

5.3.1 Exploration and Exploitation in DE 

Balancing exploration and exploitation in DE is crucial for achieving effective optimization. Some strategies to 

achieve this delicate balance are: 

1. Population Diversity: 

- Exploration Aspect: Maintain diversity within the population by using techniques like tournament 

selection or crowding. These methods allow less fit individuals to survive, promoting exploration. 

- Exploitation Aspect: Use elitism to preserve the best solutions from one generation to the next. Elitism 

ensures that high-performing individuals are not lost during evolution. 

2. Mutation Strategies: 

- Exploration: Experiment with different mutation strategies. For instance, consider using large-scale 

mutations to explore distant regions of the search space. 

- Exploitation: Fine-tune mutation parameters. Smaller-scale mutations can help refine existing solutions. 

3. Crossover Rate: 

- Exploration: Adjust the crossover rate. Higher crossover rates encourage exploration by combining genetic 

material from different individuals. 

- Exploitation: Lower crossover rates emphasize exploitation by preserving existing solutions. 

4. Adaptive Parameters: 

- Exploration: Start with a larger population size and higher mutation rate. Gradually decrease these 

parameters as the DE progresses. 

- Exploitation: Decrease the population size and mutation rate over time. This encourages convergence 

toward promising solutions. 

5. Niching Techniques: 

- Exploration: Implement techniques like fitness sharing or speciation. These methods prevent premature 

convergence by promoting diversity. 

- Exploitation: Use niching to maintain separate niches of solutions. 

6. Hybrid Approaches: 

- Combine DE with other optimization methods (e.g., local search, particle swarm optimization, or simulated 

annealing). 

- Hybridization can enhance both exploration and exploitation capabilities. 

The optimal balance depends on the problem domain, the specific DE variant, and the characteristics of the 

fitness landscape. Epitropakis et al. [24] propose a hybrid approach that combines DE mutation operators to achieve a 

balance between their exploration and exploitation capabilities. Combines different DE mutation operators which aims to 

strike an optimal balance between exploring new regions and refining existing solutions. Extensive experiments 

demonstrate that the proposed hybrid approach effectively enhances DE’s ability to accurately locate solutions in the 

search space. 

A method known as DEIE (Differential Evolution with Information Entropy-Based Mutation Strategy) is put 

forth by Wang et al. [25]. This work provides insights into how information entropy-based mutation techniques can be 

used to achieve a delicate equilibrium in DE. Using the crowding technique, DEIE calculates the total number of Markov 

http://www.ajouronline.com/
https://onlinelibrary.wiley.com/authored-by/Amine/Khalil
https://ieeexplore.ieee.org/author/38042460500
https://ieeexplore.ieee.org/document/6256591/
https://ieeexplore.ieee.org/author/37691877600


Asian Journal of Applied Sciences (ISSN: 2321 – 0893) 

Volume 12 – Issue 1, December 2024 

 

Asian Online Journals (www.ajouronline.com)  8 

 

states. It uses historical evolutionary data to infer the transition matrix between states. The evolutionary process is 

divided into stages of exploration and exploitation dynamically by DEIE. The Markov state model's information entropy 

serves as the basis for this divide. DEIE adaptively uses stage-specific mutation operations. The usefulness of DEIE is 

shown through experiments conducted on classical functions and benchmark sets. 

A paper examining the trade-off between exploration and exploitation in DE was provided by Sá et al. [26]. DE 

may have trouble avoiding local optima and preserving diversity. To improve its behavior, the study proposes changing 

typical DE techniques. In order to improve the behavior of the DE algorithm, this study suggests modifying the usual 

mechanisms by altering the exploration vs. exploitation balance. To create population diversity, a probabilistic selection 

process for the new member of the population is one suggested option. Their cost function is used to define the selection 

probability of the population members.  

Zhang et al. [27] presented a paper which conduct a comprehensive survey on strategies to achieve a delicate 

balance between exploration and exploitation in DE across different scales like: Parameter adaptation techniques, 

strategies to enhance population diversity, and selection mechanisms with varying pressure. Achieving the right balance 

is crucial for DE’s performance on diverse optimization problems. 

A novel search framework built on an explicit strategy of control is put forth by Cai et al. [28]. Striking a 

balance between exploration and exploitation in (EAs). Three different forms of transference are included in an explicit 

control technique that is introduced to balance exploration and exploitation. Operators for exploration and exploitation 

are defined formally. A novel differential evolution technique based on triple transference is put forth.  

5.4 Ant Colony Optimization 

Ant Colony Optimization (ACO), is a metaheuristic algorithm that draws inspiration from ants' foraging habits. 

It builds high-quality solutions iteratively through the use of stigmergy and pheromone-based communication [29].  

5.4.1 Stigmergy and Pheromone-Based Communication 

Artificial ants build solutions in ACO by repeatedly going from one place to another and leaving pheromone 

trails in their path. An edge's desirability is indicated by the pheromone concentration on that edge. Ants use pheromone 

levels and heuristic information from nearby areas to make a probabilistic decision on where to visit next. The dynamic 

updating of pheromone trails is ensured by pheromone evaporation and reinforcement mechanisms. Reinforcement builds 

the pheromone trail of high-quality solutions the ants have discovered, but evaporation gradually lowers pheromone 

levels to prevent convergence to suboptimal solutions.  

5.4.2 Route Construction and Pheromone Updating 

By repeatedly choosing places to visit based on pheromone and heuristic information, each ant in ACO builds 

an entire set of routes. In order to update the pheromone, the current pheromone is evaporated, and then new pheromone 

is applied to the edges that the ants have traveled, depending on how well a solution was discovered.  

5.4.3 Exploration and Exploitation in ACO 

ACO achieves a delicate balance between exploration and exploitation [2]. During exploration, ants explore new 

paths by depositing pheromones on edges. This encourages diversity and helps discover novel solutions. While during 

exploitation, ants follow paths with higher pheromone levels. This exploits known good solutions. There are some 

challenges, for example: striking the right balance is crucial for ACO’s effectiveness, too much exploration can lead to 

slow convergence, and too much exploitation can cause premature convergence. There are a number of methods to 

achieve balance: 

1. Dynamic Pheromone Update: 

- Adjust pheromone levels dynamically based on solution quality. 

- Encourage exploration when solutions are suboptimal. 

2. Heterogeneous Approach: 

- Combine different ACO variants with varying exploration-exploitation trade-offs. 

- Improve performance and reduce parameter tuning efforts. 

3. Information Entropy-Based Strategies: 

- Use entropy measures to guide exploration and exploitation. 

- Enhance the algorithm’s ability to explore diverse regions. 

Jabbar [30] presented a study which improves the results of the Traveling Salesman Problem (TSP) produced by 

ACO. Trying to balance the exploration and exploitation components within ACO by overcoming the drawbacks of the 

exploration problem. The study produced global optimal results in high-dimensional space. Experiments on six variants 

of ACO show that the proposed work produces high-quality results in terms of the shortest route. 
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The authors Liu et al. [31] proposed a novel approach to enhance the performance of ACO by addressing the 

exploration-exploitation trade-off. The approach combines two techniques: epsilon greedy and Levy flight. An 

exploration method widely used in reinforcement learning. Adapted to ACO as a pseudo-stochastic mechanism and based 

on Levy distribution, lead to balancing search space exploration and speed for global optimization. The Greedy-Levy 

ACO incorporates both approaches to solve complex combinatorial optimization problems. The study specifically 

applied to the TSP. Greedy-Levy ACO outperforms existing ACO variants and other TSP solvers. 

The authors Kumazawa et al. [32] proposed two exploration strategies to enhance the performance of model 

checking based on ACO and strike the balance between exploration and exploitation. Model checking is a formal 

verification technique for software systems. Traditional exhaustive search techniques often fail for large systems due to 

resource demands. The study introduces different kinds of randomized selection mechanisms and diversify solutions 

found by many agents. Strategies help the search algorithm extend reachable regions effectively. Computation time and 

memory requirements are reduced compared to existing ACO methods. 

5.5 Tabu Search  

The metaheuristic algorithm Tabu Search (TS) explores the solution space using a memory-based search 

technique. It keeps track of recent visited solutions in a short-term memory known as the tabu list, which prevents them 

from being revisited. Iteratively exploring within neighborhood of the existing solution, TS permits moves that satisfy 

particular tabu conditions or enhance the objective function [33]. 

5.5.1 Exploration and Exploitation in TS: 

TS can achieve balance in different contexts:  

- Exploration: TS explores the solution space by allowing moves that might not lead to immediate 

improvement. It uses a tabu list to prevent revisiting recently explored solutions. 

- Exploitation: TS intensifies the search by focusing on promising regions. It prioritizes moves that lead to 

better solutions. 

The tabu tenure (how long a move remains forbidden) determines the balance between exploration and 

exploitation. A shorter tabu tenure encourages exploration, while a longer one emphasizes exploitation. The authors 

Chandran et al. [34] introduced a hybrid approach that combines GA and TS to address the challenge of efficient 

resource allocation in cloud data centers. Traditional exhaustive search techniques are resource-intensive and inefficient 

for large-scale systems. GA provides exploration capabilities, while TS emphasizes exploitation. The goal is to strike a 

balance between exploring a wide solution space and refining existing solutions. A novel approach is introduced, 

called Tabu Job Master. It combines the strengths of GA and TS. It improved convergence speed, effective utilization of 

variables, and enhanced energy consumption results. 

The authors Hanafi et al. [35]  proposed a novel approach called the Alternating Ascent (AA) algorithm. The 

paper focuses on binary combinatorial optimization problems, specifically, it addresses the challenge of escaping local 

optima during search. The AA Algorithm combines the strengths of GA and TS. It alternates between two phases: Ascent 

Phase (exploration) moves toward a local optimum and Post-Ascent Phase (exploitation) moves away from the local 

optimum and other previous local optima. This step encourages exploitation by exploring new directions and escaping 

local optima. The AA Algorithm dynamically adjusts its behavior based on thresholds and adaptive memory. The 

approach improved convergence speed, efficient utilization of variables, and enhanced energy consumption results. 

5.6 Particle Swarm Optimization      

The population-based optimization technique known as Particle Swarm Optimization (PSO) was motivated by 

the social behavior of fish schools and flocks of birds. PSO involves the movement of candidate solutions, or particles, 

through the solution space according to both the swarm's and their own best-known positions. PSO updates the particle 

locations and velocities iteratively in an attempt to converge to optimal solutions [36]. 

5.6.1 Exploration and Exploitation in PSO  

In PSO algorithms, achieving a delicate balance between exploration (global search) and exploitation (local 

search) is crucial for effective optimization.  Here are some strategies:  

1. Diversification Strategies: Various diversification techniques exist in PSO, such as: 

- Particle diversity maintenance: Encouraging particles to explore different regions. 

- Dynamic neighborhood structures: Adapting the neighborhood topology during optimization. 

- Randomization: Introducing randomness to escape local optima. 

2. Adaptive Memory Approaches: Some PSO variants use adaptive memory to balance exploration and 

exploitation. Examples include: 

- Tabu search: Maintaining a list of recently visited solutions. 
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- Memory-based PSO: Incorporating historical information to guide particle movement. 

3. Threshold-Based Techniques: These methods dynamically adjust parameters based on specific conditions. For 

example, adjusting inertia weight or neighborhood size based on convergence progress. 

The authors Binkley & Hagiwara  [37] propose a study using VBR to enhance the performance of PSO algorithms. 

Standard PSO often converges quickly to local minima, missing better opportunities in multimodal functions. While 

VBR monitors particle velocities during evolution. When the median velocity of swarm particles drops below a 

threshold, the entire swarm is reinitialized. VBR alleviates premature convergence, allowing PSO to focus on one 

minimum at a time. Experimental results show improved performance on multimodal benchmark functions. 

The authors Nakisa et al. [38] proposed a combinatorial optimization method based on Particle Swarm Optimization 

(PSO) and local search algorithms for multi-robot search systems. The method aims to strike a balance between 

exploration and exploitation by reinitializing the swarm when the distance between the target and a robot becomes small. 

This approach encourages local exploration beyond reaching the target, resulting in efficient search times.  

The author Ghalia [39] proposed enhancements to the standard Particle Swarm Optimization (PSO) algorithm. The 

new approach, called PSO with Active Velocity Penalty (PSO-AVP), addresses the disadvantage of allowing particles to 

move outside the search space. PSO-AVP actively penalizes particle velocities to ensure confinement within the search 

space. By preventing particles from moving outside the feasible region, PSO-AVP ensures better exploration and 

consistent behavior. 

Zhang [40] proposed a particle swarm optimization algorithm with an empirical balance strategy (EBPSO), which 

selects a better search strategy from two equations using an adaptive adjustment mechanism. The algorithm dynamically 

adjusts the influence weight of the search equations and introduces a dynamic random search mechanism.  

Liu et al. [41] introduced random PSO (RPSO) which aims to improve PSO’s search ability by maintaining diversity 

and preventing premature convergence.  The RPSO introduces Gaussian white noise (GWN) with adjustable intensity 

that perturbs acceleration coefficients during velocity updates. This strategy enhances exploration and helps escape local 

optima traps. The proposed RPSO outperforms existing PSO variants on widely used optimization benchmark functions. 

5.7 Iterated Local Search   

A metaheuristic algorithm called Iterated Local Search (ILS) integrates local search with diversification and 

perturbation [42, 43]. It begins with a solution and refines it using a local search algorithm. ILS carries on searching after 

obtaining a local optimum by introducing perturbations to escape the local optima.  

To raise the quality of the solution, the local search and perturbation processes are repeated iteratively. 

5.7.1 Exploration and Exploitation in ILS  

The key idea in ILS is to strike a balance between exploration and exploitation by creating new starting 

solutions from perturbations of previously found solutions.  

- Exploration: Creating new starting solutions by perturbing existing ones. 

- Exploitation: Using local search to improve the current solution. 

It balances exploration (via perturbations) and exploitation (via local search). An acceptance criterion 

determines whether to keep the new solution or maintain the previous one. ILS has been successfully applied to tackle 

hard combinatorial optimization problems. ILS combines the principles of local search (hill climbing) with iterative 

improvement. The basic idea is to iteratively apply a move operator to the current solution and then restart local search 

from the perturbed solution.  

HyperILS is an extension of ILS that incorporates ideas from hyper-heuristics and reinforcement learning. It 

aims to automate the design of heuristic methods for solving computational search problems. It uses reinforcement 

learning to dynamically choose the best operator or heuristic at each iteration. Unlike traditional ILS, HyperILS modifies 

the design of the perturbation and improvement stages. By adaptively selecting operators, HyperILS maintains this 

balance while searching for optimal solutions. 

A study was introduced by Al-Behadili et al. [44], where the ILS-AntMiner algorithm is used for rules-based 

classification. ILS plays a crucial role in enhancing exploitation. In optimization algorithms, exploitation refers to 

refining the current solution by focusing on promising regions of the search space. Exploration, on the other hand, 

involves searching for new solutions in unexplored areas. The local search explores the neighborhood of the current 

solution, aiming for improvements. Perturbation introduces randomness, allowing exploration of different regions. 

Acceptance criteria determine whether to accept a new solution based on its quality. In the context of ILS-AntMiner, 

Local search explores rule space, refining existing rules. Perturbation introduces variations (e.g., rule modifications). 

Acceptance criteria guide the selection of improved rules. By combining Ant Colony Optimization (ACO) with ILS, the 
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algorithm achieves effective exploitation: It intensifies the search around promising solutions, and it escapes local optima 

by exploring diverse rule combinations. This balance leads to accurate classification models. 

A study was introduced by Zhao et al. [45], a HybridILS algorithm combines success-history based parameter 

adaptation for differential evolution (SHADE) and limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) as its 

perturbation and local search strategies. By integrating the exploration capability of SHADE and the local search 

performance of LBFGS, HybridILS aims to solve numerical optimization problems effectively. The algorithm employs a 

simulated annealing acceptance criterion to balance exploration and exploitation within the iterated local search 

framework. 

5.8 Artificial Bee Colony Optimization (ABC) 

Karaboga introduced the ABC metaheuristic algorithm in 2005. It is among the most frequently referenced new 

generation metaheuristics [46, 47]. Since ABC is a population-based method, it has been used to solve a number of 

optimization issues. Since solutions are represented as the food resources themselves, and candidate solutions are 

represented as bees exploring/exploiting food resources, ABC is a natural aspiration. A solution denotes a food supply, 

and the quantity of nectar in each resource denotes the fitness or quality of each solution.  

Within the hive, there are three different kinds of bees: "employed," "onlooker," and "scout" bees. In nature, bee 

employees search for food, return to their colony, and dance to share information. After gathering all of the nectar, an 

employed bee becomes a scout, searching for fresh sources of food. While scout bees explore for food sources, onlooker 

bees observe how employed bees dance and select food sources.  

When compared to other metaheuristic algorithms, the ABC has a number of advantages, including minimal control 

parameters, ease of implementation, and exceptional exploration capabilities. Because it searches for the optimal solution 

both locally and globally for each iteration, the probability of finding the optimal solution is significantly increased. 

5.8.1 Exploration and Exploitation in ABC  

Exploration and exploitation are achieved as the following: 

- Exploration (Scout Bees): ABC emphasizes exploration by employing scout bees to search for new 

solutions. However, some researchers have reported that ABC may focus too much on exploration, 

especially as problem dimensions increase. High-dimensional problems pose challenges for the scout bee 

operator. 

- Exploitation (Employed Bees): Employed bees exploit existing solutions by improving them. The balance 

between exploration and exploitation is crucial for finding global optima. If ABC leans too heavily toward 

exploration, it risks missing true global optima. 

Achieving an optimal trade-off between exploration and exploitation is essential for ABC’s performance. 

Recent studies suggest that ABC’s scout bee operator may become redundant in high-dimensional problems. Contrary to 

popular belief, ABC may not excel in exploration ability for such scenarios. Researchers have observed these limitations 

and questioned the algorithm’s behavior. How a bee colony is composited affects how well an ABC is explored and 

exploited. The performance of ABC is compared against GA and PSO by Karaboga et al. [46]. When it comes to multi-

variable function optimization, the ABC method is seen to perform better than other algorithms. A better fitness equation 

(influenced by DE) based on the bees' search behavior around the best nectar in previous iterations is proposed by Gao 

and Liu [48], who note that ABC's solution search equation is inadequate during the exploitation phase. In comparison to 

traditional ABC algorithms, the experimental findings show that the modified ABC algorithm performs well in 

addressing complex numerical problems. 

By utilizing their understanding of the global best solution throughout the exploitation, Zhu and Kwong [49] 

proposed a gbest-guided ABC algorithm (GABC). According on the experimental results, the suggested GABC 

algorithm works better than the traditional ABC method. The authors' goal is to address ABC's deficiency with reference 

to its solution search equation.  

For numerical optimization, TSai et al. [50] provide a novel ABC optimization approach. The method selects a more 

appropriate exploration/exploitation ratio in order to enhance the quality of the solutions by including the universal 

gravitation notion into the affection consideration between the onlooker and employed bees. 

W. Xiao et al [51], presented a study where chaotic and neighborhood search-based artificial bee colony 

algorithm (CNSABC) is used. The CNSABC variant introduces three improved mechanisms: (1) Bernoulli Chaotic 

Mapping with Mutual Exclusion Mechanism: Enhances diversity and exploration ability. (2) Neighborhood Search 

Mechanism with Compression Factor: Improves convergence efficiency and exploitation capability. (3) Sustained Bees: 

Aids in maintaining a balance between exploration and exploitation. CNSABC demonstrates better convergence 

efficiency and search ability compared to traditional ABC.  
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5.9 Bacterial Foraging Optimization (BFO)   

Passino in 2002 suggests the BFO metahuristic. The BFO algorithm processes parallel non-gradient optimization by 

modeling the foraging behavior of bacteria over a landscape. A set of tensile agella provides the movement (locomotion) 

that enables an E. Coli bacteria to swim or tumble when it is foraging.  

As the agella rotates in a clockwise manner, each agellum tightens its cell. As a result, the agella behaves independently 

and the bacteria tumbles less frequently. It falls sharply to create a nutrient gradient in a harmful area. To make the 

bacterium swim more quickly, turn the agella counterclockwise. The bacteria can face chemotaxis while moving away 

from a toxic environment and toward a nutritional gradient. 

In an environment that is friendly to them, bacteria can move longer distances. The bacteria have the ability to 

replicate themselves when they are given enough food. This event serves as inspiration for Passino as he develops the 

BFO algorithm. Abrupt alterations in the surroundings might prevent chemotactic progress. It is possible for a group of 

bacteria to travel to new locations or for other groups of bacteria to settle where the original group of bacteria was. This 

process—known as elimination-dispersal—involves either the termination of bacteria from a specific region or the 

dispersal of a group of bacteria into a new environmental location. 

5.9.1 Exploration and Exploitation in BFO  
Exploration and exploitation are achieved as the following: 

- Exploration (Tumbling): Bacteria explore the search space by tumbling based on random directions. This 

introduces diversity and helps discover new regions. 

- Exploitation (Swimming): Bacteria exploit existing solutions by swimming with certain step sizes. This 

aims to improve the current solution’s quality. 

Researchers have proposed several enhancements to improve BFO’s exploration-exploitation tradeoff: 

- Conjugated Novel Step-size BFO (CNS-BFO) [54]: This algorithm modifies the step-size strategy and 

introduces a learning mechanism. By adjusting the step size dynamically during evolution, CNS-BFO 

strikes a good balance between exploration and exploitation, significantly mitigating premature 

convergence. 

- Self-Adaptive BFO (SA-BFO) [55]: A-BFO adjusts the run-length unit parameter dynamically during 

evolution to balance exploration and exploitation. It shows improved performance over the original BFO. 

- Improved Chemotaxis Strategy [56]: Some variants incorporate novel chemotaxis strategies to enhance 

exploration and exploitation.  

5.10 Bat Algorithm (BA)   

Yang presents the BA metaheuristic for the first time [57]. Bats utilize echolocation, a form of sonar, to find 

their nests in the dark, avoid obstacles, and locate prey. A bat makes a sound and tracks the reflections it receives from 

objects in the environment. Using echolocation, bats can also distinguish between barriers and food/prey. The idea 

behind BA is that bats' ability to echolocate may be formalized as a way to solve an objective function's optimal solution.  

Even in a single run, the nature of exploration and exploitation can be altered and controlled with many parameters [58].  

5.10.1 Exploration and Exploitation in BA  

The main focus of MHAs like BA is to maintain this delicate balance. 

- Exploration involves exploring the entire search space, seeking out new regions that might contain optimal 

solutions. 

- Exploitation, on the other hand, focuses on exploiting promising areas that are already known to be fruitful. 

A chaotic BA is suggested by Gandomi and Yang [59] in order to boost the global search capability of BA for 

robust optimization. The authors examine many chaotic maps on benchmark problems. The outcomes confirm that 

chaotic BA can perform better than traditional versions of BA. 

BA falls into the category of population-based MHAs. Unlike single-solution MHAs, which modify a single 

candidate solution iteratively, population-based MHAs generate a set of solutions. These algorithms emphasize global 

exploration by maintaining a diverse population of solutions. By doing so, they avoid premature convergence and 

enhance the chances of discovering optimal solutions. The Bat Algorithm dynamically adjusts its exploration and 

exploitation strategies, much like bats fine-tuning their echolocation to locate prey. 

5.11 Cuckoo Search Algorithm (CSA) 

CSA is suggested by Yang and Deb [60]. The CSA uses fruit flies' and birds' Lévy flight patterns to mimic the brood 

parasite behavior of cuckoo species. Birds of the Cuckoo species breed aggressively. To improve the likelihood that their 

own eggs will hatch, they put their eggs in other birds' nests and remove the other eggs. The CSA metaheuristic employs 
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three basic guidelines: 1) Cuckoos lay one egg at a time, and they leave their eggs in random nests; 2) Nests with higher-

quality eggs can survive; 3) There is a constant number of host nests, and the host bird has a probability of pa ∈ [0, 1] of 

detecting the egg. Either the bird leaves the nest and builds a new one, or the egg is thrown outside of the nest.  

One advantage of CSA is its ease of application to a larger range of optimization problems due to its less number of 

parameters that need to be modified compared to most other metaheuristic algorithms. However, a significant portion of 

the new solutions should be generated by randomness during a run to guarantee that the optimization process does not 

become stuck in a local optima. The CSA randomization is more effective when the step length is chosen by employing a 

heavy-tailed distribution [61, 62]. 

5.11.1 Exploration and Exploitation in CSA  

Achieving a balance between exploration (searching widely) and exploitation (focusing on promising areas) is 

crucial for optimization algorithms. CS achieves this balance through its population-based approach and the use of Levy 

flights. 

- Exploration: The random walk Levy flight behavior enables CS to explore the entire search space 

thoroughly. 

- Exploitation: A fixed number of better fitness cuckoos survive in the environment, ensuring that promising 

solutions are retained. 

Researchers have explored various modifications and hybrid versions of CS. These adaptations aim to enhance 

its performance, convergence speed, and applicability across different fields, including engineering, machine learning, 

and deep learning. By combining CS with other techniques, researchers continue to refine its exploration-exploitation 

balance. Some studies focus on addressing premature convergence in metaheuristic algorithms. For instance, 

the Automatic Cuckoo Search (AuCS) algorithm dynamically updates step sizes in each generation to strike a better 

balance between exploration and exploitation, avoiding premature convergence [63].   

Salgotra et al. [64] suggest CS enhancements. Even though CS is a useful algorithm, it can still perform better 

by incorporating exploration and exploitation in the search process. Three modified forms of CS are put forth in this 

study to enhance the features of exploration and exploitation. Rather of using Lévy flights to effectively search the search 

space, all of these versions use the Cauchy operator to produce the step size. In order to balance exploration and 

exploitation, two more notions are also introduced in CS: the division of populations and the division of generations. The 

effects of probability switch with various population and dimension sizes of the proposed versions of CS have been 

examined, using 24 standard benchmark problems. 

Kanagaraj et al. [65] aims to address reliability and redundancy allocation problems using a hybrid approach 

that combines the CS algorithm with the well-known GA. Reliability–Redundancy Allocation Problems (RRAP) involve 

optimizing system reliability while allocating redundant components efficiently. CS is a metaheuristic inspired by cuckoo 

bird behavior, emphasizing random exploration. GA is a popular evolutionary algorithm for optimization. The authors 

introduce a novel hybrid algorithm called CS-GA. CS and GA are combined to exploit their complementary strengths. 

CS handles exploration, while GA focuses on exploitation. CS enhances diversity, preventing premature convergence. 

GA contributes local search capabilities. CS-GA aims to find optimal redundancy allocation strategies that maximize 

system reliability while minimizing costs. By balancing exploration and exploitation, it achieves better convergence rates 

and accuracy. 

Hussain et al. [66] propose improvements to CS. The enhanced variant is called Personal Best Cuckoo Search 

(pBestCS). pBestCS incorporates personal best information during solution generation, improving local search 

capabilities. Instead of a constant value, pBestCS dynamically updates the switching parameter, enhancing global search. 

Experimental results across various test problems demonstrate the efficiency of pBestCS compared to standard CS, as 

well as other optimization algorithms like Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC). The 

proposed modifications in pBestCS enhance both local and global search capabilities, making it a promising choice for 

solving optimization problems. 

Huang et al. [67] aims to address the Combined Heat and Power Economic Dispatch (CHPED) problem using a 

novel optimization algorithm called Heterogeneous Evolving Cuckoo Search (HECS). HECS combines the features of 

CS with a novel constraint-handling mechanism. HECS maintains a diverse population of solutions. The algorithm 

evolves over time, adapting to the problem landscape. A specialized mechanism ensures feasible solutions throughout the 

iteration. HECS is evaluated on large-scale CHPED problems. Results demonstrate its effectiveness in finding optimal 

solutions while considering both economic and emission constraints. 

5.12 Firefly Algorithm (FA) 

Yang [68] proposed the FA proposal. The brief, rhythmic flashing patterns of fireflies serve as an inspiration for 

FA. Such ashes have two primary purposes: they may attract mates or serve as a warning to predators. Sexes are brought 

together by the rhythmic ash and the velocity of flashing. For combinatorial algorithms, the flashing can be expressed as 
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a function that needs to be optimized. The following principles idealize these flashing properties. 1) Gender is irrelevant 

when it comes to fireflies' ability to attract one another. 2) What makes a firefly attractive is its brightness. As a result, 

the less bright firefly travels in the direction of the brighter ones. As the distance between fireflies increases, they become 

less attractive. When there isn't a brighter one, it moves at random. 3) A firefly's brightness depends on the search space 

of the goal function [69]. 

5.12.1 Exploration and Exploitation in FA  

Like other optimization algorithms, FA faces the classic trade-off between exploration and exploitation: 

- Exploration: Fireflies explore new regions of the solution space, seeking potentially better solutions. 

- Exploitation: Fireflies exploit known promising areas, aiming to converge towards optimal solutions. 

FA’s exploration process can sometimes lead to premature convergence, limiting its ability to escape 

local optima. Striking the right balance between exploration (diversity) and exploitation (intensity) is crucial. 

Many scientific studies and adaptations of FA are available. In their paper, Yang and He [69] provide a 

thorough review of the fundamentals of FA. The authors focus on the significance of striking a balance between 

exploitation and exploration.  

Chaos is added to FA by Gandomi et al. [70] in order to enhance its global search for robust 

optimization. To set the firefly's attractive motion, chaotic maps are used. Additionally, Brajevic and 

Stanimirovic [71] suggested a newly designed chaotic FA that used a Gauss map to address the global 

optimization problems raised by the original FA. They also evaluated the performance of the ICFA (improved 

chaotic firefly algorithm) using 19 benchmark functions. 

The enhanced firefly algorithm (UFA), which was proposed by Brajevic and Ignjatovic [72], aims to prevent 

local optimum trapping and enhance the original firefly algorithm's problem-solving capabilities. This novel firefly 

technique was developed using a chaotic map. They used twenty-four benchmark functions to assess how well the 

suggested chaotic map-based UFA technique performed. 

Researchers in [73] have proposed modifications to enhance FA’s performance. (1) Adaptive Randomness and 

Absorption Coefficients: Adjusting these coefficients over time/iterations to balance exploration and exploitation. (2) 

Gray Relational Analysis: Allocating information from appealing fireflies effectively. (3) Global Best-guided Strategies: 

Incorporating global best solutions to guide fireflies during movement. These enhancements aim to maintain a delicate 

balance between exploring new regions and exploiting known promising areas. By adapting randomness and absorption, 

FA can achieve better convergence rates and overall performance. 

Inspired by the scout bee behavior in the ABC algorithm, the authors in [74] introduce the Scouting FA.  

Fireflies stuck in local optima take additional random walks to escape towards the optimal solution region. Scouting FA 

aims to improve convergence accuracy by preventing premature convergence. Scouting FA introduces a novel search 

mechanism to address FA’s limitations, leading to improved optimization performance by maintaining a delicate balance 

between exploration and exploitation. Empirical experiments on standard benchmark functions validate the effectiveness 

of Scouting FA. Results show that Scouting FA outperforms the original FA, demonstrating its superiority. 

The study [75] aims to enhance the global searching ability of the FA by embedding the Cross-Entropy (CE) 

method into FA.  CE is known for its ergodicity, adaptability, and robustness.  The goal is to achieve an effective balance 

between exploration and exploitation, avoiding local optima and improving convergence rates. The authors introduce a 

novel hybrid meta-heuristic algorithm by combining FA with CE known for its ergodicity, adaptability, and robustness. 

The proposed hybrid algorithm combines the strengths of FA and CE, achieving a delicate equilibrium between 

exploring new regions and exploiting known solutions for effective global optimization. Numerical experiments 

demonstrate the effectiveness of the hybrid algorithm: Improved global search capacity, enhanced optimization accuracy, 

and better performance across various test functions. 

5.13 Grey Wolf Algorithm (GWO) 

In 2014, Mirjalili et al. [76] proposed the GWO metaheuristic. The GWO is a pack animal that belongs to the 

family of predatory animals. There is a social hierarchy in every wolf pack. There are various kinds of wolves in a 

normal wolf hierarchy, including "alpha dogs," "beta dogs," "omega dogs," and "subordinates." The dog in the pack with 

the greatest responsibility is the alpha. It commands the group and is dominant. The dog ranked second in the hierarchy is 

called a beta. In the event that alpha dog becomes dysfunctional, he or she is the most likely candidate to be the alpha 

dog. The lowest ranking dogs are called omegas. If a dog is not one of the aforementioned breeds, it is referred to as 

subordinate (or delta). The most fascinating swarm activity exhibited by these wolves is group hunting.  The social 

hierarchy, tracking, encircling, and attacking prey are the main components of the GWO algorithm as a mathematical 

model. In this model, alpha dog is the best solution. Delta dogs and beta dogs are the second and third best solutions, 
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respectively. Omega dogs are the last members of the swarm. Grey wolves circle their prey during the encirclement 

phase [77]. 

5.13.1 Exploration and Exploitation in GWO  

Like other optimization algorithms, GWO faces the classic trade-off between exploration and exploitation: 

- Exploration: Wolves explore new areas of the solution space, seeking potentially better solutions. 

- Exploitation: Wolves focus on leveraging known promising areas to converge towards optimal solutions. 

GWO maintains a delicate balance by: 

- Pack Dynamics: The hierarchical structure within the wolf pack ensures a mix of exploration (by lower-

ranking wolves) and exploitation (by alpha wolves). 

- Search Intensity: The algorithm dynamically adjusts the search intensity based on the fitness landscape. 

- Solution Movement: Wolves move towards better solutions while occasionally exploring new regions. 

 Mittal et al. [78] propose a modified GWO to balance the exploration and exploitation efforts of GWO that 

improves the performance of the algorithm. Kohli and Arora [79] introduce the chaotic GWO algorithm to accelerate its 

global convergence speed. Experiments are studied to carry out to solve standard constrained benchmark problems. 

The study [80] proposes a novel approach called Hybrid Evolutionary GWO (HE-GWO) to enhance the 

effectiveness of the GWO for handling dynamic landscapes and constrained optimization problems. HE-GWO combines 

the strengths of the canonical GWO with Differential Evolution (DE) to increase diversity. HE-GWO is rigorously 

benchmarked against various meta-heuristics, including standard GWO, recent variants, and state-of-the-art algorithms. It 

consistently outperforms competitors in benchmarking tests, achieving the highest profitability in multi-unit production 

planning problems. 

The study [81] introduces a new variant of the Gravitational Search Algorithm (GSA) by combining it with the 

GWO. The proposed algorithm balances exploration and exploitation by splitting the swarm into two groups: 1) One 

group focuses on better exploitation. 2) The other group is responsible for better exploration.The modified search process 

aims to achieve optimal solutions. The algorithm is tested on benchmark functions. Results demonstrate that this 

approach achieves a better balance between exploration and exploitation, leading to optimal solutions. 

The study [82] proposes a hybrid optimization technique that combines the Mean Grey Wolf Optimizer 

(MGWO) with the Whale Optimizer Algorithm (WOA). The goal is to enhance the exploration and exploitation 

capabilities of both algorithms. The hybrid algorithm, called Hybrid Approach GWO (HAGWO), utilizes the spiral 

equation from WOA for two purposes: 1) Balancing exploration and exploitation in the Grey Wolf Optimizer. 2) 

Preventing premature convergence and local minima trapping by applying the spiral equation to the entire population. 

The hybrid algorithm is tested on standard benchmark functions. Results demonstrate improved stability, faster 

convergence rates, and computational accuracy compared to other nature-inspired metaheuristics.” 

The study [83] aims to enhance the performance of the GWO by addressing its limitations related to exploration 

and exploitation. Specifically, it focuses on preventing stagnation and improving convergence when solving complex and 

multimodal optimization problems. In the proposed algorithm: Reinforced Exploitation and Exploration GWO 

(REEGWO), the top three wolves are given different weights based on their knowledge about the location of the prey 

(optimal solution). A random search based on tournament selection is used to enhance exploration. A well-designed 

mechanism balances exploration and exploitation. Experimental results demonstrate that REEGWO outperforms both the 

standard GWO and its four recently top variants. 

In 2023, Shial et al. [84] proposed that the exponential decay equation helps in transforming the exploration to 

exploitation process from initial iterations to final iterations, with proportions of 70% and 30% respectively, enhancing 

the exploration capability significantly. 

By Long et al. [85], a random opposition-based GWO was employed. This technique was employed to prevent 

the GWO from becoming trapped in local minima. Furthermore, the suggested approach seeks to achieve a more optimal 

balance between exploration and exploitation. 30 benchmarks from IEEE CEC 2014 and 23 benchmarks test 

functions were used to evaluate the proposed approach. The outcomes were comparable to those of other optimization 

methods. 

5.14 Harmony Search Algorithm (HSA) 

The HSA algorithm is a metaheuristic that draws inspiration from musical compositions and the compositional 

writing process [86]. In order to model optimization problems, HSA uses techniques used by artists to compose harmonic 

music. In HSA, a musician can improvise a song in one of three ways: (1) by naturally playing any well-known piece of 

music (pitches in harmony) from memory; (2) by mimicking an existing piece of music (pitch adjusted); or (3) by 
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composing random harmonic notes. Geem et al. [86] applies these possible ways through the 

problem's optimization process. 

Using harmony memory is comparable to selecting the optimal chromosomes in genetic algorithms. The greatest 

harmonies are preserved for new harmony memories ensured by the harmony memory. Harmony memory acceptance 

rate, or raccept ∈ [0; 1], is the parameter allocated to it. The HS method converges more slowly when the rate is too low 

since only a small number of the best harmonies are chosen. A rate that is excessively high (a number near 1) can make it 

difficult to explore every harmonie. This may result in incorrect solutions. To avoid his issue, the parameter raccept is 

chosen between [0.7, 0.95]. 

5.14.1 Exploration and Exploitation in HAS 

HS has distinct exploration and exploitation strategies than traditional metaheuristic algorithms. Studies show 

that while HS is not a parametrically sensitive algorithm, its performance can be enhanced by tuning its parameters. 

- Exploration: HSA explores new regions of the solution space, seeking potentially better solutions. 

- Exploitation: HSA exploits known promising areas, aiming to converge towards optimal solutions. 

HSA achieves this balance through: 1) Harmony Memory Consideration: Maintaining a memory of harmonious 

solutions. 2) Pitch Adjustment: Adjusting musical parameters (solution components) to strike a balance. 3) Improvisation 

and Adaptation: Creating new harmonies while preserving existing good ones. HSA is stated to be a robust optimization 

algorithm for solving NP-Hard engineering optimization problems. 

The goal of the study [87] is to enhance the exploration and exploitation capabilities of the optimization process. 

he proposed method, called Mine Blast Harmony Search (MBHS), uses MBA for exploration and HS for exploitation. 

Numerical experiments validate that MBHS provides better exploitation ability, especially in the final iterations. It 

achieves mature convergence to the optimum solution across various optimization problems.  

The study [88] aims to enhance the performance of three HS variants by addressing their slow convergence rates 

and improving overall optimization efficiency. The three HS variants are improved by integrating an enhanced version of 

OBL, called Improved Opposition-Based Learning (IOBL) which introduces randomness to increase solution diversity 

and enhance exploration. The hybrid algorithms are evaluated on benchmark functions to compare their performance 

with the original HS variants. The new hybrid algorithms demonstrate improved efficiency compared to the original HS 

variants. 

The authors in [89] proposed a novel approach called the Dual-Memory Dynamic Search Harmony Search 

(DMDS-HS) algorithm. A dual-memory structure is introduced to rank and hierarchically organize the harmonies in the 

harmony memory. This creates an effective and selectable trust region, reducing blind searching and improving 

convergence. The trust region is dynamically adjusted during optimization. This balances convergence improvement 

while maintaining global search capability. To boost convergence speed, a phased dynamic convergence domain concept 

is introduced. It strategically devises a global random search strategy. An adaptive parameter adjustment strategy 

rationalizes exploration and exploitation abilities. This fine-tunes the algorithm’s search strategies. Results show that 

DMDS-HS outperforms other Harmony Search variants and state-of-the-art algorithms in terms of diversity, freedom 

from local optima, and solution accuracy. Additionally, DMDS-HS exhibits superior clustering performance in solving 

complex data clustering problems.  

The goal of the study [90] is to enhance the searching effectiveness of HSA by addressing its limitations related 

to exploration and exploitation. The enhancements in EHS_CRP is summarized as: 1) Global and Local Dimension 

Selection: Designed to accelerate the search speed. 2) Selection Learning Operator: Based on global and local mean 

levels to improve the balance between exploration and exploitation. 3) Circular Region Perturbation: Prevents algorithm 

stagnation and expands exploration regions. EHS_CRP outperforms other state-of-the-art swarm intelligence approaches 

in terms of accuracy, convergence speed, stability, and robustness. It performs exceptionally well in engineering design 

optimization problems. 

5.15 Whale Optimization Algorithm (WOA) 

WOA was proposed by Mirjalili and Lewis [91]. The WOA is a novel metaheuristic that draws inspiration from 

humpback whale social behavior. Because they are sociable creatures, humpback whales search for fish in groups using a 

bubble-net strategy. Humpack whales have adapted their collective hunting and feeding behavior to their benefit because 

it is easier for them to safeguard their young. This kind of hunting involves whales diving beneath a large group of 

prey and creating bubbles that force fish into a bubble-net known as bubble-net feeding. Since humpback whales can 

only swallow small prey as whole due to their narrow throats and lack of teeth, they adopt this foraging strategy to hunt 

big groups of small fish or krill. 

WOA solves NP-Hard optimization issues by using a mathematical model of humpback whales' spiral bubble-net 

feeding method. Three basic WOA functions include encircling prey, searching for prey, and spiral bubble-net feeding 
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techniques. When humpback whales locate their target prey, they begin to circle around them. Many search agents are 

employed by the WOA, and they all begin with a random solution. The other search agents update their locations in the 

direction of the global best solution, which is carried out by humpback whales, after determining which search agent has 

the best solution.  

WOA is a new metaheuristic, but because it requires few parameters to be tuned during optimization, it appears to have a 

lot of potential to draw in researchers [92, 93]. 

5.15.1 Exploration and Exploitation in WOA and Trade-Off 

Here are the key points related to the exploration-exploitation trade-off in WOA: 

- Exploration involves searching the global solution space randomly, exploring new regions. 

- Exploitation focuses on refining known promising areas, aiming to converge towards optimal solutions. 

In WOA, the distance control parameter a plays a crucial role in balancing exploration and exploitation. It 

determines how far a whale moves during its search process. The standard WOA optimizes the distance control 

parameter a using linear control strategy (LCS). However, the predation behavior of whales is not simply linear. To 

address this limitation, a new approach called NCS-Arcsin is proposed. NCS-Arcsin accurately describes the process of 

whales’ predation. It significantly improves the exploration and exploitation capabilities of WOA. 

The authors in [94] proposed an enhanced WOA specifically designed for time-optimal trajectory planning in 

traditional manipulator systems. An inertia weight factor is introduced into the surrounding prey and bubble-net attack 

formulas of the WOA. Reinforcement learning techniques control this weight factor, enhancing the global search 

capability of the algorithm. Additionally, the Variable Neighborhood Search (VNS) algorithm is incorporated to improve 

local optimization. The proposed WOA is compared with several commonly used optimization algorithms. The improved 

WOA produces smooth and continuous manipulation trajectories. Also the authors in [95] propose an enhanced WOA for 

effective trajectory planning for quadruped robots. The proposed approach improves the WOA by combining it with SA. 

This hybrid algorithm, called IWOA-SA, prevents the WOA from falling into local optima and balances its exploration 

and exploitation abilities. Adaptive weights are introduced to enhance optimization performance. Markov chains from 

stochastic process theory are used to analyze the global convergence of the proposed algorithm. The IWOA-SA 

algorithm outperforms six representative optimization algorithms across multiple dimensions and test function suites. 

The authors in [96] proposed a novel hybrid algorithm that combines the WOA and the FA. This hybrid 

approach, called Firefly-Whale Optimization Algorithm (FWOA), aims to address mobile robot path planning 

(MRPP) while achieving a balance between exploration and exploitation. The WOA imitates whale foraging behavior, 

while the FA mimics firefly behavior. The FWOA combines these two algorithms using multi-population 

dynamics and opposite-based learning. It aims to quickly find optimal paths in complex mobile robot working 

environments. The FWOA is tested on 23 benchmark functions and applied to optimize MRPP. Comparative 

experiments with ten other classical metaheuristic algorithms demonstrate the FWOA’s remarkable performance. It 

excels in terms of convergence speed and exploration capability, outperforming other methods. 

6 CONCLUSION 

MH is a dynamic system made up of numerous "individuals" that communicate with one another. The 

components of the system (such as the problem essence, the structure of the algorithm, the algorithm's control 

parameters, and the procedure for evaluating candidate solutions) are intricately related to one another. Each of them 

affects the algorithm differently. The performance of MHs is the emergency of each individual's interaction and the 

overall behavior of the system. Metaheuristic algorithms perform better when exploration and exploitation are balanced. 

It's critical to strike a balance between these two factors because: 1) An excessive amount of exploration may result in 

inefficiency since the algorithm may spend too much time looking in useless areas. Overuse of exploitation can lead the 

algorithm to prematurely converge to a suboptimal solution, hence obstructing the possibility of finding better solutions 

elsewhere. 

In order to efficiently locate high-quality solutions, metaheuristic algorithms combine the advantages of both exploration 

and exploitation by striking a balance while navigating the solution space. 
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