New Modified Anderson Darling Goodness of Fit Test for Lognormal and Gamma distributions

Authors

  • Jutaporn Neamvonk Department of Mathematics, Faculty of Science, Burapha University, Chonburi, Thailand
  • Bumrungsak Phuenaree Department of Mathematics, Faculty of Science, Burapha University, Chonburi, Thailand

DOI:

https://doi.org/10.24203/ajas.v10i6.7124

Keywords:

Goodness of fit test, Anderson-Darling test, Kolmogorov Smirnov test, Modified Anderson-Darling test

Abstract

The purpose of this study is to present the new modified Anderson-Darling goodness of fit test, and compare to the efficiency of three tests; Kolmogorov Smirnov test, Anderson-Darling test and Zhang (2002) test. A simulation study is used to estimate the critical values at a significance level of 0.05. The type I error rate and test power are calculated using Monte Carlo simulation with 10,000 replicates. The data are generated from the specified distribution; i.e., Lognormal and Gamma distributions with sample size of 10, 20, 30, 50, 100 and 200. The results demonstrate that every test has control over the type I error probability. The new test has the highest power for two alternative hypotheses; Loglogistic and Logistic distributions. Moreover, when the alternative distribution is Normal distribution and the sample size is small, the new test has the highest power.

References

Zhang, J. (2002). Powerful Goodness-of-Fit Tests Based on the Likelihood Ratio. Journal of the Royal Statistical Society Series B, 64(2), 281-294. DOI: 10.1111/1467-9868.00337

Cressie, N. & Read, T.M.C. (1984). Multinomial Goodness-of-Fit Tests. Journal of the Royal Statistical Society Series B, 46(3), 440-464. Available at: https://www.jstor.org/stable/2345686

Anderson, T.W. & Darling, D.A. (1952). Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes. The Annals of Mathematical Statistics, 23(2), 193-212.

Anderson, T.W. & Darling, D.A. (1954). A Test of Goodness of Fit. Journal of the American Statistical Association, 49(268), 765-769.

Yodsima, R., Pongsakchat, V., Phuenaree, B. & Neamvonk, J. (2016). A study on the distributions of goodness of fit test statistics. Proceedings The 8th Science Research Conference. 135-141.

Morgan, E.C., Lackner, M., Vogel, R.M., & Baise, L.G. (2011). Probability distributions for offshore wind speeds. Energy Conversion and Management, 52(1), 15-26. doi:10.1016/j.enconman.2010.06.015

Dikko, H.G., David, I.J., & Bakari, H.R. (2013). Modeling the Distribution of Rainfall Intensity using Quarterly Data. IOSR Journal of Mathematics, 9(1), 11-16. DOI:10.9790/5728-0911116

Ximenes, P.S.M.P., Silva, A.S.A., Ashkar, F., & Stosic, T.(2021). Best-fit probability distribution models for monthly rainfall of Northeastern Brazil, 84(6), 1541-1556. DOI: 10.2166/wst.2021.304

Arthur, Y.D., Gyamfi, K.B. & Appiah, S.K. (2013). Probability Distributional Analysis of Hourly Solar Irradiation in Kumasi-Ghana. International Journal of Business and Social Research3(3), 63-75. DOI:10.18533/ijbsr.v3i3.57

Magenuka, T.K.M., Musasa, K. & Akindeji, K.T. (2020). Kernel Density Estimation of Solar Radiation and Wind Speed for South Africa. Proceedings of the 5th NA International

Downloads

Published

2023-01-02

How to Cite

New Modified Anderson Darling Goodness of Fit Test for Lognormal and Gamma distributions. (2023). Asian Journal of Applied Sciences, 10(6). https://doi.org/10.24203/ajas.v10i6.7124

Similar Articles

1-10 of 167

You may also start an advanced similarity search for this article.