Current Practice and Approaches of Immunotherapy in Cancer Treatment


  • Akash Ahmed Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka, Bangladesh
  • Faiza Khondokar Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka, Bangladesh
  • Mahboob Hossain Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka, Bangladesh



Immunotherapy, Cancer Immunotherapy, Immunomodulator, Chimeric Antigen Receptor


Cancer has been and continues to be one of the leading causes of human deaths. Thousands lose their lives to the different types of cancer each year. Cancer remains one of those invincible barriers in the health sector that humans are quite far from overcoming. As cancer remains to be incurable, works are being done every day globally to come up with better ways to treat it. Conventional methods of treatment like chemo and radio therapies have adverse effects on health and thus, new approaches are being used for cancer treatment. One such approach is the use of our body’s own defense mechanism to attack and kill malignant cells. This review will highlight the different components of human immune system that are being used to treat cancer. It will give an idea of the mechanism of action of each of these components and indicate why they are better choices compared to traditional treatments. Side effects and/or challenges of each immunotherapy have also been included.


Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D., & Piñeros, M. et al. (2021). Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.

Naghavi, M., Abajobir, A., Abbafati, C., Abbas, K., Abd-Allah, F., & Abera, S. et al. (2021). Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016.

Cancer Statistics. (2021).

(COVID-19), C., Health, E., Disease, H., Disease, L., Management, P., & Conditions, S. et al. (2021). Is There a Cure for Cancer?

Side Effects of Chemotherapy. (2021). Retrieved 26 August 2021, from

Partridge, A., Burstein, H., & Winer, E. (2001). Side Effects of Chemotherapy and Combined Chemohormonal Therapy in Women With Early-Stage Breast Cancer. JNCI Monographs, 2001(30), 135-142. doi: 10.1093/oxfordjournals.jncimonographs.a003451

Radiation Therapy Side Effects. (2021). Retrieved 26 August 2021, from

Immunotherapy for Cancer. (2021).

Rescigno, M., Avogadri, F., & Curigliano, G. (2021). Challenges and prospects of immunotherapy as cancer treatment

Zhang, Y., & Zhang, Z. (2021). The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications.

What is Immunotherapy?. (2021). Retrieved 26 August 2021, from

Monoclonal Antibodies and Their Side Effects. (2021). Retrieved 29 July 2021, from

Nelson, P. (2000). Demystified ...: Monoclonal antibodies. Molecular Pathology, 53(3), 111-117. doi: 10.1136/mp.53.3.111

Sevier, E., David, G., Martinis, J., Desmond, W., Bartholomew, R., & Wang, R. (1981). Monoclonal antibodies in clinical immunology. Clinical Chemistry, 27(11), 1797-1806. doi: 10.1093/clinchem/27.11.1797

PONTECORVO, G., RIDDLE, P., & HALES, A. (1977). Time and mode of fusion of human fibroblasts treated with polyethylene glycol (PEG). Nature, 265(5591), 257-258. doi: 10.1038/265257a0

Korbakis, D., Brinc, D., Schiza, C., Soosaipillai, A., Jarvi, K., Drabovich, A., & Diamandis, E. (2015). Immunocapture-Selected Reaction Monitoring Screening Facilitates the Development of ELISA for the Measurement of Native TEX101 in Biological Fluids*. Molecular & Cellular Proteomics, 14(6), 1517-1526. doi: 10.1074/mcp.m114.047571

Lansdorp, P., Astaldi, G., Oosterhof, F., Janssen, M., & Zeijlemaker, W. (1980). Immunoperoxidase procedures to detect monoclonal antibodies against cell surface antigens. Quantitation of binding and staining of individual cells. Journal Of Immunological Methods, 39(4), 393-405. doi: 10.1016/0022-1759(80)90240-9

Hellstrom, I., & Hellstrom, K. (2014). Monoclonal Antibodies for Cancer Therapy. Encyclopedia Of Cancer, 1-9. doi: 10.1007/978-3-642-27841-9_7071-3

Alewine, C., Hassan, R., & Pastan, I. (2015). Advances in Anticancer Immunotoxin Therapy. The Oncologist, 20(2), 176-185. doi: 10.1634/theoncologist.2014-0358

Zahavi, D., & Weiner, L. (2020). Monoclonal Antibodies in Cancer Therapy. Antibodies, 9(3), 34. doi: 10.3390/antib9030034

Hansel, T., Kropshofer, H., Singer, T., Mitchell, J., & George, A. (2010). The safety and side effects of monoclonal antibodies. Nature Reviews Drug Discovery, 9(4), 325-338. doi: 10.1038/nrd3003

Chimeric Antigen Receptor (CAR) T-Cell Therapy | Leukemia and Lymphoma Society. (2021). Retrieved 30 July 2021, from

Martínez Bedoya, D., Dutoit, V., & Migliorini, D. (2021). Allogeneic CAR T Cells: An Alternative to Overcome Challenges of CAR T Cell Therapy in Glioblastoma. Frontiers In Immunology, 12. doi: 10.3389/fimmu.2021.640082

Benmebarek, M., Karches, C., Cadilha, B., Lesch, S., Endres, S., & Kobold, S. (2019). Killing Mechanisms of Chimeric Antigen Receptor (CAR) T Cells. International Journal Of Molecular Sciences, 20(6), 1283. doi: 10.3390/ijms20061283

Cullen, S., & Martin, S. (2007). Mechanisms of granule-dependent killing. Cell Death & Differentiation, 15(2), 251-262. doi: 10.1038/sj.cdd.4402244

Waring, P., & Müllbacher, A. (1999). Cell death induced by the Fas/Fas ligand pathway and its role in pathology. Immunology And Cell Biology, 77(4), 312-317. doi: 10.1046/j.1440-1711.1999.00837.x

Walczak, H. (2013). Death Receptor-Ligand Systems in Cancer, Cell Death, and Inflammation. Cold Spring Harbor Perspectives In Biology, 5(5), a008698-a008698. doi: 10.1101/cshperspect.a008698

Textor, A., Listopad, J., Wührmann, L., Perez, C., Kruschinski, A., & Chmielewski, M. et al. (2014). Efficacy of CAR T-cell Therapy in Large Tumors Relies upon Stromal Targeting by IFNγ. Cancer Research, 74(23), 6796-6805. doi: 10.1158/0008-5472.can-14-0079

Whilding, L., & Maher, J. (2015). CAR T-cell immunotherapy: The path from the by-road to the freeway?. Molecular Oncology, 9(10), 1994-2018. doi: 10.1016/j.molonc.2015.10.012

FDA-approved CAR T-cell Therapies | UPMC Hillman. (2021). Retrieved 30 July 2021, from

Maude, S., Barrett, D., Teachey, D., & Grupp, S. (2014). Managing Cytokine Release Syndrome Associated With Novel T Cell-Engaging Therapies. The Cancer Journal, 20(2), 119-122. doi: 10.1097/ppo.0000000000000035

Davila, M., Riviere, I., Wang, X., Bartido, S., Park, J., & Curran, K. et al. (2014). Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Science Translational Medicine, 6(224), 224ra25-224ra25. doi: 10.1126/scitranslmed.3008226

Berraondo, P., Sanmamed, M., Ochoa, M., Etxeberria, I., Aznar, M., & Pérez-Gracia, J. et al. (2018). Cytokines in clinical cancer immunotherapy. British Journal Of Cancer, 120(1), 6-15. doi: 10.1038/s41416-018-0328-y

Waldmann, T. (2017). Cytokines in Cancer Immunotherapy. Cold Spring Harbor Perspectives In Biology, 10(12), a028472. doi: 10.1101/cshperspect.a028472

ROSENBERG, S., LOTZE, M., YANG, J., AEBERSOLD, P., LINEHAN, W., SEIPP, C., & WHITE, D. (1989). Experience with the Use of High-Dose Interleukin-2 in the Treatment of 652 Cancer Patients. Annals Of Surgery, 210(4), 474-485. doi: 10.1097/00000658-198910000-00008

Dutcher, J., Schwartzentruber, D., Kaufman, H., Agarwala, S., Tarhini, A., Lowder, J., & Atkins, M. (2014). High dose interleukin-2 (Aldesleukin) - expert consensus on best management practices-2014. Journal For Immunotherapy Of Cancer, 2(1). doi: 10.1186/s40425-014-0026-0

Charych, D., Khalili, S., Dixit, V., Kirk, P., Chang, T., & Langowski, J. et al. (2017). Modeling the receptor pharmacology, pharmacokinetics, and pharmacodynamics of NKTR-214, a kinetically-controlled interleukin-2 (IL2) receptor agonist for cancer immunotherapy. PLOS ONE, 12(7), e0179431. doi: 10.1371/journal.pone.0179431

Lodolce, J., Boone, D., Chai, S., Swain, R., Dassopoulos, T., Trettin, S., & Ma, A. (1998). IL-15 Receptor Maintains Lymphoid Homeostasis by Supporting Lymphocyte Homing and Proliferation. Immunity, 9(5), 669-676. doi: 10.1016/s1074-7613(00)80664-0

Marshall, D., Sinclair, C., Tung, S., & Seddon, B. (2014). Differential Requirement for IL-2 and IL-15 during Bifurcated Development of Thymic Regulatory T Cells. The Journal Of Immunology, 193(11), 5525-5533. doi: 10.4049/jimmunol.1402144

Conlon, K., Lugli, E., Welles, H., Rosenberg, S., Fojo, A., & Morris, J. et al. (2015). Redistribution, Hyperproliferation, Activation of Natural Killer Cells and CD8 T Cells, and Cytokine Production During First-in-Human Clinical Trial of Recombinant Human Interleukin-15 in Patients With Cancer. Journal Of Clinical Oncology, 33(1), 74-82. doi: 10.1200/jco.2014.57.3329

Ratain, M., Golomb, H., Vardiman, J., Vokes, E., Jacobs, R., & Daly, K. (1985). Treatment of hairy cell leukemia with recombinant alpha 2 interferon. Blood, 65(3), 644-648. doi: 10.1182/blood.v65.3.644.bloodjournal653644

What are immunomodulators and how do they work? - KHNI. (2021). Retrieved 1 August 2021, from

Matsushita, M., & Kawaguchi, M. (2018). Immunomodulatory Effects of Drugs for Effective Cancer Immunotherapy. Journal Of Oncology, 2018, 1-7. doi: 10.1155/2018/8653489

Bascones-Martinez, A., Mattila, R., Gomez-Font, R., & Meurman, J. (2014). Immunomodulatory drugs: Oral and systemic adverse effects. Medicina Oral Patología Oral Y Cirugia Bucal, e24-e31. doi: 10.4317/medoral.19087

Li, Y., Zhang, X., Liu, X., Pan, W., Li, N., & Tang, B. (2021). Intelligent stimuli-responsive nano immunomodulators for cancer immunotherapy. Chemical Science, 12(9), 3130-3145. doi: 10.1039/d0sc06557a

Derissen, E., Beijnen, J., & Schellens, J. (2013). Concise Drug Review: Azacitidine and Decitabine. The Oncologist, 18(5), 619-624. doi: 10.1634/theoncologist.2012-0465

Schroeder, T., Rautenberg, C., Haas, R., & Kobbe, G. (2016). Hypomethylating agents after allogeneic blood stem cell transplantation. Stem Cell Investigation, 3, 84-84. doi: 10.21037/sci.2016.11.04

Srivastava, P., Paluch, B., Matsuzaki, J., James, S., Collamat-Lai, G., & Blagitko-Dorfs, N. et al. (2016). Induction of cancer testis antigen expression in circulating acute myeloid leukemia blasts following hypomethylating agent monotherapy. Oncotarget, 7(11), 12840-12856. doi: 10.18632/oncotarget.7326

Fan, Y., Geng, Y., Shen, L., & Zhang, Z. (2020). Advances on immune-related adverse events associated with immune checkpoint inhibitors. Frontiers Of Medicine, 15(1), 33-42. doi: 10.1007/s11684-019-0735-3

Immune Checkpoints Role in Immunity & Cancer (Mini-review) | Bio-Rad. (2021). Retrieved 2 August 2021, from

Marcucci, F., Rumio, C., & Corti, A. (2017). Tumor cell-associated immune checkpoint molecules – Drivers of malignancy and stemness. Biochimica Et Biophysica Acta (BBA) - Reviews On Cancer, 1868(2), 571-583. doi: 10.1016/j.bbcan.2017.10.006

Polyak, K., & Weinberg, R. (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Reviews Cancer, 9(4), 265-273. doi: 10.1038/nrc2620

Webb, E. S., Liu, P., Baleeiro, R., Lemoine, N. R., Yuan, M., & Wang, Y. H. (2018). Immune checkpoint inhibitors in cancer therapy. Journal of biomedical research, 32(5), 317–326.

. Sharpe, A. (2017). Introduction to checkpoint inhibitors and cancer immunotherapy. Immunological Reviews, 276(1), 5-8. doi: 10.1111/imr.12531

Schadendorf, D., Hodi, F., Robert, C., Weber, J., Margolin, K., & Hamid, O. et al. (2015). Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. Journal Of Clinical Oncology, 33(17), 1889-1894. doi: 10.1200/jco.2014.56.2736

Hodi, F., O'Day, S., McDermott, D., Weber, R., Sosman, J., & Haanen, J. et al. (2010). Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. New England Journal Of Medicine, 363(8), 711-723. doi: 10.1056/nejmoa1003466

Thompson, J., Hamid, O., Minor, D., Amin, A., Ron, I., & Ridolfi, R. et al. (2012). Ipilimumab in Treatment-naive and Previously Treated Patients with Metastatic Melanoma. Journal Of Immunotherapy, 35(1), 73-77. doi: 10.1097/cji.0b013e31823735d6

Topalian, S., Hodi, F., Brahmer, J., Gettinger, S., Smith, D., & McDermott, D. et al. (2012). Safety, Activity, and Immune Correlates of Anti–PD-1 Antibody in Cancer. New England Journal Of Medicine, 366(26), 2443-2454. doi: 10.1056/nejmoa1200690

Ascierto, P., & Marincola, F. (2015). 2015: The Year of Anti-PD-1/PD-L1s Against Melanoma and Beyond. Ebiomedicine, 2(2), 92-93. doi: 10.1016/j.ebiom.2015.01.011

West, H. (2021). Immune Checkpoint Inhibitors. Retrieved 2 August 2021

Orange, M., Reuter, U., & Hobohm, U. (2016). Coley’s Lessons Remembered. Integrative Cancer Therapies, 15(4), 502-511. doi: 10.1177/1534735416649916

Russell, S., Peng, K., & Bell, J. (2012). Oncolytic virotherapy. Nature Biotechnology, 30(7), 658-670. doi: 10.1038/nbt.2287

Liu, B., Robinson, M., Han, Z., Branston, R., English, C., & Reay, P. et al. (2003). ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Therapy, 10(4), 292-303. doi: 10.1038/

Raja, J., Ludwig, J., Gettinger, S., Schalper, K., & Kim, H. (2018). Oncolytic virus immunotherapy: future prospects for oncology. Journal For Immunotherapy Of Cancer, 6(1). doi: 10.1186/s40425-018-0458-z

Kaufman, H., Kohlhapp, F., & Zloza, A. (2015). Oncolytic viruses: a new class of immunotherapy drugs. Nature Reviews Drug Discovery, 14(9), 642-662. doi: 10.1038/nrd4663

Kohlhapp, F., & Kaufman, H. (2015). Molecular Pathways: Mechanism of Action for Talimogene Laherparepvec, a New Oncolytic Virus Immunotherapy. Clinical Cancer Research, 22(5), 1048-1054. doi: 10.1158/1078-0432.ccr-15-2667

Tomazin, R., van Schoot, N., Goldsmith, K., Jugovic, P., Sempé, P., Früh, K., & Johnson, D. (1998). Herpes Simplex Virus Type 2 ICP47 Inhibits Human TAP but Not Mouse TAP. Journal Of Virology, 72(3), 2560-2563. doi: 10.1128/jvi.72.3.2560-2563.1998

Oncolytic Virus Therapy. (2021). Retrieved 3 August 2021, from,pain%2C%20nausea%2C%20and%20fever.

Babu, R. A., Kumar, K. K., Reddy, G. S., & Anuradha, C. (2010). Cancer vaccine: a review. Journal of Orofacial Sciences, 2(3), 77.

Pardoll, D. (1998). Cancer vaccines. Nature Medicine, 4(S5), 525-531. doi: 10.1038/nm0598supp-525

Berd, D., Maguire, H., McCue, P., & Mastrangelo, M. (1990). Treatment of metastatic melanoma with an autologous tumor-cell vaccine: clinical and immunologic results in 64 patients. Journal Of Clinical Oncology, 8(11), 1858-1867. doi: 10.1200/jco.1990.8.11.1858

Pardoll, D. (1995). Paracrine Cytokine Adjuvants in Cancer Immunotherapy. Annual Review Of Immunology, 13(1), 399-415. doi: 10.1146/annurev.iy.13.040195.002151

Banchereau, J., & Steinman, R. (1998). Dendritic cells and the control of immunity. Nature, 392(6673), 245-252. doi: 10.1038/32588

Minev, B. R., McFarland, B. J., Spiess, P. J., Rosenberg, S. A., & Restifo, N. P. (1994). Insertion signal sequence fused to minimal peptides elicits specific CD8+ T-cell responses and prolongs survival of thymoma-bearing mice. Cancer research, 54(15), 4155–4161.

Rousseau, R., Hirschmann-Jax, C., Takahashi, S., & Brenner, M. (2001). CANCER VACCINES. Hematology/Oncology Clinics Of North America, 15(4), 741-773. doi: 10.1016/s0889-8588(05)70245-8

Cancer Vaccines and Their Side Effects. (2021). Retrieved 4 August 2021, from

Chemotherapy Side Effects. (2021). Retrieved 6 August 2021, from

Ventola C. L. (2017). Cancer Immunotherapy, Part 3: Challenges and Future Trends. P & T : a peer-reviewed journal for formulary management, 42(8), 514–521.

Zugazagoitia, J., Guedes, C., Ponce, S., Ferrer, I., Molina-Pinelo, S., & Paz-Ares, L. (2016). Current Challenges in Cancer Treatment. Clinical Therapeutics, 38(7), 1551-1566. doi: 10.1016/j.clinthera.2016.03.026

Schumacher, T., & Schreiber, R. (2015). Neoantigens in cancer immunotherapy. Science, 348(6230), 69-74. doi: 10.1126/science.aaa4971

Pardoll, D. (2015). Cancer and the Immune System: Basic Concepts and Targets for Intervention. Seminars In Oncology, 42(4), 523-538. doi: 10.1053/j.seminoncol.2015.05.003

Yuan, J., Hegde, P., Clynes, R., Foukas, P., Harari, A., & Kleen, T. et al. (2016). Novel technologies and emerging biomarkers for personalized cancer immunotherapy. Journal For Immunotherapy Of Cancer, 4(1). doi: 10.1186/s40425-016-0107-3

Camidge, D., Pao, W., & Sequist, L. (2014). Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nature Reviews Clinical Oncology, 11(8), 473-481. doi: 10.1038/nrclinonc.2014.104

Mutations Linked to Immunotherapy Resistance. (2021). Retrieved 6 August 2021, from

Tartari, F., Santoni, M., Burattini, L., Mazzanti, P., Onofri, A., & Berardi, R. (2016). Economic sustainability of anti-PD-1 agents nivolumab and pembrolizumab in cancer patients: Recent insights and future challenges. Cancer Treatment Reviews, 48, 20-24. doi: 10.1016/j.ctrv.2016.06.002

Gjerstorff, M., Andersen, M., & Ditzel, H. (2015). Oncogenic cancer/testis antigens: prime candidates for immunotherapy. Oncotarget, 6(18), 15772-15787. doi: 10.18632/oncotarget.4694

Finn, O., & Beatty, P. (2016). Cancer immunoprevention. Current Opinion In Immunology, 39, 52-58. doi: 10.1016/j.coi.2016.01.002

Patients. (2021). Retrieved 27 August 2021, from

Patient stories about immunotherapy. (2021). Retrieved 27 August 2021, from




How to Cite

Ahmed, A., Khondokar, F., & Hossain, M. (2022). Current Practice and Approaches of Immunotherapy in Cancer Treatment. Asian Journal of Applied Sciences, 10(2).