Modified Goodness of Fit Tests for Rayleigh Distribution
DOI:
https://doi.org/10.24203/ajas.v10i1.6901Keywords:
Goodness-of-fit test, Rayleigh distribution, Monte Carlo simulation, Power of the testAbstract
The modified goodness of fit tests for the Rayleigh distribution are studied. The critical values of modified Kolmogorov-Smirnov, Cramer-von-Mises and Anderson-Darling tests are obtained by Monte Carlo simulation for different sample sizes and significant levels. The type I error rate and power of these tests are studied and compared. The results show that all of the three tests have type I error rate close to the significant levels. Under several alternative distributions, it is founded that when the sample size is large, modified Anderson-Darling has the largest power in all cases. However, when the sample size is small, skewness of the distribution plays an important role. For the more skewed distribution, the modified Anderson-Darling test has more power than the others, while the modified Cramer-von-Mises has the largest power when the distribution is less skewed.
References
Afify, W. M., Ramzy, A., “Modified Goodness of Fit Tests for the Inverse Flexible Weibull Distribution”, Advances and Applications in Statistics, vol. 48 no. 4, pp.257-272, 2016. DOI: 10.17654/AS048040257
Aslam M., Tahir M., Hussain Z., Al-Zahrani B. “A 3-Component Mixture of Rayleigh Distributions: Properties and Estimation in Bayesian Framework”, PLoS ONE 10(5): e0126183, 2015. DOI: 10.1371/journal.pone.0126183
Badr, M. M., “Goodness-of-Fit Tests for the Compound Rayleigh Distribution with Application to Real Data”, Heliyon, vol. 5, e0225, 2019.
Jahanshahi, S. M. A., Habibirad, A., Fakoor, V., “Some New Goodness-of-fit Tests for Rayleigh Distribution”, Pakistan Journal of Statistics and Operation Research, vol. 16, no. 2, pp.305-315, 2020.
Johnson, N. L., Kotz, S., Balakrishnan, N., Continuous Univariate Distributions Volume 1, 2nd edition, John Wiley & Sons, New York, 1994.
Lilliefors, H. W., “On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown”, Journal of the American Statistical Association, vol. 62, no. 318, pp.399–402, 1967. DOI: 10.2307/2283970
Lilliefors, H. W., “On the Kolmogorov-Smirnov Test for the Exponential Distribution with Mean Unknown”, Journal of the American Statistical Association, vol. 64, no. 325, pp.387-389, 1969. DOI: 10.1080/01621459.1969.10500983
Lord Rayleigh F.R.S., “XII. On the resultant of a large number of vibrations of the same pitch and of arbitrary phase”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.10 no. 60, pp.73-78, 1880. DOI: 10.1080/14786448008626893
Shawky, A.I., Bahoban, R. A., “Modified Godness-of-Fit Tests for Exponentiated Gamma Distribution with Unknown Shape Parameter”, InterStat, vol. 3, Jan, pp.1-17, 2009.
Woodruff, B. W., Viviano, P. J., Moore, A. H., Dunne, E.J., “Modified Goodness- of-Fit Tests for Gamma Distribution with Unknown Location and Scale Parameters”, IEEE Transactions on Reliability, vol. R-33, no. 3, 1984.
Yen, V. C., Moore, A. H. “Modified Goodness-of-fit Test for the Laplace Distribution”, Communications in Statistics - Simulation and Computation, vol. 17, no. 1, pp.275-281, 1988. DOI: 10.1080/03610918808812661
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Vanida Pongsakchat, Pattaraporn Tonhaseng
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
- Papers must be submitted on the understanding that they have not been published elsewhere (except in the form of an abstract or as part of a published lecture, review, or thesis) and are not currently under consideration by another journal published by any other publisher.
- It is also the authors responsibility to ensure that the articles emanating from a particular source are submitted with the necessary approval.
- The authors warrant that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required.
- The authors ensure that all the references carefully and they are accurate in the text as well as in the list of references (and vice versa).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author.