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_________________________________________________________________________________ 

ABSTRACT— Skewness is often present in a wide range of applied problems. One possible approach to model this 

skewness is based on the class of skew normal distributions. This article focuses on estimating the unknown 

parameters of skew normal distribution. Generalized probability weighted moments, probability weighted moments 

and fractional moments estimating methods are investigated in skew normal distribution. Comparison between 

estimators is made through Monte Carlo simulation via their mean square errors. Comparison study revealed that the 

fractional moment estimators are better than generalized probability weighted moment and probability weighted 

moment estimators 
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_________________________________________________________________________________ 

 

1. INTRODUCTION 

The normal distribution is popular and easy to handle, but also is not always adequate to insurance or finance 

application. Azzalini [3] introduced a new class of normal distribution called skew normal (SN) distribution. The SN 

distribution includes the normal distribution as a special case. This family of distributions has a shape parameter   that 

defines the direction of the asymmetry of the distribution, also called skewness parameter.  The two parameters SN 

model has the following density function; 

      xxxf 2),,( , Rx .                                                                                                       (1) 

 The corresponding cumulative distribution function is given by; 

      


xxxF

x

2),,( , Rx ,                                                                                                  (2) 

where, R  is location parameter and R  represents the shape parameter. The notations   x  and 

    x  denote the density and cumulative distribution functions of the two parameters of SN distribution, 

respectively. The SN distribution reduced to normal distribution for 0 .  

Estimation of skewness parameter using maximum likelihood method studied by many authors (see for example 

Pewsey [13], Gupta and Brown [8] ). Bayes and Branco [4] showed the Bayesian approach using Monte Carlo methods is 

a good alternative to make inference under the skewness parameter. They provided an approximation for the presented to 

compare the bias, mean square error (MSE) and interval estimates using the maximum likelihood and different Bayes 

estimator. Flecher et al [6] computed and estimated the parameter of SN distribution by the probability weighted 

moments (PWMs) method. They mention that the computation of PWMs seem very difficult to derive because the 

cumulative of SN is very complex. Flecher et al [6] replaced the cumulative of skewness by the cumulative Gaussian 

distribution for greatly simplifies the problem. Comparing the results of PWMs and maximum likelihood methods, the 

PWMs gave the smallest MSE values. 

 

The generalized probability weighted moments (GPWMs) were introduced by Rasmussen [14] as a tool for 

estimating the parameters of probability distribution expressible in inverse form. Rasmussen [14] estimated the unknown 
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parameters of generalized Pareto distribution using GPWMs, PWMs and traditional moments methods. It is noted that 

the GPWMs estimators gave the smallest bias and MSE. Ashkar and Mahdi [2], developed the GPWMs method for log 

logistic distribution. They concluded that the estimators based on GPWMs are smaller than the corresponding estimators 

based on PWMs and maximum likelihood methods, especially for small samples. 

The GPWMs, generalized moments and maximum likelihood methods of estimation are investigated in two 

parameters Weibull distribution by Mahdi and Ashkar[12]. Point estimators for positive and negative shape parameters 

and for quantile are derived. The performance of the three estimating methods is given through simulation. The results 

show that the GPWMs method may in some situation lead to a slight gain in quantile estimation accuracy. Furthermore, 

they concluded that maximum likelihood method is the most recommendable one. Recently, El Haroun [5] used the 

GPWMs method to estimate the parameters of the generalized exponential distribution and obtain Asymptotic variance 

of the estimators.  

This article deals with estimating the unknown parameters of SN distribution based on GPWMs, PWMs and 

fractional moments (FMs) methods. Monte Carlo simulation is performed to compare the performance of different 

estimators.   

This paper is organized as follow. In Section 2,  the GPWMs estimators for the shape and location parameters 

for SN distribution will be derived. The estimates of parameters for SN distribution are developed using PWMs method 

in section 3. The estimates of unknown parameters for SN distribution based on FMs will be discussed in Section 4. 

Simulation results and discussions are contained in Section 5. Finally, conclusions are included in Section 6. Tables and 

some Figures are included in the appendix.   
 

2. THE GPWMs METHOD FOR SN DISTRIBUTION 

The GPWMs method has been used in estimating the parameters of many distributions that can be expressible in 

inverse form. According to Rasmussen [14], the GPWMs take the following form; 

    vup

vup XFXFXEM )(1)(,,  ,                                                                                                                       (3) 

where X  is a random variable and  XF  is cumulative distribution function. The common practice has been to 

consider 1p  and , u and v to be real values ( i.e. exponents u and v  of the GPWMs can be ratio or integers). 

               The GPWMs of order 1p  and 0v , is given by 0,,1 uM as the following; 

   dxxfdttfxXFXEM
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where,  xf  and  tf   are the probability functions of the random variable X . 

In particular, the formula (4) will be used, with 21,uuu   then 0,,1 uM  takes the following forms,  
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To obtain the theoretical GPWMs for SN distribution substitute probability density (1) in formulas (5) and (6) therefore; 
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 Let      nxxx ,...,, 21 be a random sample of size n  from the distribution function  XF , and      nxxx  ,...21 be 

the corresponding ordered sample. Hosking et al [10] proposed sample GPWMs, denoted by vuM ,,1
ˆ  , as the following;                                                                                                      
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where,  ix  is the i th observation in the ordered sample and 
n

i
pi

35.0
 . 

To obtain the sample GPWMs for SN distribution; substitute; 1uu    and 2uu  after setting 0v in  (9) therefore; 
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Therefore, the GPWMs estimator of  and  denoted by g̂ and g̂ can be obtained by equating the sample GPWMs 

in (10) and (11) with the population GPWMs in (7) and (8) as the following; 
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The GPWMs estimator g̂  and g̂ can be obtained by solving numerically the non linear equations using (12) and (13) 

through Monte Carlo simulation.  

3. THE PWMs METHOD FOR SN DISTRIBUTION 

Greenwood et al [7], proposed a class of moments called PWMs. The method of PWMs is used for estimating 

the parameters of distributions that are analytically expressible only in inverse forms such as, Tukey’s Lambda and 

Wakeby distributions which are potentially useful to flood frequency analysis. The PWMs are formally defined as 

equation (3). The exponents of PWMs method take any real values but most of application takes the exponents  vu,  

integers only.  

Song and Ding [15] set another formula for PWMs to estimate the unknown parameters of distributions that 

cannot be expressible in an inverse form. They rewrite the formula of PWMs by substituting  dxxfdF   in (3) as 

the following; 
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where  xf  and  tf   are the probability functions of the random variable X . 

To obtain the theoretical PWMs estimator for the SN distribution substitute; 01 u   and 12 u in (7) and (8), 

therefore; 
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Let      nxxx ,...,, 21 be random sample of size n from the distribution function  XF , and 

     nxxx  ,...21 be the corresponding ordered sample. Landwehr et al [11] proposed an unbiased estimator of 

PWMs say uM̂  as the following;                                                                                                      
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In this study, the following sample PWMs will be used; 

 



n

i

ix
n

M
1

0

1ˆ ,                                                                                                                                                              (17)    

 and     






n

i

ixi
nn

M
1

1 1
)1(

1ˆ .                                                                                                                               (18)  

Therefore, the PWMs estimator of   and  ,denoted by, p̂  and p̂ can be obtained by equating the sample PWMs 

with the population PWMs as the following; 
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To get accurate results, PWMs estimators p̂  and p̂ can be solved numerically in equations (19) and (20) by using 

Monte Carlo simulation.    

4. THE FMs FOR SN DISTRIBUTION 

 

The method of moment is one of the oldest methods of estimating the parameters of distribution. It is 

summarized in constructing estimators of the parameters which is based on matching the sample moments with the 

corresponding population moments. The exponents of tradition moments always take the integers values but it may not 

exist.  

It is known that the sampling variability of moments increases with the order of the moments. Therefore in the 

traditional method of moments for estimation, lower order moments are used. To decrease the sampling variability and 

thereby to increase the efficiency of moment estimates, one can think of decreasing the order of moments to less than 

one. This idea of lowering the order of moments and thereby reducing the sampling variability of sample moments was 

proposed by Abdul Khalique [1]. This new method is known as fraction moments and is proposed for analyzing the 

multiplicity distributions of particles in inelastic processes. This method is based on the use of non integer moments of 

distribution. In general, this method can be used to analyze any distributions which are encountered in physics or 

mathematics.  According to Adul Khalique [1], the 
thl  FMs of a random variable X  with density function )(xf  takes 

the following form; 
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For estimating the two parameters of SN distribution, the population FMs is obtained by setting 1ll   and 2ll  in 

equation (21), therfore; 
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According to Abdul Khalique [1], the corresponding empirical 
thl FMs from a random sample nxxx ..., 21 takes the 

following formula; 
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To obtain the sample FMs for SN distribution substitute 1ll   and 2ll    in equation (24), therefore;  
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 Hence, the FMs estimator of  and  denoted by f̂ and f̂ can be obtained by equating the sample FMs given  in 

(25) and (26) with the corresponding  population FMs given  in  (22) and (23) as the following; 
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To avoid complex ways of solution, FMs estimators f̂ and f̂ can be worked out numerically in (27) and (28) using 

Monte Carlo simulation.  

5.  SIMULATION STUDIES OF SN DISTRIBUTION 

 
Monte Carlo simulation has been performed to investigate the properties of the GPWMs, PWMs and FMs 

estimators for SN. An extensive simulation study is performed to compare the performance of the different methods of 

estimation mainly in terms of their MSE. The steps of simulation can be summarized as the following; 

Step (1): 1000 random sample, nxxx ,...,, 21 , of sizes n = 5, 10, 15, 20, 25, 30, 35and 50 are generated from the SN 

distribution. This can be achieved by generating a random sample from closed form of SN that proposed by Henz [9] as 

follow; 
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where  nwww ,...,, 21  and  nLLL ,...,, 21 are random sample from standard normal distribution.  

Step (2): The true parameter selected values for the shape parameter   are 0 (0.3) 0.9 and the values for location 

parameter  are 0.2 (0.3) 0.5. Choosing the exponent values of GPWMs ratio as 5.01 u and 5.12 u . The 

exponent values of FMs are ratio between [0,1] as 89.01 u  and 15.02 u . 

Step (3):  For each combination of values of sample size n,   and  ,  the parameters of distribution are  estimated 

using  three different estimation methods;  GPWMs , PWMs and FMs.  

Step (4): GPWMs estimators for   and   denoted by g̂ and g̂ for SN distribution is obtained by solving 

numerically the non-linear equations (12) and (13). By similar way, PWMs estimators p̂ and p̂ of  SN distribution are 

obtained by solving numerically equations (19) and (20). Also, FMs estimators f̂ and f̂ of SN distribution are 

obtained by solving the non-linear equations (27) and (28). 

Step (5):  The MSE for the different estimators of the two parameters and for all sample sizes are Tabulated and 

represented through some Figures.   

All simulation studies presented here are obtained via the MathCAD (2001) software. The MSE of the different 

estimators of   and   are reported in Tables (1) and (2), respectively and shown in Figures (1-8). From simulation 

many observations can be made on the performance of the methods GPWM, PWMs and FMs. These observations are 

summarized as follows:   

1. It is observed that the MSE of estimator for decreases as the sample size increases. This indicate that all the 

methods provided consistent estimators for   [see Figures (1- 4)]. 

2. It is observed that the MSE of estimator for  decreases as the sample size increases. This indicate that all the 

methods provided consistent estimators for   [see Figures (5-8)]. 

3.  Considering the MSE of the different estimators of  , it is clear from Table (1) that the FMs estimator has the 

minimum MSE in almost all of the cases considered for estimating . [see Figures (1-4)]. 
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4. Considering the MSE of the different estimators of  , it is clear from Table (2) that the FMs estimator has the 

minimum MSE in almost all of the cases considered for estimating   [see Figures (5-8)]. 

 

6. CONCLUSION 
            In this study, the GPWMs method has been applied for estimating the parameters of SN distribution as a 

skewness distribution. In more details, the performance of the methods of GPWM was compared to the performance of 

two methods, namely; the methods of PWMs and FMs. The comparative study revealed that the FMs works the best in 

almost all cases considered with respect to MSE. The performance of the PWMs method is the worst in terms of MSE. In 

addition, all the methods considered provide us with consistent estimators for   and  .  
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APPENDIX 
             The next  Figures represent MSE of shape and scale parameters estimator for  SN distribution based on  

GPWMs, PWMs, and FMs 

 
.

 

 

Figure 1: The MSE of SN distribution based  on GPWMs,                   Figure 2: The MSE of SN distribution based on,  

                 PWMs and FMs for 0 .                                                          GPWMs, PWMs and FMs for 3.0 . 

 
Figure 3: The MSE of SN distribution  based on GPWMs,                                    Figure 4: The MSE of SN distribution based  on 

       PWMs and FMs for 6.0 .                                                                         GPWMs, PWMs and FMs for 9.0 . 

 
Figure 5 : The MSE of SN distribution based on                          Figure 6: The MSE of SN distribution based on GPWMs, 

                          GPWMs, PWMs and FMs for 5.0 .                                       PWMs and FMs for 4.0 . 

 
Figure 7: The MSE of SN distribution based on                              Figure 8: The MSE of SN distribution based on GPWMs, 

                 GPWMs, PWMs and FMs for 3.0 .                                       PWMs and FMs for 2.0 . 
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Table (1):Mean and MSE for different value of the estimated shape parameter for SN distribution based on GPWMS, PWMs and FMs  methods of estimation. 

 

Sample 

size n  

Properties 

Of   
GPWMs of g̂  PWMs of p̂  FMs of f̂  

0  3.0  6.0  9.0  0  3.0  6.0  9.0  0  3.0  6.0  9.0  

 

5 

Mean 1.2109 0.0009 -0.4762 -0.3135 0.1390 0.1270 -0.0805 -0.0655 -0.0032 0.0002 0.00286 0.0043 

MSE 0.5054 0.2509 0.9529 0.6618 0.1303 0.1391 0.4631 0.3198 0.2635 0.2502 0.2553 0.2642 

 

10 

Mean -0.0499 0.0712 -0.4237 -0.3135 0.1503 0.1721 -0.0387 -0.0228 0.00005 0.0002 0.0001 0.0001 

MSE 0.3024 0.1838 0.8532 0.6618 0.1223 0.1075 0.4079 0.2733 0.2500 0.2502 0.2499 0.2501 

 

15 

Mean 0.0211 0.0814 -0.3478 0.3101 0.1567 0.1819 0.0641 0.1177 0.00005 -0.0002 0.0001 0.0016 

MSE 0.2716 0.1752 0.7188 0.6562 0.1178 0.1012 0.2871 0.1461 0.2499 0.2502 0.2499 0.2510 

 

20 

Mean 0.0172 0.1541 -0.3111 1.2096 0.1813 0.2822 0.1744 0.1444 0.0001 0.0008 0.0002 0.00005 

MSE 0.2531 0.1196 0.6579 0.5036 0.1015 0.0474 0.1811 0.1269 0.2499 0.2499 0.2498 0.2500 

 

25 

Mean 0.0506 0.1687 -0.2294 -0.1721 0.1875 0.3110 0.3132 0.2002 0.0001 0.0001 0.0007 0.0009 

MSE 0.2020 0.1098 0.5320 0.4517 0.0976 0.0357 0.0822 0.0898 0.2499 0.2499 0.2498 0.2499 

 

30 

Mean 0.9413 0.2526 0.1440 -0.1662 0.1927 0.3122 0.3135 0.2569 0.0008 0.0002 0.0006 0.0009 

MSE 0.1948 0.0612 0.1267 0.4438 0.0944 0.0353 0.0821 0.0591 0.2498 0.2499 0.2498 0.2499 

 

35 

Mean 0.0779 0.3466 0.2219 0.6288 0.1952 0.5275 0.3418 0.2654 0.0002 0.0002 0.0005 0.0002 

MSE 0.1782 0.0235 0.0774 0.0166 0.0929 0.0297 0.0667 0.5502 0.2498 0.2498 0.2497 0.2498 

 

50 

Mean 0.1727 0.6528 0.3793 0.1617 0.1965 0.3840 0.3457 0.6176 0.7881 0.0003 0.0005 0.00007 

MSE 0.1071 0.0233 0.0146 0.0136 0.0944 0.0135 0.0647 

 

0.0138 0.0830 0.2498 0.2497 0.2498 
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Table (2): MSE for different value of the estimated  location parameter for SN distribution based on GPWMS, PWMs and FMs  methods of estimation. 
 

Sample 

size n  

Properties 

Of   
GPWMs of G̂  PWMs of P̂  FMs of F̂  

5.0  4.0  3.0  2.0  5.0  4.0  3.0  2.0  5.0  4.0  3.0  2.0  

 

5 

Mean 0.9564 0.8309 0.8344 0.8496 0.6559 0.9174 0.9134 0.6836 0.0006 0.0008 0.0011 0.0007 

MSE 0.7334 0.5342 0.5540 0.5619 0.3090 0.6682 0.6616 0.3405 0.0102 0.0105 0.0110 0.0104 

 

10 

Mean 0.7321 0.7756 0.8310 0.8254 0.6413 0.8773 0.7200 0.6433 0.0005 0.0007 0.0008 0.0006 

MSE 0.3996 0.4564 0.5340 0.5262 0.2930 0.6020 0.3849 0.2951 0.0102 0.0104 0.0104 0.0102 

 

15 

Mean -0.5282 0.7697 0.7411 0.8221 0.6195 0.7741 0.5740 0.6225 0.0005 0.0006 0.0006 0.0006 

MSE 0.3946 0.4485 0.4110 0.5215 0.2699 0.4544 0.2247 0.2730 0.0101 0.0103 0.0103 0.0102 

 

20 

Mean 0.7198 0.7652 0.6913 0.8135 0.5989 0.6932 0.5722 0.4119 0.0005 0.0006 0.0006 0.0005 

MSE 0.3841 0.4425 0.3497 0.5091 0.2484 0.3519 0.2230 0.0973 0.0101 0.0102 0.0103 0.0102 

 

25 

Mean 0.5884 0.6972 0.6692 0.7693 0.7198 0.6879 0.5248 0.4047 0.0003 -0.0004 0.0003 0.0004 

MSE 0.2385 0.3567 0.3240 0.4480 0.3841 0.3457 0.1805 0.0928 0.0100 0.0102 0.0100 0.0101 

 

30 

Mean 0.5310 0.6816 0.6457 0.6186 0.4895 0.6733 0.4868 0.3758 0.0003 0.0005 0.0003 -0.0001 

MSE 0.1857 0.3383 0.2978 0.2689 0.1517 0.5286 0.1497 0.0761 0.0100 0.0101 0.0100 0.0100 

 

35 

Mean 0.3696 0.6633 0.6266 0.5641 0.4821 0.6462 0.4810 0.3261 0.0003 0.0004 0.0003 0.0003 

MSE 0.0727 0.3173 0.2773 0.2154 0.1460 0.2983 0.1451 0.0511 0.0100 0.0101 0.01003 0.0100 

 

50 

Mean 0.2459 0.6471 -0.1348 -0.2742 0.4752 0.2657 0.2930 0.2206 0.0002 0.0001 0.0003 0.0001 

MSE 0.0213 0.2993 0.0551 0.1400 0.1408 0.0275 0.0372 0.0145 0.0100 0.0100 0.0100 0.0100 


