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ABSTRACT— Entropybased k-Nearest Neighbor pattem classification (EbkNN) is a variation ofthe conventional

k-Nearest Neighbor rule of pattern classification, which exclusively optimizes the value of k-neighbors for each test
data based onthe calculations of entropy. The formulafor entropy used in EbkNN is the one that has been defined

popularlyininformation theory for a set of n different types of information (class) attachedto a total of m objects

(data points) with each object defined by ffeatures. In EbkNN thatvalue ofk is chosen for discrimination of given test
data for which the entropyis the least non-zero value. Other rules of conventional kNN are retainedin EbkNN. It is
concluded that EbkNN works best for binary classification. It is computationally prohibitive to use EbkNN for
discriminatingthe data points of the test datasetinto number of classes greater thantwo. The biggest advantage of
EbkNN vis-a-vis the conventional kNN is that in one single run of EbkNN algorithm we getoptimum classificationo f
test data. But conventional KNN algorithm has to be run separately for each of the selected range ofvaluesof k, and

then the optimum k to be chosen from amongst them. We also tested our EbkNN method on WDBC (Wisconsin
Diagnostic Breast Cancer) dataset. There are 569 instances in this datasetand we made a random choice of first 290
instances astrainingdatasetand the rest 279 instances as test dataset. We got an exceptionally remarkable result with
EbkNN method- accuracy close to 100%and better than the ones got by most of the other researcherswhoworkedon
WDBC dataset.
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1. INTRODUCTION

Pattern analysis in which class is to be assigned to a given unknown data or test data based on the known classes of
training data, andin which no definite formof the mapping function (mapping classto thedata) can be found, is most
popularly referred to in the mathematical/statistical literature as nonparametric discrimination (NPD). KNN (k-Nearest
Neighbor)is the easiest, and yet powerful, machine learning algorithmfor NPD [1,2,3]. The seeds ofthe kNN were sown
first in a technical report [4] by Evelyn Fixand J.L. Hodges, Jr. Suppose the classification is between two sets of
population: one fromdata points @y. 8z, . ... & With probability density x andthe other fromdata points &y 2, vv vy by
with probability density ¥; the assigning of classto a new datapoint ¢ depends on thelikelihood ratio

1(e) = x(c)/y(c) @

The problemarises with equation (1) when we do not exactly know x.¥ but instead have to use their estimates. In [4]
the authors suggest several estimates of x. ¥ for different problems for both parametric and nonparametric discrimination,
like, for example kernel density estimation. In the field of nonparametric discrimination, they were, however, the first in
the world to give the nearest neighbor estimates of x.¥, and thereby lay the foundation of KNN.

The workdone on 1-NN (single nearest neighbor) and kNN in [4] was further extended in the works [5,6,7,8,9,10].

In [10], it was shownthat forany sample size 7, the single-Nearest Neighbor rule has a lower probability of error than
the kNN for certain classes of distributions. [10] also made it clear that there are two extremes of classification problem
normally encountered, they are either parametric or nonparametric. The parametric problems are the ones in which the
underlyingstatistical distribution of the observables are known. For the nonparametric problems certain common sense
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based approaches may be made with regard to thedecisionrule, otherwise, strictly speaking there can be no optimal
decision rule for this case. [10] states the lemma of the convergence ofthe nearest neighbor. Let {a;.a;......a,} be the
set ofindependent identically distributed randomvariables in the metric space 4 classified into M classes but with no
underlying statistics. Let an unclassified randomvariable @ has asits closestneighbor a.; formthe set {a;, az. ... ayJ.
Then a,; tendsto a with probability one. This lemma holds forany metric, includingthe Euclidean, defined over the
observables.

There can be several different types of distance metrics that canbe computed amongstthe data pointsofthe training
dataset and that between the query point and the data points of the training data, and the performance of the kNN
classification depends on theway the distance metric is defined in particular application [11]. The distance metric most
popularly usedin the kNN classification is the Euclidean distance which treats the data points as vectors and neglects any
statistical relationship thatcan be fitted to the classification example. However, it has been shown in several works thatif
the distance metric is trained to learn fromthe statistical distribution fitting the labelled data, there is an improvement in
the performance ofthe kNN classifier many-folds [12,13,14]. [11] is an advancement over the works by [12,13,14], and
in this work the authors propose thelearning Mahalanobis distance metric. The learning Mahalanobis distance metric is
a lineartransformation of the space of the training dataset in suchaway that it brings about two key changes in the
conventional Euclidean distances calculated betweenthe data points.

1. Firstly the large Euclidean distances between thetwo particular datapoints of the same classare optimized in
the new metric to showa small distance

2. Secondly the small Euclidean distances betweenthetwo particular datapoints belonging to two different classes
are magnified in the new metric to showa large distance

Making the distance metric learn this way ensures thatthe k nearest neighbors of the unclassified data belong to the same
class.

Before we move ahead with studying many more literature to introduce the problemdealt with in this work, let us
first summarize the conventional KNN method as it is known today. Consideratypical NPD problem wherein u is the
unlabeled data to beassigned the class fromthe knowledge oftraining dataset of n datapoints segregated intom classes,
each data point being defined by thevalue of ¢ features. Then the kNN method is allabout finding k nearestneighbors to
u from the training dataset for a certain fixed k which can be typically varied from1 to +/n [1]. The neighbors are defined
as those data points which are close toeach other, the extent of closeness being quantified by the Euclidean distance (Ed)
between the data points. The Ed between = and the data point v+ fromthe training datasetis calculated by the formula

Z':ﬁ..e - ﬁ.:l,‘:]:

i=1

I
Ed,_, = !
A
where fi, is the value of feature i for unlabeled data = and £ is the value of feature i for the data point v fromthe
training dataset. Such Ed is calculated betweenu andeachofthen datapoints fromthe training dataset, denote this set
of Euclidean distances {Ed,,—| v = 1.2, .....n} Forachosen k, the kdata points fromthe training dataset corresponding
to the k smallest Euclidean distances fromthe set {£d,_,| v = 1.2......n} are groupedtogether. Thenthe class of the
unlabeled data is the class of the majority ofthe datapointsin this group.

Despite its simplicity and power, the conventional KNN method posed two serious questions to the researchers over
the years

1. Themethod is computationally expensive for large sample size and or many -dimensional features because one
has to calculate the distances of theunlabeled data fromall the data pointsin thetraining dataset. Then how
does oneoptimize the computational cost?

2. Which kshould onechose for classification ? This is obvious that askis varied in any given particular NPD
problem, the performance of the kNN too may vary. It is intuitive that the optimum k which has a higher
probability of giving correct classification will vary fromone situation to the other, like, for example, even
between different unlabeled data points within the same NPD problem.

For achieving computational economy some of the works provided structure to the training dataset
[15,16,17,18,19,20,21]. A few ofthe alternate approaches to achieve computationaleconomy, wherein the focus is on
reducing thesize ofthe labeled dataset, are [3,22,23,24,25]. In[22], Hart proposed selectingthesubset S fromthe whole
training dataset T such that INN (1-Nearest Neighbor) with S discriminates the data points almost as accurately as 1NN
does with T. This way he removed the redundant data subset fromthe whole training dataset, and there by achieved
computational economy. RNN (Reduced Nearest Neighbor rule) [23] is a refinement of CNN (Condensed Nearest
Neighbor rule) [22], wherein the data points fromthe subset S of the whole training data set T selected by CNN are
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removed one by one to checkwhether the resulting reduced subset of subset S discriminates T correctly. [24]proposed
selecting three very smalltraining subsets out ofthewhole training data set, and then classifying the testdatain each of
these three training subsets by 1NN sub-classifier; the final classification being done by simple votingscheme to achieve
a high accuracy. [25] did a careful study thatgiventhe training data set T, which data po ints mustbe removedfrom T to
get the subsetSwhich discriminates T in away so as not to affectthe generalization accuracy and noise tolerance. They
proposed6algorithms DROP1-DROP5and DEL, DROP standing for Decremental Reduction Optimization Procedure
and DEL standing for Decremental Encoding Length. DROPLis derived fromRNN [23] with the difference that once a
data pointis removedfromS to get new Sit is checked whether this reduced S discriminates itself correctly rather than
checking whether this reduced S discriminates T correctly.

Next we are concerned with the problemof optimizing k in KNN. There are two ways to achieve the performance
uniqueness in KNN: either get rid of k or fix k for each testorunlabeled data. Theworkthat getsrid ofk is by Sinha [26];
he calls the resultingmethod ANN (Alternative Nearest Neighbor). However, this (getting rid ofk) is not the focus of
this paper. In this paper we discuss a new algorithmEbkNN (Entropy -based k Nearest Neighbor), which we have found
to optimize k for each given testdata. But beforewe do that let us lookat literature for some algorithms that optimizes k
in KNN. [27] defines a new informative metric that tells how informative a particular datapoint fromthe training data set
in the vicinity ofunlabeled datais. The idea of informativeness is that highly informative pointsinthe vicinity of test
point have same classandare far from the points having dissimilar class. Ideally it is required that the informative metric
be calculated for all the points in the training data set, but then the assignment of class to the test point based on
informativeness will become computationally very expensive. So Song etalin [27] proposed two algorithms of NPD
based on informativeness: LI-kNN (Locally informative kNN) and GI-kNN (Globally informative KNN). In LI-kNN
firstly k nearest neighbors to the test point are chosen based on Euclidean distances andthen outofthese kneighbors the
class ofthe most informative point is assigned to the test point. The GI-kNN differs from LI-kNN in that the neighbors
are chosennotbasedon Euclidean distance but based on weighted Euclideandistance in an iterative algorithm. [2] did
bootstrap sampling of the training example and combined the technique with nearest neighbor classifierand found that
they got better performance than conventional KNN. [28] and [29] conducted text categorization studies with a variety of
machine learning algorithms, oneamong thembeing kNN. They took k values so large as 30,45 and 65; and found that
the performance of the KNN on Reuters versions 3and 4 was one of the best. There are a plethora of other literature that
solvesthe problemof optimizing performance of KNN by fixing k [30,31,32,33]. But because ourmethod (EbKNN) is
not related in any way to either of these previous works, I merely make a mention of themhere and do notdiscussthem.
Also because ourwork (EbkNN) is neitheran advancement over theseworks [27,2,28,29,30,31,32,33] nor is derived
from them, we do not immediately conclude or claimin this paper that EbKNN outperforms a subset of these and is
inferior to the rest. Moreover, we do not state in this paper any mathematical theoremgiving the lower and upper bounds
on the probability of error of EbKNN. We have a strong beliefthat when NPD problems areto be solved by common
sense, anyamountof mathematical attempts to justify/rationalize the solution remain inert to the actual performance of
the NPD method over real datasets. It is highly likely that what mathematics will infer may not reflect in actual
application. So our main focus in this paper is to make the reader understand and appreciate EbkNN method
exhaustively. One must take note ofthe simplicity and power of the method. Thereafter, we also apply themethod to real
breast cancer dataset and evaluate its performance. Our target is to achieve a high accuracy in breast cancer diagnosis by
the EbKNN method. Let us see if we can do that. The breast cancer diagnosis is binary classification between whether the
tumoris malignant or benign. Benign tumors are harmless and donot metastasize uponthe passage of time, whereas
malignant tumors metastasize with the passage of time if left medically unattendedto. Ideally we should have combined
the features of either of the works [3,22,23,24,25] into our method to take care of computational expenditure, butto keep
things simple andto impart a better understanding of the EbKNN method to thereader we have not done so.

2. THE EBKNN METHOD

If there is a set of n different types of information attached to a total of m objects with each object defined by f
features/attributes, theentropy = of this setof objects is defined mathematically in information theory [34] as

"
§= — ZP{ logs ps
=1

where z; is the proportion of objects with information i. Interpreting the above informationtheory forthe typical NPD
problemin which the m data points are classified into n classes, theclasses are the 7 types of informationand the data
points are them objects. Hencethe above equation for entropy holds for the stated typical NPD problem with #; being
the proportion of data points of class t.
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The EbKNN method is all about selecting a single unique value of k nearest neighbors to classify the query point,and
as the name of the method suggests this is donebased onthe calculations of entropy. Justas we calculated entropy above
for the entire training data set, we calculate entropy foreach ofthe individual values of k. So the fundamental idea in
EbkNN is that we chose that value of k for classification for which theentropy is the least. However, this fundamental
idea needs a little modification, giventhatfora certainz; = 1 (which means that allthe datapoints groupedtogether for
a certain khas same class), = = 0. This means that for k=1, definitely s = 0. Therefore, the actual EbkNN method is that
we choose thatk for classification forwhich theentropy is the least non-zero value. Hence, 1-Nearest Neighbor decision
rule is not integrated into EbKNN. The EbKNN method can be applied to classification of datapoints into any number of
classes. But for the number of classes greater than 2, it is obvious that the method will be computationally very
expensive. Hence in this paper we will be applying this method to binary classification only, as convenient
simplifications can be donein computation.

Ina binary classificationproblemlet, out ofk nearest neighbors, ¢, are the number of data points belongingto class 1,
and g are the number of data points belonging to class 2. Note that, in this method, the neighbors are determined by
calculating Euclidean distances- the conventional distance metric most popularly usedin the kNN algorithm. Then for
this problem

= qlfr,r{

=" =1-p
By varying g;andg; overarange of naturalnumbers and doing calculationofentropy it is not hard to observe that as
anyonesmaller out ofthe two proportions #y andg= reduces the entropy reduces. In otherwords, the greater thedeviation
between g, andp: , the smaller the entropy. Forexample consider the following two cases
Casel:py = 0,15, » =0.85
o, —po| =0.7
Let entropyfor this case be s,
Case2:py = 09,p, = 0.1
o, —pl =08
Let entropy for this case be =;
It can be inferred immediately that =2 < =;. This can be verified by calculation.
So, for binary classification problem, one need notexplicitly calculate entropy for each value of k. Instead, that value of
k be chosenfor classification for which the smaller of the two proportions z, andg- is the leastamongstall values of k

considered. This is a very big simplification in computation for the EbkNN method. However, this liberty is not available
in EbKNN computations forthe NPD problemwith greater thantwo number of classes.

Fork=m, where m is the sample size ofthe training dataset classified into two classes, an important questionto ask is
that ideally what should be g;andg; orp, and 72 in the EbkNN method. Note that entropy is equalto 1, the maximum,
for p,=p2 = 0.5. Hence we will choosethe training datasetin a particular NPD problemin such away that is even and
g: = g; = m/2. Wedo this because then k=m will definitely not be the optimumk for classification.

Before we go ahead and apply the EbkNN method to the actual NPD problem, there is one last issue that needs
attention. Whatis the range of values of k for which we need to calculate entropy or the deviation lpy — 221 2 k=1 is
definitely ruled out. k=2 is also ruled out because then Ips — 2. | is either 1or0, i.e. entropyis eitherOor 1 respectively.
So at the lower end of the range we begin with thatk>=3 for which Ip; — p2| # 1. Letus denote this value k.. For the

higherend ofthe range, suppose thatat a particularinstance g, = g;. Then p, = qif{ql 1gq) P = ng’{ql +g,)

Let the entropy at this instance be E. From this stageask = g: + g is increased in increments of 1, further suppose that
g. remains static where as it is 4z which increases in steps of 1. As this happens entropy will first increase up to 1 when
9znew = 91, Gznaw Deing the new value of gz after successive increments. Thereafter it (entropy) will reduce, and
supposethatit becomes exactly equalto Efor gznew = gz. If 52 be the new proportion of datapoints belongingto class
2 for newk = g; + gz, then

r

 omEn
gz / — 1
or /(g + q;) ~ ) ';{‘?1 + q7)
orgs = /g,

Ifg. + g2 < m, continue further
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It is obviousthat theinstancek = g, + g, that Iam talking aboutabove should be the one such that |p, — g, | is
maximum from amongst the subset of set {k| k=1,2,....,m}. For m of the order of hundreds let us take this subset of
length 10, i.e., for every set of 10 ‘k’ values beginning from the minimumk = k, we find that k for which |p, — g, | is
maximum and checkif g, + gz < m. Themomentg, + g; = m, thatwill be the higherendofthe range of kfor which

we need to compareentropy or |, — g |. Once the optimized k is chosenthis way the assigning of class to theunlabeled
data is still done based on the majority voting ofthe classes of data points fromamongst this (optimized) group of k
nearest neighbor data points.

3. COMPUTER EXPERIMENTS WITH WDBC DATASET

The realdataset onwhich we run the EbkNN and the KNN method in this workis the WDBC (Wisconsin Diagn ostic
Breast Cancer) dataset fromthe UCI machine learning repository. Dr. William H. Wolberg, W. Nick Street,and Olvi L.
Mangasarian are the creators ofthis dataset. There are 569 data points in this dataset, and 32 columns. The first colum is
the patient ID. The second column is diagnosis: B for Benign and M for malignant. The rest 30 columns have the values
of 30 features. However, effectively there are only 10 basic features- radius, texture, perimeter, area, smoothness,
compactness, concavity, concave points, symmetry, and fractal dimension. Actually what are these10basic features ?
During the biopsy procedureto detectwhether the abnormal lump or mass of cells formed in the breast is tumorornot, a
fine needle aspirate of fewnumbers of cells fromthe lump or mass is taken and observed under microscope. During
microscopic examination measurements of these 10 basic features of the cellare made. Columns 3to 12 (in the WDBC
dataset) are respectively themean values of these 10 features, columns 13to 22 are respectively thestandard error (s .e.)
of these 10features and columns 23to 32 are respectively the worst values of these 10 features. Everyoneknows what is
meant bt}/ mean, so I should not define it here. Standarderror (s.e.) is given by
5.8.= .3(«\.-';
where o is standard deviationand = is number of sample points in the data. It is actually the difference betweenaccurate
mean and the observed mean. Worst is the mean of three of the largest values of concerned feature. Standard error by
itselfhas no meaning; specially it is highly likely that it has directly no role to play in the diagnosis. But with its effect
included in mean, it will surely havearole to play in the diagnosis. So nowtheimportant question- Howdo we include
the effect of standard error in mean ? We add the mean of a particular featuresay featurel_mean tothe standarderror of
that feature say featurel seto getthe upper limit on the value of feature say featurel ul. Similarly we subtractfromthe
mean of a particular feature say featurel_mean the standarderror of that feature say featurel_se toget thelower limit on
the value of feature say featurel Il. Mathematically
featurel ul=featurel mean +featurel se
featurel ll=featurel mean —featurel se
We did so forall the basic 10 features mentioned above, and created a new data file “processed data.csv”’.Column 1 of
this file is indexbeginning from0, column 2 is patient ID, column 3is diagnosis, columns4to 13 is the mean of the 10
features mentioned above, columns 14to 23 is the standard error of the 10features mentioned above, columns 24to 33 is
the worst values of the 10 features mentioned above, column 34is blank, columns 35to 44 is the upper limit of the 10
features mentioned above, and columns 45to 54 is the lower limit ofthe 10 features mentioned above. While calculating
the Euclidean distances, both for EbkNN and kNN, we considered only the features in columns 24to 33, columns 35 to
44, and columns 45to 54.

While selecting thetraining subset out ofa set of 569 instances, we could have used the results of either ofthe works
[3,22,23,24,25] . But we did something else. Because 569 is a big number we consideredthatthe training subsetsolarge
as alittle over50% ofthe whole set should be sufficient to capture almostall possible variations of values of features.
Then we will run EbKNN and kNN over this subset as training data and the rest as test data. In next step, whatever
misclassifications we get in the first step will be removed from the test dataand included in the training data. This sounds
somewhat like [22], but is far different from it. The major difference being thatthe training subsetis chosen randomly in
this work, given the large number of instances.

First 290 instances (145 benign and 145 malignant instances) are chosen as training data and therest279instances
are test data. Wecall it experiment 1. What performance measure is the most important in diagnosis of disease ? It is
accuracy and the accuracy ofany diagnostic tool should ideally be 100%. Hence, in this work too the only performance
measure we will be interested in is accuracy. Andouraimin this work will be to take accuracy asclose as possible to
100%.
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4. RESULTS
4.1 Experiment 1

The accuracy of EbkNN method =92.1147 %. The optimized value of k for EbkNN method which we compute for
assigningclassto the testdatapointby majority voting varied fromso smallas 5 to as large as 98, the results ofall 279

test datapoints considered.
The accuracy of KNN (k=5) method =92.1147 %

4.2 Experiment 2

The misclassified data points in EbKNN for experiment 1 are data point nos. 298, 299, 341, 348, 364, 376, 380, 386,
407, 414, 431, 449, 466, 473, 477, 482, 492, 509, 514, 533, 537, and 542.
The misclassified data points in kNN for experiment 1 are data point nos. 298, 299, 341, 348, 364, 376, 380, 386, 407,
422, 431, 466, 473, 477, 482, 492, 509, 514, 519, 533, 537, and 542.
We now include these misclassifications in training data and removethemfromthe test dataset. So, forbothEbkNNand
kNN, the training data has 312 data points and the test data has 257 data points. Note that in EbkNN method for
experiment 2 the number of benign samples (=162) and the number of malignant samples (=150) are not equal. So, a
natural questionto ask s thatif this skew can causethe optimumkto be 312 for any one particular test data. Let us
convinceourselves thatthis will never be the case here before we go ahead. The biggest lz; — #: | (formeaning ofp, and
rz, refer section 2) can be as smallas 0.34 if optimum k = 3 in the application of EbkNN method to any dataset, which is
definitely greaterthan |p, — g | value (=12/312=0.03846) foroptimumk = 312 in the applicationof EbkNN method to
this dataset here in experiment 2.
The accuracy of EbKkNN method =98.8327 % (3 errors fromamongst 257 test data points)
The accuracy of KNN (k=5) method =98.0545 % (5 errors fromamongst 257 test datapoints)

4.3 Experiment 3

If there are large number of features defining the datapoints of a given dataset, we can combine these features in a
manner so that each combined component (called the principal component) is orthogonal to every other combined
component. This process of feature extraction or dimensionality reductionis called Principal Component Analysis (PCA)
[1]. We will not go into the details of PCA as this is not the focus of this paper. But the reasonthat | am talking about it
here is that we also did PCA ofthe data file “processed data.csv”’with entries in columns 24 to 33, 35 to 44, and 45 to
54; and the number of principal components intowhich the features were extractedwere 5, 10 and 15 respectively. We
thereafter chose first 290 instances of “processed data.csv” astrainingdataandthe rest 279 instances as test data and
classified the testdata with the application of the EbKNN method. Thenwe also included the misclassified test data in
training dataset (as in experiment 2) and ran the EokNN method again. The accuracies that we obtained forallthe three
PCA components 5,10 and 15, were far less than that obtained in experiment 2. Hence we do not make a mention of the
results of this experiment here.

5. CONCLUSIONS

The accuracies ofthe EbkNN method and kNN (k=5) method are same forexperiment 1, where as in experiment 2 the
accuracy ofthe EbkNN method was better thanthat of the kNN (k=5). This means thatin goingfrom experiment 1 to
experiment 2 there was no over-fitting of the data in EbkNN; EbKNN showed better noise tolerance than KNN. It is
possible that for bothexperiment 1and experiment 2, the KNN method may performthe best fork otherthan 5. But for
this we have to run the kNN algorithmseparately forarange of values of k. This is the disadvantage of the conventional
kNN algorithm, which we have overcome in our newly found EbkNN method. In single run of the EbkNN method we
pick the optimumk separately and exclusively for each test data. Anyhow we already founda high enoughaccuracy, as
close to 100% (98.8327%) as possible, with the EbkNN method. Thisaccuracy is the best fromamongst the works of
otherresearchers on WDBC dataset[35,36,37,38,39,40,41,42,43] that the authors ofthis paperknow of. The work by
[43] is the closest that it gets to ourwork. Theirbestaccuracy is 98.62% for kNN with chi-square based feature selection.

We are sad that we failed to furtherimprove ouraccuracy of98.8327% with PCA.PCA seldomfails and it is amazing
that PCA failed here.

Itis not so that we did not do featureselection/extraction in experiment 1 and experiment 2. Calculating the upper
limit values andthe lower limit values of the 10 basic effective features in WDBC dataset was a part of the process of
feature extraction only. No otherresearchertillnow has done sowith the WDBC datasetand we proudly claim that we
are the first one in world to do so, and it reaped fruits for us. The feature extraction that we did in experiment 1 and
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experiment 2, however, was not the one which reduced number of features. Why the EbkNN method gave such
promising result with the WDBC dataset is a matter forinvestigation by mathematicians and statisticians alike.

It was serendipity thatwe discovered high accuracy of the EbkNN method in breast cancerdiagnosis. However, it
does notfollowthat the EbkNN method will demonstrate similar performance for other datasets. In fact, the performance
of any machine learningalgorithmoverany datasetis dependenton theinternal statistical structure of the dataset. Hence
for different datasets the machine learning algorithmwhich shows the best performancewill be different.
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