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_________________________________________________________________________________ 

ABSTRACT— The mathematical theory behind the computer graphic enables one to develop the techniques for 

suitable creation of computer animation. This paper presents an application of Riemannian geometry in 3D 

animation via notions of in motion and deformation. By focusing on Lie algebras concepts, it provides a geometric 

framework for the implementation of computer animation. 
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1. INTRODUCTION 

Geometric transformations give a basic mathematical framework for geometric operations in computer graphics, such 

as rotation, shear, translation, and their compositions. Each affine transformation is then represented by a homogeneous 

matrix with usual operations: addition, scalar product, and product. While the product means the composition of the 

transformations, geometric meanings of addition and scalar product are not trivial. What is often considered is having a 

geometrically meaningful weighted sum (linear combination) of transformations, which is not an easy task. These kinds 

of practical demands, therefore, have inspired graphics researchers to explore new mathematical concepts and/or tools. 

Many works have been conducted in this direction, including skinning [1-2], thinning [3], cage-based deformation 

[4], motion analysis and compression [5-7]. This paper focuses on a Lie theoretic aspect of the mathematical applications 

in computer graphics. For this purpose, Lie groups and their Lie algebras have been introduced. Then Lie algebras will 

correspond the associated Lie group of matrices as a motion group. As will be demonstrated, the Lie algebra gives a 

linear approximation of the Lie group, which allows one to use a powerful linear interpolation scheme in making 

dynamic motion and deformation. 

After some preliminaries of differential geometry and Lie theory in Section 2, the application of the proposed theory 

has been developed to implementation of 3D animation. 

2. BASIC CONCEPTS 

According to common geometric notions (e.g., [8-10]) an n -dimensional manifold is a set M , together with 

countable coordinate charts U M   and one–to–one local coordinate maps :U V     onto connected open subsets 
mV R , which satisfy the following properties: 

The coordinated charts cover M  such as equation (1) 

U M



  (1) 

and on the overlap of any pair of coordinate charts U U   the composite map (2) 

   1 : U U U U             (3) 
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is a smooth function. If x U , x U  are distinct points of M , then, there exist open subsets W V , W V , 

which satisfied with relations (3) 

       1 1,  ,  x W x W W W            (3) 

A local r -parameter Lie group consists of open subsets 0
rV V  R  containing origin, and the smooth maps 

: rm V V  R  and 0:i V V  defining the action group and the inversion action (respectively) which satisfy the 

property of associativity formulated in (4) 

     , , , , ,  , ,m x m y z m m x y z x y z V    (4) 

and identity as in relation (5) 

   0, ,0 ,  m x x m x x V     (5) 

and inversion such as relation (6) 

      0, 0 , ,  m x i x m i x x x V    (6) 

A local group of transformations acting on a manifold M  is given by a (local) Lie group G , an open subset U  as 

the domain of definition of the group action with  e M U G M    , and a smooth map :U M   which satisfy 

the properties formulated in (7) 

           , ,  , , , . , , , . ,h x U g h x U g h x U g h x g h x        (7) 

and the relation (8) 

 , ,  e x x x M     (8) 

and the condition (9) 

       1, , , ,  , ,g x U g h x U g g x x        (9) 

For brevity,  ,g x  is shown as .g x . 

At each point of a smooth parametrized curve (10) 
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: I M   (10) 

of a subinterval of R on a manifold M , there is a tangent vector (11) 

      1 ,..., nd
t t t

dt


     (11) 

For an n -dimensional manifold M , xTM  which is a collection of all tangent vectors to all possible curves passing 

through a given point x  in M  forms the  is an n -dimensional vector space, with the set as in (12) 

1

,...,
mx x

   
 
   

 (12) 

as a basis for it.  A vector field v  on M  associate the tangent vector x xv TM  to any point x M  that xv  

varies smoothly of each point to the other. In local coordinates  1,..., nx x , it is in the form (13) 

     1 2

1 2

... n
x

n

v x x x
x x x

  
  

   
  

 (13) 

where each  i x  is a smooth function of x . The maximal integral parametrized curves (14) 

   tt v    (14) 

passing through x M  is shown by  ,t x , and is called the flow generated by a vector field v  or a one-parameter 

group of transformations. In this case, the vector field v  is called the infinitesimal generator of the action  .  Also the 

relation (15) is satisfy for this flow 

   ,
,

t x

d
t x v

dt


   (15) 

This flows is denoted by the relation (16) 

   exp ,tv x t x   (16) 

which result in (17) 

   exp
exp ,  

tv x

d
tv x v x M

dt
      (17) 
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There is a one-to-one correspondence between local one-parameter groups of transformations and their infinitesimal 

generators; for the vector field (18) 

 i

i

v x
x







  (18) 

on M  and the smooth function :f M  R , (19) is occluded 

     0exp t

d
f tv x v f x

dt
   (19) 

If v  and w  are vector fields on M , then their Lie bracket  ,v w  is the unique vector field satisfying (20) 

        ,v w f = v w f - w v f  (20) 

for all smooth functions :f M  R . For any group element g  of a Lie group G  the right multiplication map 

:gR G G  defined by (21) 

  .gR h = h g  (21) 

is a diffeomorphism, with inverse (22) 

 1

1

-

-

gg
R = R  (22) 

A vector field v  on G  is called right-invariant if the relation (23) is satisfied 

   | | | ,  ,
g

g h hgR h
dR v = v = v h g G   (23) 

The set of all right-invariant vector fields forms a vector space. A Lie algebra is a vector space G  with a bilinear 

operation  .,. :  G G G , called the Lie bracket for G , satisfying the axioms (24) 

     +c ,w , +c ,wcv v = c v w v    

     , ' , , 'v cw c w c v w c v w      

   , ,v w = - w v  

     , , + w, u,v + v, w,u 0u v w =            

(24) 
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for all ,c cR  and , , , ', 'u v w v w G . The flow generated by a right-invariant vector field 0v   through the identity, 

namely (25)  

   exp exptg = tv e tv  (25) 

is defined for all tR  and forms a one-parameter subgroup of G . Conversely, any connected one-dimensional 

subgroup of G  is generated by such a right-invariant vector field in the above manner. 

3. RESULTS 

Main Result. The details of creating a computer animation can be implemented in notions and differential geometry, 

especially, Lie algebras.    

Proof. The axis of rotation is a natural invariant of 3D  rotation. Let  3B x x   R . Then the exponential map 

restricted to B  gives a surjective map exp : (3)B SO . It is diffeomorphic on the interior 

   3exp : : (3) det( )x x R SO R I      R . On the boundary, it is a two-to-one covering map 

   3exp : : (3) det( )x x R SO R I      R . 

These two (rather distinct) behaviors are understood in a uniform manner: In a 3D figure, the map 

   3exp : 0 2 (3)x x R SO R I     R  gives the two-to-one covering map (everywhere smooth, so that the 

local inverse does exist uniquely). Slightly more generally, for every integer 1n  , 

   3exp : 2( 1) 2 (3)x n x n R SO R I       R  also gives the two-to-one covering map. This map factors 

through the map (26): 

     2:13 3exp : 2( 1) 2 1 (3)x n x n q S q R SO R I           R  (26) 

On the other hand, the exponential map on the complement is factored as the map (27): 

     3 3exp : 2 1 (3)x x n q S q R SO       R  (27) 

where the first map is defined as: ( 1)nx   for 2x n . The first map shows the degeneration of spheres 

 3exp : 2x x n R  which looks like circles in a 3D figure, to a point. By the degeneration (candy-wrapping 

operation), it can be obtained from tube-like body  3exp : 2( 1) 2x n x n    R . The second map of (26) collects 

the isomorphic 
3S ’s for 1,2,...n   into one piece. The left and right most points in the third stage are 1  and 1  in 

3S , 

which were the joint points on the second stage. Then the third map of (26) applies it. 

Also, this phenomenon can be understood by the following animation: consider the rotation around x -axis with 360 

degrees and after that the rotation around y -axis with certain degree. It seems to be a continuous move, but there is not a 

continuous logarithmic lift of this motion. 

After the first rotation, the transformation (matrix) remembers the axis of rotation, so that the sudden change of the 

rotation axis from x -axis to y -axis is considered to be a discontinuous move. Note that, if the move does not go through 

the identity, the continuous logarithmic lift always exists. If the move 
1C  assume that a continuously differentiable (that 

is, the velocity is continuous), then the continuous logarithmic lift exists.   

4. CONCLUSION 

In this paper, a new geometric approach to structuring the details of creating a computer animation is presented. The 

results can be well implemented in the form of a computer program based on mathematical algorithms.  

http://www.ajouronline.com/


Asian Journal of Applied Sciences (ISSN: 2321 – 0893) 

Volume 8 – Issue 5, October 2020 

Asian Online Journals (www.ajouronline.com)  307 

 

5. REFERENCES 

[1] Chaudhry E., You, L.H., Zhang, J.J., “Character skin deformation: A survey”, Proc. of the 7th International 

Conference on Computer Graphics, Imaging and Visualization (CGIV2010), pp. 41–48, IEEE, DOI: 

10.1109/CGIV.2010.14, 2010. 

[2] Lewis, J.P., Cordner, M., Fong, N., “Pose space deformation: A unified approach to shape interpolation and 

skeleton-driven deformation”, SIGGRAPH Proc. of the 27th Annual Conference on Computer Graphics and 

Interactive Techniques, pages 165–172, DOI:10.1145/344779.344862, 2000. 

[3] Hasan-Zade, A., “Geometric Modelling of the Thinning by Cell Complexes”, Journal of Advanced Computer 

Science & Technology, vol. 8, no. 2, pp. 38-39, 2019. 

[4] Alexa, M., “Linear combinations of transformations, In ACM Transactions on Graphics (TOG)”, Proc. of ACM 

SIGGRAPH, vol. 21, no. 3, pp. 380–387, 2002. DOI:10.1145/566654.566592. 

[5] Nieto, J.R., Susín, A., Cage based deformations: A survey, Deformation Models, M.G. Hidalgo, pp. 75-99, 2012.  

[6] Torres, A.M., Gómez, J.V., Lecture Notes in Computational Vision and Biomechanics, Springer, 7, 2013. DOI: 

10.1007/978-94-007-5446-1_3. 

[7] Tournier M., Revéret, L., “Principal geodesic dynamics”, SCA Proc. of the ACM SIGGRAPH/Eurographics 

Symposium on Computer Animation, pp. 235–244, DOI:10.2312/SCA/SCA12/235-244, 2012. 

[8] Boothby, W.M., An introduction to differentiable manifolds and Riemannian geometry, Academic Press, 2003. 

[9] Olver, P.J., Applications of Lie groups to differential equations, Springer-Verlag, 1993. 

[10] O’Neill, B., Semi-Riemannian geometry: With applications to relativity, Academic Press, 1983. 

http://www.ajouronline.com/

