The First Isomorphism Theorem on QI-algebras

Lee Sassanapitax

Department of Mathematics, Faculty of Science, Burapha University Chonburi, Thailand *Email: lee.sa [AT] buu.ac.th*

ABSTRACT—The aim of this paper is to construct the first isomorphism theorem of QI-homomorphism of QIalgebras. The concepts of normal QI-subalgebras and quotient QI-algebras are also investigated.

Keywords-QI-algebra, homomorphism, isomorphism, normal, quotient

1. INTRODUCTION

In 1966, the concept of *BCK-algebras* was introduced by Y. Imai and K. Iseki [4]. Moreover, K. Iseki [5] gave the definition of *BCI-algebras* in 1980. Both of them play an important role in the study of logical algebras. Afterwards, several structures of algebras such as *BH-algebras* [6], *TM-algebras* [7] and *KU-algebras* [12] were introduced and investigated. The fundamental concepts of abstract algebra such as ideals, congruences and homomorphisms were also studied on those algebraic structures (see [1], [11], [13]). Furthermore, many generalizations of BCK-algebras were introduced by several researchers. Some examples of such algebras are *BH-algebras* [8], *B-algebras* [9] and *Q-algebras* [10]. It turns out that many properties of these kind of algebras were extensively investigated. In 2017, A. B. Saeid, H. S. Kim and A. Razaei proposed a new algebra which is a generalization of implicative BCK-algebras, called a *BI-algebra*

[14]. They provided the basic properties of BI-algebras and discussed about ideals and congruence relations. The

properties of ideals of BI-algebras were continuously investigated in [2]. Lately, the notion of *QI-algebras*, which is a generalization of BI-algebras, was introduced by R. K. Bandaru [3]. The concept of ideals and some basic properties were also considered. One can see more examples of research papers in this area in [15-18].

In this paper, we gave the concept of QI-homomorphisms of QI-algebras and investigated some relate properties. The relations between QI-isomorphisms and quotient QI-algebras are also provided.

2. PRELIMINARIES

In this section, we begin with the definition of a QI-algebra which is an algebra (X, *, 0) of type (2,0), i.e., a nonempty set X equipped with a binary operation * and a constant 0. We also recall some notions and properties of QI-algebras.

Definition 2.1. [3] An algebra (X, *, 0) of type (2,0) is called a *QI-algebra* if

- (QI1) x * x = 0,
- (QI2) x * 0 = x,
- (QI3) x*(y*(x*y)) = x*y,

for all $x, y \in X$.

The relation " \leq " on a QI-algebra (X,*,0) is defined by $x \leq y$ if and only if x * y = 0. From (QI1), we can immediately conclude that \leq is reflexive, however \leq is not a partially ordered relation.

Example 2.2. Let $X = \{0,1,2\}$ be a set with the following Cayley table.

*	0	1	2
0	0	2	1
1	1	0	1
2	2	2	0

Then, by using computer programming, it is easy to check that (X,*,0) is a QI-algebra.

Definition 2.3. [3] A QI-algebra (X, *, 0) is said to be *right distributive* or *left distributive*, respectively if (x*y)*z = (x*z)*(y*z) or z*(x*y) = (z*x)*(z*y),

respectively, for all $x, y, z \in X$.

Example 2.4. Notice that a QI-algebra (X, *, 0) in Example 2.2 is not a right distributive since $(1*1)*1=0*1=2 \neq 0=0*0=(1*1)*(1*1),$ and (X,*,0) is not left distributive OL-algebra since

d
$$(X, *, 0)$$
 is not left distributive QI-algebra since

$$2*(1*0) = 2*1 = 2 \neq 0 = 2*2 = (2*1)*(2*0).$$

Example 2.5. [3] Let $Y = \{0, 1, 2, 3\}$ be a set with the following Cayley table.

*′	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	2
3	3	0	1	0

Then it is easy to check that (Y, *', 0) is a right distributive QI-algebra.

Proposition 2.6. [3] Let (X, *, 0) be a QI-algebra.

- (i) If X is a left distributive QI-algebra, then $X = \{0\}$.
- (ii) If X is a right distributive QI-algebra, then 0 * x = 0 for all $x \in X$.

Definition 2.7. [3] Let (X, *, 0) be a QI-algebra and I be a subset of X. Then I is called an (QI-) ideal of X if it satisfies the following:

(I1) $0 \in X$,

(I2) for each $x, y \in X$, if $x * y \in I$ and $y \in I$ then $x \in I$.

Example 2.8. [3] Let $X = \{0,1,2\}$ be a set with the following Cayley table.

*	0	1	2	3
0	0	2	1	0
1	1	0	1	0
2	2	2	0	2
3	3	2	1	0

Then it is easy to check that (X, *, 0) is a QI-algebra. Note that $I_1 = \{0, 1\}$ and $I_2 = \{0, 1, 3\}$ are ideals but $I_3 = \{0, 1, 2\}$ is

not an ideal of X.

3. MAIN RESULTS

In this section, we give the definition of normal QI-subalgebra, congruence relation and QI-homomorphism of QI-algebra. Note that such definitions were provided analogue to the definitions on BI-algebras given in [2]. The first isomorphism theorem on QI-algebras is proven at the end of this section.

Definition 3.1. Let (X, *, 0) be a QI-algebra. A nonempty subset S of X is called a *QI-subalgebra* of X if it is closed under the operation *, i.e., $x * y \in S$ for any $x, y \in S$.

Note that every QI-subalgebra contains 0 since it is nonempty and the axiom (QI1).

Definition 3.2. Let (X, *, 0) be a QI-algebra. A nonempty subset N of X is called a *normal subset* of X if for each

 $x, y, a, b \in X$, $x * y, a * b \in N$ implies $(x * a) * (y * b) \in N$.

Proposition 3.3. Let N be a normal subset of a QI-algebra (X, *, 0). Then N is a QI-subalgebra of X.

Proof. Assume that N is a normal subset of X. Let $x, y \in N$. Then $x*0 = x \in N$ and $y*0 = y \in N$. Since N is normal subset of X, it follows that $x*y = (x*y)*(0*0) \in N$. Hence N is closed under *. Thus N is a QI-

subalgebra of X.

From the above proposition, we will call a normal subset of a QI-algebra (X, *, 0) a normal QI-subalgebra X. In general, the converse of Proposition 3.3 does not hold as it was shown in the following examples.

Example 3.4. Let $X = \{0, 1, 2, 3\}$ be a set with the following Cayley table.

*	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	0	0	2
3	3	0	3	0

Then, by using computer programming, it is easy to check that (X, *, 0) is a QI-algebra. Notice that $A = \{0, 1, 2\}$ is a QI-subalgebra of X but it is not normal since $3*3=0 \in A$, $2*3=2 \in A$ but $(3*2)*(3*3)=3*0=3 \notin A$.

Example 3.5. Let $X = \{0, 1, 2, 3\}$ be a set with the following Cayley table.

*	0	1	2	3
0	0	0	0	0
1	1	0	1	1
2	2	2	0	2
3	3	3	3	0

Then, by using computer programming, it is easy to check that (X,*,0) is a QI-algebra and $N = \{0,1\}$ is normal. Moreover, we have that $M = \{0,1,2\}$ is a QI-subalgebra and QI-ideal of X. Since $3*3=0 \in M$, $2*3=2 \in M$ and $(3*2)*(3*3)=3*0=3 \notin M$, we have that M is not normal. **Lemma 3.6.** Let N be a normal QI-subalgebra of a QI-algebra (X, *, 0) and $x, y \in N$. If $x * y \in N$, then $y * x \in N$. *Proof.* Assume that $x * y \in N$. Since N is QI-subalgebra of X, it follows that $y * y = 0 \in N$. The fact that $y * y, x * y \in N$ and N is normal implies that $y * x = (y * x) * 0 = (y * x) * (y * y) \in N$.

Definition 3.7. Let N be a normal QI-subalgebra of a QI-algebra (X, *, 0). A relation \sim_N is defined by for each $x, y \in X$,

$$x \sim_N y$$
 if and only if $x * y \in N$.

Proposition 3.8. Let N be a normal QI-subalgebra of a QI-algebra (X, *, 0). Then \sim_N is a congruence relation on X.

Proof. Let $x, y, z, w \in X$. Since $x * x = 0 \in N$, we have that $x \sim_N x$. This means that \sim_N is reflexive. From Lemma 3.6, it follows that $x \sim_N y$ implies $y \sim_N x$. Thus \sim_N is symmetric. To show that \sim_N is transitive, assume that $x \sim_N y$ and $y \sim_N z$. Then $x * y, y * z \in N$. Since \sim_N is symmetric, $z * y \in N$. This implies that

$$x * z = (x * z) * 0 = (x * z) * (y * y) \in N$$

because $x * y, z * y \in N$ and N is normal. Therefore, \sim_N is an equivalence relation on X.

Next, we will show that \sim_N is a congruence relation on X. Assume that $x \sim_N y$ and $z \sim_N w$. Then $x * y, y * z \in N$. Since N is normal, $(x * z) * (y * w) \in N$. That is $x * z \sim_N y * w$, as required.

Definition 3.9. Let N be a normal QI-subalgebra of a QI-algebra (X, *, 0) and $x \in X$. A congruence class $[x]_N$ of X is denoted to be the set $\{y \in X : x \sim_N y\}$. Define X/N to be the set of all congruence class of X. That is

$$X_{N} = \left\{ \left[x \right]_{N} : x \in X \right\}.$$

The proof of the following lemma is straightforward, we omit the proof.

Lemma 3.10. Let N be a normal QI-subalgebra of a QI-algebra (X, *, 0) and $x, y \in X$. Then

$$[x]_N = [y]_N$$
 if and only if $x \sim_N y$

Theorem 3.11. Let N be a normal QI-subalgebra of a QI-algebra (X, *, 0). Then the binary operation *' on $\frac{X}{N}$ defined by

$$[x]_N *' [y]_N = [x * y]_N,$$

for all $x, y \in X$, makes $\left(\frac{X}{N}, *', [0]_N\right)$ into a QI-algebra. Moreover, $[0]_N = N$.

Proof. First, we will show that *' is well-defined. Let $x_1, y_1, x_2, y_2 \in X$ such that $[x_1]_N = [x_2]_N$ and $[y_1]_N = [y_2]_N$.

Then $x_1 \sim_N x_2$ and $y_1 \sim_N y_2$. Since \sim_N is a congruence relation, $x_1 * y_1 \sim_N x_2 * y_2$. From Lemma 3.10, it can be concluded that $[x_1 * y_1]_N = [x_2 * y_2]_N$, i.e., $[x_1]_N *' [y_1]_N = [x_2]_N *' [y_2]_N$, as required.

Next, we will show that the axioms of QI-algebra are satisfied. Let $x, y \in X$.

$$(QI1) [x]_{N} *'[x]_{N} = [x * x]_{N} = [0]_{N},$$

$$(QI2) [x]_{N} *'[0]_{N} = [x * 0]_{N} = [x]_{N},$$

$$(QI3) [x]_{N} *'([y]_{N} *'([x]_{N} *'[y]_{N})) = [x * (y * (x * y))]_{N} = [x * y]_{N} = [x]_{N} *'[y]_{N}.$$

$$Moreover, [0]_{N} = \{x \in X : x \sim_{N} 0\} = \{x \in X : x * 0 \in N\} = \{x \in X : x \in N\} = N.$$

The QI-algebra X_N discussed in the above theorem is called the *quotient QI-algebra* of X by N. Note that the normality of N is required in order to show that \sim_N is a congruence relation which implies that X_N is a QI-algebra.

In order to state the isomorphism theorem, the definition of homomorphism in QI-algebra was provided as follows.

Definition 3.12. Let $(X, *, 0_X)$ and $(Y, \Box, 0_Y)$ be QI-algebras. A *QI-homomorphism* is a mapping $f: X \to Y$ satisfying

$$f(x*y) = f(x) \Box f(y),$$

for all $x, y \in X$. An injective QI-homomorphism is called *QI-monomorphism*, a surjective QI-homomorphism is called *QI-epimorphism*. A *QI-isomorphism* is a QI-homomorphism which is bijective. We write $X \cong Y$ if there exists a QI-isomorphism $f: X \to Y$.

The kernel of the QI-homomorphism f, denoted by ker f, is the set of elements of X that map to 0_{y} .

Proposition 3.13. Let N be a normal QI-subalgebra of a QI-algebra (X, *, 0). Then the mapping $\pi: X \to X/_N$ given by

$$\pi(x) = [x]_N,$$

for all $x \in X$, is a QI-epimorphism and ker $\pi = N$.

Proof. Let $x, y \in X$. Then

$$\pi(x*y) = [x*y]_{N} = [x]_{N} *'[y]_{N} = \pi(x)*'\pi(y).$$

Hence π is a QI-homomorphism. Since

$$\pi(X) = \{\pi(x) : x \in X\} = \{[x]_N : x \in N\} = X/N,$$

 π is a QI-epimorphism.

The mapping π in the above proposition is called the *canonical homomorphism* of X onto X_N .

Proposition 3.14. Let $(X, *, 0_X)$, $(Y, \Box, 0_Y)$ be QI-algebras and $f: X \to Y$ be a QI-homomorphism and $A \subseteq X$. Then

- (i) $f(0_X) = 0_Y$.
- (ii) If f is a QI-monomorphism, then ker $f = \{0_X\}$.
- (iii) ker f is a QI-subalgebra of X.
- (iv) If A is a QI-subalgebra of X, then f(A) is a QI-subalgebra of Y.

Proof. (i) $f(0_X) = f(0_X * 0_X) = f(0_X) \square f(0_X) = 0_Y$.

(ii) Assume that f is a QI-monomorphism. It follows from (i) that $0_x \in \ker f$. To show the converse inclusion, let $x \in \ker f$. Then $f(x) = 0_y = f(0_x)$. Since f is injective, $x = 0_x$. Hence $\ker f = \{0_x\}$.

- (iii) Let $x, y \in \ker f$. Then $f(x) = 0_Y = f(y)$. Thus $f(x * y) = f(x) \square f(y) = 0_Y \square 0_Y = 0_Y$. Hence $x * y \in \ker f$.
- (iv) Suppose that A is a QI-subalgebra of X. Let $x, y \in f(A)$. Then x = f(a) and y = f(b) for some $a, b \in A$.

Since A is a QI-subalgebra, $x \square y = f(a) \square f(b) = f(a*b) \in f(A)$. Hence f(A) is a QI-subalgebra of Y. \square

The following example shows that $\ker f$ is not normal, in general.

Example 3.15. Consider a QI-algebra in Example 3.4. Define a mapping $f: X \to X$ by f(x) = x for all $x \in X$. Then f is a QI-homomorphism and ker $f = \{0\}$, which is a QI-subalgebra of X but not normal since 2*1=0, 3*1=0and $(2*3)*(1*1)=2*0=2 \notin \text{ker } f$.

Definition 3.16. A QI-algebra (X, *, 0) is said to be a QI_I -algebra if for each $x, y \in X$,

x * y = 0 = y * x implies x = y.

Example 3.17. Let $X = \{0, 1, 2, 3\}$ be a set with the following Cayley table.

*	0	1	2	3
0	0	0	0	0
1	1	0	1	2
2	2	2	0	2
3	3	3	3	0

Then, by using computer programming, it is easy to check that (X, *, 0) is a QI₁-algebra.

Proposition 3.18. Let $(X, *, 0_X)$ be a QI₁-algebra, $(Y, \Box, 0_Y)$ a QI-algebra and $\phi: X \to Y$ a QI-homomorphism. Then ϕ is QI-monomorphism if and only if ker $f = \{0_X\}$.

Proof. The necessity part is Proposition 3.14 (ii). To prove the sufficiency part, assume that ker $f = \{0_x\}$. Let $x, y \in X$ such that $\phi(x) = \phi(y)$. Then $\phi(x * y) = \phi(x) \square \phi(y) = \phi(x) \square \phi(x) = 0_y$. That is $x * y \in \ker f$. Similarly, we

can show that $y * x \in \ker f$. Since X is a QI₁-algebra, x = y. Hence ϕ is injective.

Proposition 3.19. Let M and N be normal QI-subalgebras of a QI-algebra (X, *, 0) such that $N \subseteq M$. Then M/N is a normal QI-subalgebra of X/N.

Proof. Let $[x_1]_N *'[x_2]_N, [y_1]_N *'[y_2]_N \in M_N'$. Then $[x_1 * x_2]_N, [y_1 * y_2]_N \in M_N'$. That is $x_1 * x_2, y_1 * y_2 \in M$. Since M is normal, $(x_1 * x_2) * (y_1 * y_2), (x_1 * y_1) * (x_2 * y_2) \in M$. Thus $[(x_1 * x_2) * (y_1 * y_2)]_N, [(x_1 * y_1) * (x_2 * y_2)]_N \in M_N'$. Hence $([x_1]_N *'[x_2]_N) *'([y_1]_N *'[y_2]_N), ([x_1]_N *'[y_1]_N) *'([x_2]_N *'[y_2]_N) \in M_N'$. Therefore, M_N' is a normal QI-subalgebra of X_N' .

In Example 3.5, we have shown that a QI-ideal need not be normal.

Definition 3.20. Let I be a QI-ideal of a QI-algebra (X, *, 0). Then X is called a *normal QI-ideal* of X if it is normal.

Example 3.21. Let $X = \{0, 1, 2, 3\}$ be a set with the following Cayley table.

*	0	1	2	3
0	0	2	1	0
1	1	0	1	1
2	2	2	0	2
3	3	2	3	0

Then, by using computer programming, it is easy to check that (X, *, 0) is a QI-algebra and $I = \{0, 3\}$ is a normal QI-ideal.

Proposition 3.22. Let (X, *, 0) be a QI-algebra and $I \subseteq X$. Then I is a normal QI-subalgebra of X if and only if I is a normal QI-ideal of X.

Proof. The sufficiency part follows from Proposition 3.3. To prove the necessity part, let $x, y \in X$ such that $x * y \in I$

and $y \in I$. Since I is a QI-subalgebra, $0 \in I$. Since $0, y \in I$ and I is a QI-subalgebra, we have that $0 * y \in I$. Since

I is normal, $x = x * 0 = (x * 0) * 0 = (x * 0) * (y * y) \in I$. Therefore, *I* is a QI-ideal of *X*.

Proposition 3.23. Let $(X, *, 0_X)$, $(Y, \Box, 0_Y)$ be QI-algebras and $f: X \to Y$ be a QI-homomorphism. Then ker f is a QI-ideal of X.

Proof. Since $f(0_x) = 0_y$, we have that $0_x \in \ker f$. Let $x, y \in X$ such that $x * y \in \ker f$ and $y \in \ker f$. Then

 $f(x) = f(x) \square 0_y = f(x) \square f(y) = f(x * y) = 0_y$. Thus $x \in \ker f$. Hence $\ker f$ is a QI-ideal of X.

In Example 3.15, we have shown that a kernel of a QI-homomorphism need not be normal.

Definition 3.24. Let $(X, *, 0_X)$, $(Y, \Box, 0_Y)$ be QI-algebras and $f: X \to Y$ be a QI-homomorphism. We say that f is a normal QI-homomorphism if ker f is a normal QI-ideal of X.

Theorem 3.25. (The first isomorphism theorem on QI-algebras) Let $(X, *, 0_X)$ and $(Y, \Box, 0_Y)$ be QI₁-algebras. If $\varphi: X \to Y$ be a normal QI-homomorphism, then

$$X/\ker \varphi \cong \varphi(X)$$

Proof. Since φ is a normal QI-homomorphism, ker φ is normal. Then $\frac{X}{\ker \varphi}$ is a quotient QI-algebra of X by

ker φ . Let $K = \ker \varphi$. Define a mapping $\phi: X/_K \to Y$ by

$$\phi([x]_{K}) = \varphi(x)$$

for all $x \in X$. We will show that ϕ is well-defined. Let $[x]_{K} = [y]_{K} \in X/_{K}$. Then $x \sim_{K} y$. It follows that $x * y, y * x \in K$. Thus $\varphi(x) \Box \varphi(y) = \varphi(x * y) = 0 = \varphi(y * x) = \varphi(y) \Box \varphi(x)$. Since Y is QI₁-algebra, $\varphi(x) = \varphi(y)$. That is $\phi([x]_{\kappa}) = \phi([y]_{\kappa})$. Since $\phi([x]_{\kappa} *'[y]_{\kappa}) = \phi([x*y]_{\kappa}) = \phi(x*y) = \phi(x) \Box \phi(y) = \phi([x]_{\kappa}) \Box \phi([y]_{\kappa})$, we have that ϕ is QI-homomorphism. Next, we will prove that ϕ is injective. Clearly, $[0]_{\kappa} \in \ker \phi$. Let $[x]_{\kappa} \in \ker \phi$. Then $\varphi(x) = \phi([x]_K) = 0_Y$. Thus $x * 0 = x \in K$. That is $x \sim_K 0_X$. It follows that $[x]_K = [0_X]_K$. Hence ker $\phi = \{[0]_{k}\}$. It implies by Proposition 3.18 that ϕ is QI- monomorphism. Therefore, $X_{k} \cong \phi(X)$.

4. ACKNOWLEDGMENTS

The author would like to express his sincere thanks to the referees for their constructive suggestions and valuable comments which improved the standard of this paper.

5. REFERENCES

- [1] Abdalhussein M. S., "On a Fuzzy Completely Closed Filter with Respect of Element in a BH-algebra" Asian Journal of Applied Science, vol. 5, no. 2, pp. 467-476, 2017.
- [2] Ahn S. S., Ko J. M., Saeid A. B., "On Ideals of BI-algebras", J. Indones. Math. Soc., vol. 25, no. 1, pp. 24-34, 2019.
- [3] Bandaru R. K., "On QI-algebras", Discuss. Math. Gen. Algebra Appl., vol. 37, pp. 137-145, 2017.
- [4] Imai Y., Iseki K., "On Axiom Systems of Propositional Calculi", XIV, Proc, Japan Acad., vol. 42, pp. 19-22, 1966.
- [5] Iseki K., "On BCI-algebras", Math. Sem. Notes, Kobe Univ., vol. 8, pp. 125-130, 1980.
- [6] Jun Y. B., Roh E. H., Kim H. S., "On BH-algebras". Scientiae Mathematicae, vol. 1, no. 3, pp. 347-354, 1998.
- [7] Megalai M., Tamilarasi A., "TM-algebra-An Introduction", Computer Aided Soft Computing Techniques for Imaging and Biomedical Applications, CASCT, pp. 17-23, 2010.
- [8] Neggers J., Ahn S. S., Kim H. S., "On Q-algebras", Int. J. Math. And Math. Sci., vol 27, pp. 749-757, 2001.
- [9] Neggers J., Kim H. S., "On B-algebras", Mate. Vesnik, vol 54, pp. 21-29, 2002.
 [10] Neggers J., Kim H. S., "On d-algebras", Mathematica Slovaca, vol 49, pp. 19-26, 1999.
- [11] Prabpayak C., "Some Homomorphism Properties of TM-algebras", Applied Mechanics and Material, vol. 866, pp. 406-409, 2017.
- [12] Prabpayak C., Leerawat U., "On Ideal and Conguences in KU-algebras", Sci.Magna, vol. 5, no. 1, pp. 54-57, 2009
- [13] Prabpayak C., Leerawat U., "On Isomorphisms of KU-algebras", Sci.Magna, vol. 5, no. 3, pp. 25-31, 2009

Asian Journal of Applied Sciences (ISSN: 2321 – 0893) Volume 8 – Issue 3, June 2020

- [14] Saeid A. B., Kim H. S., Razaei A., "On BI-algebras" An. St. Univ. Ovidius Constanta, vol. 25, pp. 177-194, 2017.
- [15] Saeid A. B., Fatemidokht H., Flaut C., Rafsanjani M.K., "Some connections between BCK-algebras and n-ary block codes", Soft Comput., vol. 22, pp. 41-46, 2018.
- [16] Saeid A. B., Flaut C., Mayerova S. K., Afshar M., Rafsanjani M.K., "On codes based on BCK-algebras", J. Intell. Fuzzy Syst., vol. 29, no. 5, pp. 2133-2137, 2015.
- [17] Saeid A. B., Motamed S., "A new filter in BL-algebras", J. Intell. Fuzzy Syst., vol. 27, no. 6, pp. 2949-2957, 2014.
- [18] Saeid A. B., Zahiri S., "Radicals in MTL-algebras", Fuzzy Set Syst., vol. 236, pp. 91-103, 2014.