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_________________________________________________________________________________ 

ABSTRACT— Flows of variable viscosity fluids have many industrial applications in fluid mechanics and in 

engineering such as pump flow for high viscosity fluids. In most cases the fluid viscosity is mainly temperature 

dependent. Numerical investigation of such flows involves the solution of the Navier-Stokes equations with an extra 

difficulty arising from the fact that the viscosity is not constant over the flow field. This article presents an analytical 

solution of the Navier-Stokes equations for the case of laminar flows in rotating systems with variable viscosity fluids, 

aiming to provide reference solutions for the validation of numerical or empirical prediction models for such flows. In 

the present method, the analytical solution of the flow field is achieved by expressing the flow variables by using 

combination of Bessel and exponential functions. It is shown that the proposed solution satisfies the governing 

equations. 
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1. INTRODUCTION 

 In the previous years, problems of fluid flow through porous ducts have aroused the interest of Engineers and 

Mathematicians; the problems have been studied for their possible applications in cases of transpiration cooling, gaseous 

diffusion, drinking water treatment as well as biomedical engineering. The cases where an exact solution for the Navier-

Stokes equations can be obtained are of particular importance in order to describe fluid motion of viscous flows. 

However, since the Navier-Stokes equations are non-linear, there cannot be a general method to solve analytically the full 

system of equations. Exact solutions on the other hand are very important for many reasons. They provide a reference 

solution to verify the accuracies of many approximate methods such as numerical and/or empirical ones. Although, 

nowadays, computer techniques make the complete integration of the Navier-Stokes equations feasible, the accuracy of 

numerical results can be established only by comparison with an exact solution [1]. Due to the non-linearity of the 

Navier-Stokes equations and the inapplicability of the superposition principle for non-linear partial differential equations, 

exact solutions are difficult to obtain. For this reason, only a limited number of exact solutions exist, which under certain 

assumptions a number of terms in the equations of motion either disappear automatically or may be neglected and the 

resulting equations reduce to a form that can be readily solved. Wang [2] has given an excellent review of these solutions 

of the Navier-Stokes equations. 

A family of exact solutions was determined for steady plane motion of an incompressible fluid of variable viscosity 

with heat transfer. This method consists of flows for which the vorticity distribution is proportional to the stream function 

perturbed by an exponential stream. Defining a transformation variable, the governing Navier-Stokes equations are 

transformed into simple ordinary differential equations and a class of exact solution is obtained in [3]. 

The exact solutions of the Navier-Stokes equations when the viscosity is variable are rare, however the literature in 

which the viscosity is variable, is dependent upon the space, time, temperature, pressure etc. Martin [4] for the first time 

used an elegant method in the study of the Navier-Stokes equations for an incompressible fluid of variable viscosity. 

Martin reduced the order of the governing equations from second order to first order by introducing the vorticity function 

and the generalized energy function.  
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Naeem and Nadeem [5] generalized Martin’s approach to study the steady-state, plane, variable viscosity, solving the 

incompressible Navier-Stokes equations. They transformed the equations to a new system with viscosity, vorticity, speed 

and energy function. The transformation matrices included the unknown functions and determined some exact solutions 

for vortex, radial and parallel flows. 

Naeem [6] presented recently a class of exact solutions of the equations governing the steady plane flows of 

incompressible fluid of variable viscosity for an originally specified vorticity distribution. 

Some exact solutions of Navier-Stokes equations are also reported in the literature [7-13] in which the vorticity 

distribution is prescribed such that the governing equations written in terms of the stream function become linear. 

Some researchers [14, 15] have used hodograph transformation in order to linearize the system of governing 

equations. 

Some authors [16-18] have used inverse methods where some a priori conditions were assumed about the flow 

variables and have found some exact solutions. The above said solutions have been found for the flow of fluid with 

constant viscosity. But in many situations in the fluid flow, where the pressure and temperature gradients are high or in 

case of electrically conducting flow where the magnetic field plays dominant role, the viscosity is no longer constant. 

The effects of linearly varying viscosity and thermal conductivity on steady free convective flow of a viscous 

incompressible fluid along an isothermal vertical plate in the presence of heat sink were investigated in [19].  The 

governing equations of continuity, momentum and energy are transformed into coupled and non-linear ordinary 

differential equations using similarity transformation and then solved using Runge-Kutta fourth order method. 

The problem of heat transfer and entropy generation in the flow of a variable viscosity fluid passing through a 

cylindrical pipe with convective cooling was studied in [20].  

The effect of variable viscosity together with thermal stratification on free convection flow of non- Newtonian fluids 

along a non-isothermal semi infinite horizontal plate embedded in a saturated porous medium was investigated in [21]. 

The governing equations of continuity, momentum and energy were transformed into non linear ordinary differential 

equations using similarity transformations and then solved by using Runge–Kutta–Gill method. Governing parameters 

for the problem under study were the variable viscosity, thermal stratification parameter, non – Newtonian parameter and 

the power law index parameter. 

Variable viscosity Couette flow was investigated in [22] by solving analytically the Navier-Stokes equations using a 

perturbation method coupled with a Hermite-Padė approximation technique to obtain the velocity and temperature 

distributions. 

In the present method, it is the first attempt, to the authors’ knowledge, that an analytical solution of the Navier-

Stokes equations written in cylindrical coordinates is obtained for the case of incompressible flow for temperature 

dependent viscosity. It is proven that the analytical solution obtained satisfies the partial differential equations. This 

contribution aims to present a general solution of the equations. The specific boundary conditions depend from case to 

case and each researcher who wishes to apply the present method has just to implement the boundary conditions of his 

particular problem in order to obtain the appropriate solution. 

2. GOVERNING EQUATIONS 

Considering that the model aims to describe the motion of a Newtonian fluid, the Navier-Stokes equations are the 

governing equations of the problem [23]. It was chosen to express the equations in cylindrical coordinates because it is 

more convenient for axisymmetric bodies or rotating systems. Moreover since many applications of rotating systems 

concern fluid rotating machinery such as compressors, turbines or pumps, the relative frame of reference is preferred. In 

this case the relative velocity is linked to the absolute velocity and the rotation speed of the relative system of 

coordinates: 

 V W U W r         (1) 

where 
r r z zV v i v i v i         is the absolute velocity vector, 

r r z zW u i u i u i         is the relative velocity 

vector and  U r i     is the rotating speed of the relative system of coordinates.  

The continuity equation is [23]: 

 v
t





  


     (2) 

The momentum equation is [23]: 
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 
   

v
vv P g

t


  


       


   (3) 

The energy equation is [23]: 

 
       :

E
Ev q P v v

t


 


         


  (4) 

The following simplified assumptions are made:  

a) steady state conditions, that means all partial derivatives of  type   ... t    are set to zero. 

b) incompressible flow, meaning that the fluid density is constant. 

c) circumferential variations of  flow quantities are zero, that means all partial derivatives of type   ...      

are set to zero. 

d) gravitational forces due to the fluid weight are negligible. 

 

Having adopted the above simplifications, the partial differential equations take the form: 

The continuity equation becomes: 

     0r r zu u u

r r z

 
  
 

     (5) 

The system of the steady-state, incompressible Navier-Stokes equations can be written: 

 

2 2 2
2

2 2 2

1 1
2r r r r r r

r z

uu u u u u uP
u u r u

r r z r r r r r z





 

 

     
                

      
 

 

1 2r z ru u u

z z r r r

 

 

    
      
     

   (6) 

 

 

2 2

2 2 2

1
2r

r z r

u u u u u u u u
u u u

r z r r r r r z

      




      
            

     
 

1 1u u u

z z r r r

   

 

    
       

    
    (7) 

 
2 2

2 2

1 1 1 2z z z z z r z z
r z

u u u u u u u uP
u u

r z z r r r z r z r z z

  

   

           
                 

            
 (8) 

The energy equation is becoming: 

2 2

2 2

1
0

T T T

r r r z

  
   

  
     (9) 

 

The following equation was chosen to express the viscosity in terms of temperature [23, 24]: 

      0 1 T           (10) 

where β is the thermal expansion of the fluid. 
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3. NON-DIMENSIONALISATION 

The system of the above partial differential equations can be written in non-dimensional form choosing the following 

parameters: 

* ru
u

L



, 

* u
v

L







,

* zu
w

L



 

* z
z

L
 , 

* r
R

L
  

where L  is a characteristic length of the geometry in consideration. 

 
*

2

P
P

L 


 
. 

 
*

2

pc T
T

L 





, 

*

0

H



  

2

0

Re
L 



 
 , 

 
2

p

L
Ec

c

  
  

where Re and Ec are the non-dimensional Reynolds and Eckert numbers [23]. 

Using the above non-dimensional parameters, the continuity equation can be written: 

* * *

* * *
0

u u w

R R z

 
  

 
     (11) 

Using the above non-dimensional parameters, the r-momentum equation can be written: 

* * *2 * * 2 * * * 2 *
* *

* * * * *2 * * * *2

1

Re

u u v P H u u u u
u w

R z R R R R R R z

      
             
      

 

* * * * * *
* *

* * *

1 1 2
2

Re Re Re

H u H w H u
R v

z z z R R R

     
         

     
  (12) 

The non-dimensional form of the θ-momentum equation is: 

* * * *
* *

* * *

v v u v
u w

R z R

  
    
 

* * * * *
*

* * * * *2 * *

1
2

Re

H v v v v
v

R R R R R z z

        
           

        
 

* * * * *

* * * * *

1 1

Re Re

v v v

z z R R R

    
       

    
  (13) 

The non-dimensional form of the z-momentum equation is: 

* * * * 2 * * 2 *
* *

* * * *2 * * *2

1

Re

w w P H w w w
u w

R z z R R R z

      
           
      

 

* * * * *

* * * * *

1 2

Re Re

H u w H w

R z R z z

     
      
     

    (14) 

Using the above non-dimensional parameters, the energy equation is becoming:    

     

2 * * 2 *

*2 * * *2

1
0

T T T

R R R z

  
   

  
    (15)  

4.  SOLUTION OF THE EQUATIONS 

Resolving the system of equations (11) to (15), it was found that the axial velocity *w , the radial velocity *u , the 

tangential velocity 
*v  can be expressed in terms of the functions: 
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 
**

0

b zw J rb e                 (16) 

       
**

1

b zu J rb e         (17) 

 
*v r                    (18) 

where  0J rb and  1J rb  are the Bessel functions of the first kind and 2,4056405b   defined in details in [25]. 

The pressure 
*P , the temperature 

*T and  the viscosity 
*H can be expressed in terms of the functions: 

   
** 2 2 2

0 1
2

b zP J rb J rb e
            (19) 

2
1

Re

b



         (20) 

 *

0

bzT A B J rb e         (21) 

*

0( ) b zH J b r e          (22) 

where the constants 
1 1

,A B
Ec Ec

    

Implementing the above solutions (equations 16 to 22) to the non-dimensional partial differential equations (11) to 

(15) it is proven that the governing equations are satisfied. 

4.1 Continuity equation 

Substituting the solutions for 
* * *, ,u w v  the continuity equation yields: 

 
*

* * *2
1 * 1 * 0

* * *

(1 )
b z k t b z k t b z k t

B BJ e e J e e J e e A RR R

R R z

        
 

          
    

 
 

*

*

2 2

* *
*1 1

0* ** *

( ) ( )
( )

b z k t
b z k tJ b R e e J b RB B

b J b R e e
R RR R

  
       

           
  

**

0( ) ( ) 0b z k tb J b R e e        

meaning that the continuity equation is satisfied. 

 

4.2 R-momentum equation 

 Introducing the expressions for the flow velocities 
* * *, ,u v w , in the r-momentum equation, one can see that these 

expressions satisfy the equation. 

The left hand side of the equation is: 

     
    

*

*

2 2
*

* * *2 2 1
* * *

0 1* * * *

b z

b z
e J b Ru u v

w b e J b R J b R
R z R R




  

          
 

      
* 2

* *

0 1

b zb e J b R J b R     
  

* 2
2 *

1 *

*

b ze J b R
R

R

   
    

The right hand-side terms of the equation are: 

The term 

*

*

P

R




is becoming: 
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   

*2

*
2 * 2 *

1 0* *

2
1

Re

2

b zb
e

P
J b R J b R

R R

  
           

  

   
 

    
*

*

12 * * * *

1 0 0 1*

1
2 2

Re 2

b z
J b Rb

e J b R b J b R J b R b J b R
R

 
                             

     
* *

*
1 1 1

2 * 2 2 * 2 2 *

2

* * *

2 21

Re 2 Re

b z b z

b z
J b R b e J b R e J b Rb

e
R R R

   

 
     

      
 

 

The terms: 

* 2 * * * 2 *

*2 * * * *2

1

Re

H u u u u

R R R R z

   
      
   

  

 
   

 

* *

*

* **
0 12 *

1 2*
*

2

Re

b z b z

b z
b e J b R e J b RH

b e J b R
R R

 



     
       



   

 
 

* *

*

* *

0 1 2 *

12*
*

2
0

b z b z

b z
b e J b R e J b R

b e J b R
R R

 



    
      



 

The terms:
* * * * * *

* *

* * *

1 1 2
2

Re Re Re

H u H w H u
R v

z z z R R R

     
          

     
 

* *

*
2 2 * * 2 2 *

* 2 2 * *0 1 1
0 1 *

2 ( ) ( ) 2 ( )2
2 ( ) ( )

Re Re

b z b z
b zb e J b R J b R b e J b R

R b e J b R J b R
R

 


        
             

 

 

*2 2 * *
* 1

* *

2 ( )

Re

b zb e J b R P
R

R R

   
   

 
 

Thus, we see that the R-momentum equation satisfies the proposed solution. 

4.3 Θ-momentum equation 

Introducing the expressions for the flow velocities * * *, ,u v w , in the θ-momentum equation, one can see that these 

expressions satisfy the equation. 

The left hand side of the equation is: 

 
*

* * * * *
* * *

1* * * *

( )
( ) b zv v u v R

u w J b R e
R z R R

    
         
  

 
 

*

*

* *
*

1
*

0 * *

( ) ( )( )
( )

b z

b z
J b R e RR

J b R e
z R




     

    


 

* ** *

1 1( ) ( ) 0b z b zJ b R e J b R e         

The right-hand side of the θ-momentum equation is: 

The term  

   
* *

* * *
* *

0 0* * *

1 1 ( ) 1
( ) ( ) 0 0

Re Re Re

b z b zv R
b J b R e b J b R e

z z z

    
              
  

 

The term 
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 
*

* * * * *
*

1* * * * *

1 1 ( ) ( )
( ) 0

Re Re

b zv v R R
b J b R e

R R R R R

       
              
     

 

The term 

2 * * * *

* * * * *2 * *

1

Re

L H v v v v

R R R R R z z

           
        

        

 

* ** **

0 0

* * *2 * *

( ) ( )1 1 1
( 1) ( 1) 0 0

Re Re

b z b zJ b R e J b R eR

R R R R R

       
              
   

  

Hence the proposed solution satisfies the θ-momentum equation. 

4.4 Z-momentum equation 

Introducing the expressions for the flow velocities * * *, ,u v w , in the z -momentum equation, one can see that these 

expressions satisfy the equation. 

The left hand side of the equation is: 

* *
* *

* *

w w
u w

R z

 
   
 

 

        
  

*

* * *

*

0
* * *

1 1 0 *

b z

b z b z b z
J b R e

J b R e b e J b R J b R e
z



  
  

            


   
*2 2 * 2 *

1 0

b zb e J b R J b R        
 

 

The term 

*

*

P

z





 can be written: 

    
   

 
*2 * 2 *

2
1 0*

2 * 2 *

1 0* * *

2

2

b zJ b R J b R eP
J b R J b R

z z z




 

 
                    

   
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2
1
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The term  

* 2 * * 2 *
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1
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H w w w

R R R z

   
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 can be written: 
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 
 

   
 

*

* * * *
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0 1 12 * 2 *
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0
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b z b z b z b z
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
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The term 
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1

Re

H u w

R z R

   
   
   

 can be written as: 

 
*2 2 2 ** * *

1
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Re Re

b zb e J b RH u w
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The term 

* *

* *

2

Re

H w

z z

 
 
 

 can be written as: 

* *

* *

2

Re

H w

z z

 
 
 

=      
 

*
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Re Re
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b e J b R

b e J b R b e J b R

 

 
   
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Substituting the above expressions to the non-dimensional form of the z-momentum equation, we obtain: 

       
* *2 2 * 2 * 2 2 * 2 *

1 0 1 0

2
1

Re

b z b z b
b e J b R J b R b e J b R J b R                          

 

   
* *2 2 2 * 2 2 2 *

1 02 2

Re Re

b z b zb e J b R b e J b R          
   

which means that proposed solution for the temperature satisfies the z-momentum equation. 

4.5 Energy equation 

2 * * 2 *

*2 * * *2

1
0

T T T

R R R z

  
   

  
 

 

Since the proposed solution for temperature is: 
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** * b z
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The term  

*
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T

z


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The derivative 
  
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The derivative 
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Thus the energy equation is: 

 
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1 12 *
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 
*2 *

0 0b zb B e J b R       

which means that the proposed solution for the temperature satisfies the energy equation. 

5. CONCLUSIONS 

In this article, an original work has presented an exact solution of the Navier-Stokes equations in cylindrical 

coordinates for incompressible, laminar axisymmetric variable viscosity flows in rotating systems. The fluid viscosity 

was assumed to be a function of temperature. The solution field consists of the Bessel functions of the first kind and of 

exponential functions. It was shown that equations (16) to (22) form a solution of the system of the Navier Stokes 

equations governing the flow field. Thus the present method can be used to provide reference solutions for numerical and 

empirical methods for flow field predictions in rotating systems involving fluids of variable viscosity.  

 

6. REFERENCES 

[1] Turkyilmazoglu M., “Exact solutions for the incompressible viscous fluid of a porous rotating disk”, International 

Journal of Non-Linear Mechanics, vol.44, pp. 352-357, 2009. 

[2]  Wang C.Y., “Exact solutions of the steady-state Navier-Stokes equations”, Annual Revue Fluid Mechanics, vol.23, 

pp.159-177, 1991. 

[3] Jamil M., “A Class of Exact Solutions to Navier-Stokes equations for the given vorticity”, International Journal of 

Nonlinear Science, vol.9, no.3, pp.296-304, 2010. 

[4] Martin M.H., “The flow of a viscous fluid”, Arch. Rat. Mech. Anal., vol.41, pp.266-286, 1971. 

[5] Naeem R.K., Nadeem S.A., “Study of plane steady flows of an incompressible fluid of variable viscosity using 

Martins method, International Journal of Applied Mechanics and Engineering”, vol.1, no. 3, pp.397-433, 1966. 

[6] Naeem R.K., “A class of exact solutions of the Navier-Stokes equations for incompressible fluid of variable 

viscosity for defined vorticity Distribution”, International Journal of Applied Mathematics and Mechanics, vol.7, no. 

4, pp. 97-118, 2011. 

[7] Naeem R.K. and Younus S., “Exact solutions of the Navier-Stokes equations for incompressible fluid of variable 

viscosity for prescribed vorticity distributions”, International Journal of Applied Mathematics and Mechanics, vol.6, 

no.5, pp. 18-38, 2010. 

[8] Naeem R.K. and M. Jamil, “On plane steady flows of an incompressible fluid with variable viscosity”, International 

Journal of Applied Mathematics and Mechanics, vol.2, no.3: pp.32-51, 2006. 

[9] Mishra P., Mishra R.B. and Srivastava A.K., “Some Exact Solutions of Plane Steady Hydromagnetic Flow with 

Variable Viscosity”, Journal of Mathematics Research, vol.3, no.1, 2011. 

[10] Naeem R.K., Mansoor A., Khan W.A. and Aurangzaib W.A., “Exact Solutions of Steady Plane Flows of an 

Incompressible Fluid of Variable Viscosity Using (ξ,ψ)- or (η,ψ)–Coordinates”, International Journal of 

Computational and Mathematical Sciences, vol.3, no.1, 2009. 

[11] Naeem R.K., Khan W.A., Akhtar M. and Mansoor A., “Some Rotational Flows of an Incompressible Fluid of 

Variable Viscosity, International Journal of Computational and Mathematical Sciences”, vol.5, no.2, 2009. 

[12] Naeem RK and Jawed A., “Some exact solutions of motion of an inviscid compressible fluid via one-parameter 

group”, Pak. J. Sci. Ind. Res., vol. 39, pp. 5-8, 1996. 

[13] Naeem RK and Ali S.A., “A Class of exact solutions to equations governing the steady plane flows of an 

incompressible fluid of variable viscosity via von-Mises variables”, International Journal of Applied Mechanics and 

Engineering, vol. 6, no. 2, pp. 395-436, 2001 

[14] Chandna O.P., Barron R.M. and Chew K.T., “Hodograph transformations and solutions in variably inclined MHD 

plane flows”, J. Eng. Math, vol.16, pp.223-243, 1982. 

[15] Siddiqui A.M., Hayat T., Siddiqui J. and Asghar S., “Exact Solutions of Time-dependent Navier-Stokes Equations 

by Hodograph-Legendre transformation Method”, Tamsui Oxford Journal of Mathematical Sciences, Aletheia 

University, vol. 24, no. 3, pp.257-268, 2008. 

[16] Chandna O.P. and Oku-Ukpong E.O., “Flows for Chosen vorticity function Exact solutions of the Navier-Stokes 

Equations”, Int. J. Math. and Math. Sci., vol.17, no. 1, pp.155-164, 1994. 

[17] Hayat T., Naeem I., Ayub M., Siddiqui A.M., Asghar S., Khalique C.M., “Exact solutions of second grade aligned 

MHD fluid with prescribed vorticity”, Nonlinear Analysis: Real world Applications, vol.46, pp.89-97, 1988. 

[18] Kannan K. and Rajagopal K.R., “Flow through porous media due to high pressure gradients”, Applied Mathematics 

and Computation, vol.199, pp.748-759, 2008. 

[19] Mahanti N.C. and Gaur P., “Effects of Varying Viscosity and Thermal Conductivity on Steady Free Convective 

Flow and Heat Transfer Along an Isothermal Vertical Plate in the Presence of Heat Sink”, Journal of Applied Fluid 

Mechanics, vol. 2, no. 1, pp. 23-28, 2009. 



Asian Journal of Applied Sciences (ISSN: XXXX – XXXX) 

Volume 01– Issue 01, April 2013  

Asian Online Journals (www.ajouronline.com)  30 

 

[20] Tshehla M.S., Makinde O.D. and Okecha G.E., “Heat transfer and entropy generation in a pipe flow with 

temperature dependent viscosity and convective cooling”, Scientific Research and Essays, vol. 5, no.23, pp. 3730-

3741, 2010. 

[21] Moorthy M.B.K. and Senthilvadivu K., “A Study on Variable Viscosity on Free Convection Flow of  Non- 

Newtonian Fluids along a Horizontal Surface with Thermal Stratification”, European Journal of Scientific Research, 

vol.52, no.1, pp.61-69, 2011 

[22] Makinde, O.D. and Maserumule, R.L., “Thermal criticality and entropy analysis for a variable viscosity Couette 

flow”, Psys. Scr., vol.78, pp.1-6. 2008 

[23] Bird R.B, Stewart W.E., Lightfoot E.N., “Transport Phenomena”, 2nd edition, John Wiley & Sons, Inc., 2002. 

[24] Schilling R., Siegle H. and Stoffel B, “Strömung und Verluste in drei wichtigen Elementen radialer Kreiselpumpen. 

Eine Literaturübersicht”, Universität Karlsruhe (TH) Nr. 16., 1974. 

[25] Kreuszig E., “Advanced Engineering Mathematics”, 11th edition, John Wiley & Sons Inc. pp: 187-191. 2011. 


