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ABSTRACT---- Obtaining analytical solutions of nonlinear differential equations and nonlinear systems of partial and 

ordinary differential equations is an important topic in various fields of Mathematics. Many techniques are available 

in the literature. In this note, the enhanced modified simple equation method (EMSEM) is applied to system of shallow 

water wave equations.  
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1. INTRODUCTION 
Many methods are available for constructing analytical solutions of nonlinear equations and systems of equations: the Exp-

function method [1,2], the tanh-function method [3,4], the homogeneous balance method [5,6], the (G’/G)-expansion 

method [7,8], the Backlund transformation method [9], the Jacobi elliptic function method [10], the modified simple 

equation method [11,12], the enhanced modified simple equation method [13].  

In the sequel, we obtain new analytical solutions of the system of shallow water wave equations 

𝑢𝑡 + 𝑢𝑥𝑣 + 𝑢𝑣𝑥 + 𝑣𝑥𝑥𝑥 = 0                   (1)         
𝑣𝑡 + 𝑢𝑥 + 𝑣𝑣𝑥 = 0      

using the enhanced modified simple equation method. 

In Section 2, the enhanced modified simple equation method is presented. In Section 3, the method is applied to the system 

of shallow water wave equations. Finally, discussion and concluding remarks are given in Section 4. 

 

 

2. THE ENHANCED MODIFIED SIMPLE EQUATION METHOD 
Any nonlinear partial differential equation is of the form 

𝐹(𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑥𝑥 , 𝑢𝑥𝑡 , 𝑢𝑡𝑡 , … ) = 0 (2) 

where 𝐹 is a polynomial of 𝑢 and its partial derivatives. The steps are as follows. 

Step 1: Using the transformation 

𝑢(𝑥, 𝑡) = 𝑢(𝜁),     𝜁 = 𝑝(𝑡)𝑥 + 𝑞(𝑡),     (3) 

where 𝑝(𝑡) and 𝑞(𝑡) are differentiable functions of 𝑡, from (2) and (3) we get the Ordinary differential equation 

𝐹(𝑢, (𝑝′𝑥 + 𝑞′)𝑢′, 𝑝𝑢′, … ) = 0               (4) 

Step 2: Assume (4) has solution 

𝑢(𝜁) = ∑ 𝐴𝑘(𝑡) [
𝜑′(𝜁)

𝜑(𝜁)
]

𝑘

                      (5)

𝑛

𝑘=0

 

where 𝐴𝑘(𝑡) and 𝜑(𝜁) are unknown expressions to be computed.  It is assumed that 𝐴𝑛 ≠ 0. 
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Step 3: Determine the positive integer 𝑛 in equation (5) by considering the homogeneous balance between the highest order 

derivatives and the nonlinear terms in equation (4). 

Step 4: Substitute equation (5) into equation (4). Gather all the terms in the polynomial of the same power of 𝜑(𝜁)−𝑗, where 

𝑗 ≥ 0, and equate all the coefficients of these terms to zero. This yields a system of equations which can be solved to find 

𝐴𝑘(𝑡) and 𝜑(𝜁). Consequently, we can get the exact solution of equation (2). 

 

3. APPLICATION TO SHALLOW WATER WAVE EQUATIONS 

In this section, we obtain exact solutions of shallow water wave equations 

𝑢𝑡 + 𝑢𝑥𝑣 + 𝑢𝑣𝑥 + 𝑣𝑥𝑥𝑥 = 0                            

𝑣𝑡 + 𝑢𝑥 + 𝑣𝑣𝑥 = 0      

Note that (3) reduces it into  

𝑢′(𝑝′𝑥 + 𝑞′) + 𝑢′𝑝𝑣 + 𝑢𝑣′𝑝 + 𝑝3𝑣′′′ = 0  (6) 

𝑣′(𝑝′𝑥 + 𝑞′) + 𝑢′𝑝 + 𝑣𝑣′𝑝 = 0                      (7) 

Integrating  (7) with respect to 𝜁 yields 

𝑣(𝑝′𝑥 + 𝑞′) + 𝑢𝑝 +
𝑣2

2
𝑝 = 0              

Hence 

𝑢 = −𝑣 (
𝑝′

𝑝
𝑥 +

𝑞′

𝑝
) −

𝑣2

2
                                    (8) 

From (7) 

𝑢′ = −𝑣𝑣′ −
𝑣′

𝑝
(𝑝′𝑥 + 𝑞′)                                       (9) 

Replace 𝑢 and 𝑢′ by their expressions given in (8) and (9) respectively in (6) yields 

−3𝑣𝑣′(𝑝′𝑥 + 𝑞′) −
𝑣′

𝑝
(𝑝′𝑥 + 𝑞′)2 −

3

2
𝑣2𝑣′𝑝 + 𝑣′′′𝑝3 = 0 

which, after integration with respect to 𝜁 yields 

𝑣′′𝑝3 −
1

2
𝑝𝑣3 −

3

2
𝑣2(𝑝′𝑥 + 𝑞′) −

𝑣

𝑝
(𝑝′𝑥 + 𝑞′)2 = 0       (10) 

By balancing 𝑣′′ and 𝑣3, equation (10) has a solution of the following form: 

𝑣(𝜁) = 𝐴0(𝑡) + 𝐴1(𝑡) [
𝜑′(𝜁)

𝜑(𝜁)
]                                                 (11) 

where 𝐴0(𝑡) and 𝐴1(𝑡) are expressions to be computed. It is assumed that 𝐴1(𝑡) ≠ 0. We have 

𝑣′ = 𝐴1 (
𝜑′′

𝜑
− (

𝜑′

𝜑
)

2

)                                                             (12) 

𝑣′′ = 𝐴1 (
𝜑′′′

𝜑
−

3𝜑′𝜑′′

𝜑2
+ 2 (

𝜑′

𝜑
)

3

)                                      (13) 
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Substituting equations (11)-(13) into equation (10) and equating all the coefficients of 𝜑0, 𝜑0𝑥 , 𝜑−1, 𝜑−1𝑥, 𝜑−2, 𝜑−2𝑥 

and 𝜑−3 to zero, we get respectively 

𝑝

2
𝐴0

3 +
3

2
𝐴0

2𝑞′ +
(𝑞′)2

𝑝
𝐴0 = 0                                                   (14) 

3

2
𝐴0

2𝑝′ +
2𝑝′𝑞′

𝑝
𝐴0 = 0                                                                (15) 

𝐴1𝑝3𝜑′′′ −
3

2
𝑝𝐴1𝐴0

2𝜑′ − 3𝐴0𝐴1𝜑′𝑞′ −
(𝑞′)2

𝑝
𝐴1𝜑′ = 0      (16) 

3𝐴0𝐴1𝑝′𝜑′ +
2𝑝′𝑞′

𝑝
𝐴1𝜑′ = 0                                                    (17) 

3𝐴1𝑝3𝜑′𝜑′′ +
3

2
𝑝𝐴0𝐴1

2(𝜑′)2 +
3

2
𝐴0

2𝐴1
2(𝜑′)2𝑞′ = 0             (18) 

3

2
𝑝′𝐴1

2(𝜑′)2 = 0                                                                            (19) 

2𝐴1𝑝3(𝜑′)3 −
𝑝

2
𝐴1

3(𝜑′)3 = 0                                                  (20) 

From (19), it follows that 𝑝(𝑡) = 𝑘, where 𝑘 is some arbitrary constant different from zero.  Note that from (18), 𝐴0 ≠ 0, 

since otherwise, 𝐴1 must be zero which contradicts the fact that 𝐴1 ≠ 0. 

From (14), it follows that 

𝑘2𝐴0
2 + 3𝑘𝐴0𝑞′ + 2(𝑞′)2 = 0                                          (21) 

And hence  

𝐴0 =
−3𝑘𝑞′±√𝑞𝑘2(𝑞′)2−8𝑘2(𝑞′)2

2𝑘2                                    (22)   

where 𝑞(𝑡) is an arbitrary function of 𝑡. 

From (16) 

𝜑′′′ = 𝑀𝜑′                                                                          (23) 

Where  

𝑀 = (

3
2

𝑘𝐴0
2 + 3𝐴0𝑞′ −

(𝑞′)2

𝑘
𝑘3

)                                   (24) 

Equation (18) reduces to 

𝜑′ = 𝑁𝜑′′                                                                     (25) 

Where 

𝑁 = −
𝑘3

𝑘

2
𝐴0𝐴1+

𝐴0
2

2
𝐴1𝑞′

                                                   (26)      

where 𝐴1 = ±2𝑘 from (20). 
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Substitute equation (25) into equation (23), we conclude that 

𝜑′′′

𝜑′′
= 𝑀𝑁                                                                   (27) 

Integrating equation (27) with respect to 𝜁 yields 

𝜑′′ = 𝑐1𝑒𝑥𝑝[𝑀𝑁𝜁]                                                     (28) 

Substituting equation (28) into equation (25), we conclude that 

𝜑′ = 𝑐1𝑁𝑒𝑥𝑝[𝑀𝑁𝜁]                                                (29) 

Integrating equation (29) with respect to  𝜁 yields 

𝜑 = 𝑐2 + 
𝑐1

𝑀
 𝑒𝑥𝑝[𝑀𝑁𝜁]                                        (30) 

From (8), (11), (29), and (30) we get the following family of exact solutions of (1)  

𝑣(𝑥, 𝑡) = 𝐴0 + 𝐴1 (
𝑐1𝑁𝑒𝑥𝑝[𝑀𝑁𝜁]

𝑐2 + 
𝑐1

𝑀
 𝑒𝑥𝑝[𝑀𝑁𝜁]

) 

𝑢(𝑥, 𝑡) = −𝑣 (
𝑞′

𝑘
) −

𝑣2

2
 

4. CONCLUSION  

The enhanced modified simple equation method is applied successfully to the system of shallow water wave equations. 

New solutions are obtained. 
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