In Silico Design of PCR Primers to Amplify the Salt Tolerance Gene in Soybean

Authors

DOI:

https://doi.org/10.24203/ajas.v6i6.5532

Keywords:

FASTA, Glycine max, NCBI, NetPrimer, Primer3

Abstract

Soybean yield is decreased because of many stresses such as salt stress. Ionic and osmotic stresses are the effects of salt stress. An effective way of maintaining sustainable production in salt-affected soil is through breeding high salt tolerance soybean, which can be detected by PCR. The optimal PCR plays an important role in gene expression analysis. The success of a PCR-based method largely depends on the optimal primer sequence analysis in silico prior to a wet-bench experiment. Here we described designing of primer using web-based tools. Many types of online primer design software are available, which can be used free of charge to design desirable primers. The objective was to design of PCR primers to amplify the salt tolerance gene in soybean. A highly conserved region of 411 bases was detected by Clustal Omega. Primers were predicted using Primer3 based on conserved region, considering ideal conditions for primer length, hairpin, dimer, Tm, and GC%. The predicted forward and reverse primers were validated using NetPrimer. Both forward and reverse primers have shown significant similarity with salt tolerance gene and recommended to be used to amplify the salt tolerance gene in soybean.

References

R. M. A. Machado, R. P. Serralheiro, “Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinizationâ€, Horticulturae, vol. 3, no. 2: 30, 2017. doi: 10.3390/horticulturae3020030

M. Hasanuzzaman, K. Nahar, Md. M. Alam, P.C. Bhowmik, Md. A. Hossain, M. M. Rahman, M. N. V. Prasad, M. Ozturk, M. Fujita, “Potential Use of Halophytes to Remediate Saline Soilsâ€, BioMed Research International, Article ID 589341, 2014. doi:10.1155/2014/589341

K. Butcher, A. F. Wick, T. DeSutter, A. Chatterjee, J. Harmon, “Soil Salinity: A Threat to Global Food Securityâ€, Agronomy Journal, vol. 108, no. 6, pp. 2189-2200, 2016. doi: 10.2134/agronj2016.06.0368

R. Guan, J. Chen, J. Jiang, G. Liu, Y. Liu, L. Tian, L. Yu, R. Chang, L. Qiu, “Mapping and validation of a dominant salt tolerance gene in the cultivated soybean (Glycine max) variety Tiefeng 8â€, The Crop Journal, vol. 2, no. 6, pp. 358-365, 2014. doi: 10.1016/j.cj.2014.09.001

F. Anwar, G. M. Kamal, F. Nadeem, G. Shabir, “Variations of Quality Characteristics Among Oils of Different Soybean Varietiesâ€, Journal of King Saud University – Science, vol. 28, no. 4, pp. 332-338, ] 2016. doi: 10.1016/j.jksus.2015.10.001

S. Ren, C. Lyle, G. Jiang, A. Penumala, “Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thalianaâ€, Frontiers in Plant Science, vol. 7, Article 445, 2016. doi: 10.3389/fpls.2016.00445

K. Shu, Y. Qi, F. Chen, Y. Meng, X. Luo, H. Shuai, W. Zhou, J. Ding, J. Du, J. Liu, F. Yang, Q. Wang, W. Liu, T. Yong, X. Wang, Y. Feng, W. Yang, “Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesisâ€, Frontiers in Plant Science, vol. 8, Article 1372, 2017. doi: 10.3389/fpls.2017.01372

C. Bustingorri, R. S. Lavado, “Soybean Growth under Stable Versus Peak Salinityâ€, Scientia Agricola, vol. 68, no. 1, pp. 102-108, 2011. doi: 10.1590/S0103-90162011000100015

A. E. Sabagh, M. S. Islam, A. Ueda, H. Saneoka, C. Barutcular, “Increasing Reproductive Stage Tolerance to Salinity Stress in Soybeanâ€, International Journal of Agriculture and Crop Sciences, vol. 8, no. 5, pp. 738-745, 2015.

J. Zhang, D. Yang, M. Li, L. Shi, “Metabolic Profils Reveal Changes in Wild and Cultivated Soybean Seedling Leaves under Salt Stressâ€, PloS ONE, vol. 11, no. 7: e0159622, 2016. doi: 10.1371/journal.pone.0159622

F. Ledesma, C. Lopez, D. Ortiz, P. Chen, K. L. Korth, T. Ishibashi, A. Zeng, M. Orazaly, L. Florez-Palacios, “A Simple Greenhouse Method for Screening Salt Tolerance in Soybeanâ€, Crop Science, vol. 56, no. 2, pp. 585-594, 2016. doi: 10.2135/cropsci2015.07.0429

Y. He, Y. Chen, C. L. Yu, K. X. Lu, Q. S. Jiang, J. L. Fu, G. M. Wang, D. A. Jiang, “Photosynthesis and Yield Traits in Different Soybean Lines in Response to Salt Stressâ€, Photosynthetica, vol. 54, no. 4, pp. 630-635, 2016. doi: 10.1007/s11099-016-0217-7

J. D. Lee, J. G. Shannon, T. D. Vuong, H. T. Nguyen, “Inheritance of Salt Tolerance in Wild Soybean (Glycine soja Sieb. And Zucc.) Accession PI483463â€, Journal of Heredity, vol. 100, no. 6, pp. 798-801, 2009. doi: 10.1093/jhered/esp027

Y. Song, T. Nakajima, D. Xu, K. Homma, M. Kokubun, “Genotypic Variation in Salinity Tolerance and Its Association with Nodulation and Nitrogen Uptake in Soybeanâ€, Plant Production Science, vol. 20, no. 4, pp. 490-498, 2017. doi: 10.1080/1343943X.2017.1360140

H. Chen, H. He, D. Yu, “Overexpression of A Novel Soybean Gene Modulating Na+ And K+ Transport Enhances Salt Tolerance in Transgenic Tobacco Plantsâ€, Physiologia Plantarum, vol. 141, no. 1, pp. 11-18, 2011. doi: 10.1111/j.1399-3054.2010.01412.x

R. Guan, Y. Qu, Y. Guo, L. Yu, Y. Liu, J. Jiang, J. Chen, Y. Ren, G. Liu, L. Tian, L. Jin, Z. Liu, H. Hong, R. Chang, M. Gilliham, L. Qiu, “Salinity Tolerance in Soybean is Modulated by Natural Variation in GmSALT3â€, The Plant Journal, vol. 80, no.6, pp. 937-950, 2014. doi: 10.1111/tpj.12695

WYF. Li, F.L. Wong, S.N. Tsai, T.H. Phang, G.H. Shao, H.M. Lam, “Tonoplast-Located Gmclc1 And GmNHX1 from Soybean Enhance NaCl Tolerance in Transgenic Bright Yellow (BY)-2 Cellsâ€, Plant, Cell and Environment, vol. 29, no. 6, pp. 1122-1137, 2006. doi: 10.1111/j.1365-3040.2005.01487.x

G.Z. Luo, H.W. Wang, J. Huang, A.G. Tian, Y.J. Wang, J.S. Zhang, S.Y. Chen, “A Putative Plasma Membrane Cation/Proton Antiporter from Soybean Confers Salt Tolerance in Arabidopsisâ€, Plant Molecular Biology, vol. 59, no. 5, pp. 809-820, 2005. doi: 10.1007/s11103-005-1386-0

S. Ren, C. Lyle, G. Jiang, A. Penumala, “Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thalianaâ€, Frontiers in Plant Science, vol. 7, no. 445, 2016. doi: 10.3389/fpls.2016.00445

X. Qi, M.W. Li, M. Xie, X. Liu, M. Ni, G. Shao, C. Song, A.K.Y. Yim, Y. Tao, F.L. Wong, S. Isobe, C.F. Wong, K.S. Wong, C. Xu, C. Li, Y. Wang, R. Guan, F. Sun, G. Fan, Z. Xiao, F. Zhou, T.H. Phang, X. Liu, S.W. Tong, T.F. Chan, S.M.Yiu, S. Tabata, J. Wang, X. Xu, H. M. Lam, “Identification of A Novel Salt Tolerance Gene in Wild Soybean by Whole-Genome Sequencingâ€, Nature Communications, vol. 5, Article 4340, 2014. doi: 10.1038/ncomms5340

W. Wang, X. H. Cao, M. Miclaus, J. Xu, W. Xiong, “The Promise of Agriculture Genomicsâ€, International Journal of Genomics, Article ID 9743749, 2017. doi: 10.1155/2017/9743749

M.F. Parera, J. Racedo, M.G. Garcia, E.M. Pardo, C.M.L. Rocha, I.G. Orce, M.A. Chiesa, M.P. Filippone, B. Welin, A.P. Castagnaro, “Use of Molecular Markers to Improve the Agro-Industrial Productivity in the North West of Argentinaâ€, Molecular Biology, vol. 5, no. 1, Article 153, 2016. doi: 10.4172/2168-9547.1000153

S.A. Deepak, K.R. Kottapalli, R. Rakwal, G. Oros, K.S. Rangappa, H. Iwahashi, Y. Masuo, G.K. Agrawal, “Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genesâ€, Current Genomics, vol. 8, no. 4, pp. 234-251, 2007. doi: 10.2174/138920207781386960

M. C. F. Thomsen, H. Hasman, H. Westh, H. Kaya, O. Lund, “RUCS: Rapid Identification of PCR Primers for Unique Core Sequencesâ€, Bioinformatics, vol. 33, no. 24, pp. 3917-3921, 2017. doi: 10.1093/bioinformatics/btx526

J. Ye, G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen, T.L. Madden, “Primer-BLAST: A Tool to Design Target-Specific Primers for Polymerase Chain Reactionâ€, BMC Bioinformatics, vol. 13, no. 134, 2012. doi: 10.1186/1471-2105-13-134

S. J. Green, R. Venkatramanan, A. Naqib, “Deconstructing the Polymerase Chain Reaction: Understanding and Correcting Bias Associated with Primer Degeneracies and Primer-Template Mismatchesâ€, PloS ONE, vol. 10, no. 5: e0128122, 2015. doi: 10.1371/journal.pone.0128122

M. A. Nadeem, M. A. Nawaz, M. Q. Shahid, Y. Dogan, G. Comertpay, M. Yildiz, R. Hatipoglu, F. Ahmad, A. Alsaleh, N. Labhane, H. Ozkan, G. Chung, F. S. Baloch, “DNA Molecular Markers in Plant Breeding: Current Status and Recent Advancements in Genomic Selection and Genome Editingâ€, Biotechnology and Biotechnological Equipment, 2017. doi: 10.1080/13102818.2017.1400401

Analytical Methods Committee, AMCTB No. 59, “PCR- The Polymerase Chain Reactionâ€, Analytical Methods, vol. 6, no. 2, pp. 333-226, 2014. doi: 10.1039/C3AY90101G

S. Rozen, and H. Skaletsky, Primer3 on the WWW for General Users and for Biologist Programmers, Bioinformatics Methods and Protocols (Humana Press Inc.), USA, 2000

P. S. Gangasagar, S. Rath, and I. C. Mohanty, “In Silico Design of Primer for In Vitro Cloning of DREB1A: A Regulatory Gene Associated with Abiotic Stressâ€, Biotechnology, Bioinformatics and Bioengineering, vol. 2, no. 1, pp. 603-609, 2012

B. Thornton, and C. Basu, “Real-Time PCR (qPCR) Primer Design Using Gree Online Softwareâ€, Biochemistry and Molecular Biology Education, vol. 39, no. 2, pp. 145-154, 2011. doi: 10.1002/bmb.20461

Downloads

Published

2018-12-19

How to Cite

In Silico Design of PCR Primers to Amplify the Salt Tolerance Gene in Soybean. (2018). Asian Journal of Applied Sciences, 6(6). https://doi.org/10.24203/ajas.v6i6.5532

Similar Articles

You may also start an advanced similarity search for this article.