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_________________________________________________________________________________________________                                                                                                                                                                       
ABSTRACT---- Constructing exact solutions of nonlinear ordinary and partial differential equations is an important 

topic in various disciplines such as Mathematics, Physics, Engineering, Biology, Astronomy, Chemistry,… since many 

problems and experiments can be modeled using these equations. Various methods are available in the literature to 

obtain explicit exact solutions. In this correspondence, the enhanced modified simple equation method (EMSEM) is 

applied to the Phi-4 partial differential equation. New exact solutions are obtained.  
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1. INTRODUCTION 

There is no unique method to solve nonlinear ordinary differential equations (ODE) as well as partial differential 

equations (PDE). Several techniques were developed and successfully applied by many scientists such as the Exp-

function method [1,2], the tanh-function method [3,4], the homogeneous balance method [5,6], the (G’/G)-expansion 

method [7,8], the Backlund transformation method [9], the Jacobi elliptic function method [10], the modified simple 

equation method [11,12], the EMSEM[13].  

In the sequel, we obtain exact solutions of Phi-4 PDE 

                                                                                                                                                    

using the EMSEM. 

Let us first describe the EMSEM in section II. In Section 3, we apply the method to Phi-4 PDE. Finally, we 

discuss the results in Section 4. 

 

2. THE EMSEM 

Suppose we have a nonlinear PDE of the form                                                                                                                                                                  

                                                                                                                                                              

where   is a polynomial of   and its partial derivatives. The method involves four steps. 

Step 1: Using the transformation 

                                                                                                 

where      and      are differentiable functions of  , from (2) and (3) we get the following ODE 

                                                                                                      

Step 2: Suppose that equation (4) has the solution 
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where       are functions of  ,       and      are unknown expressions to be obtained,     . 

Step 3: Compute   in equation (5). This is accomplished by balancing the highest order derivative and nonlinear term in 

equation (4). 

Step 4: Substitute equation (5) into equation (4). Combine all the terms of the same power of       , where    , and 

equate their coefficients to zero. This results in a system of algebraic and differential equations which can be solved to 

find       and     . Consequently, we get a closed form solution of equation (2). 

 

3. APPLICATION TO PHI-4 PDE 

In this section, we solve the Phi-4 PDE 

                  

The transformation (3) reduces the above equation to:  

                                                            

Taking the s balance between     and   , we get    . The solution of equation (6) has the form  

                 
     

    
                                                                                

Our goal is to solve for       and      . We have 

         
   

 
  

  

 
 

 

                                                                                  

          
    

 
  

     

  
   

  

 
 

 

                                                            

Substituting equations (7)-(9) in (6) and setting all the coefficients of   ,          ,                 ,        

and     to zero, we get respectively 

        
                                                                                                          

                            
         

which, by integration with respect to ζ, reduces to 

                          
                                                                

                   

which, by integration with respect to ζ, reduces to 
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which, by integration with respect to ζ, reduces to 

                                                                                             

                                                                                                                  

                                                                                                                            

             
                                                                                                  

Various solutions could be obtained. From (10),     ,     
 

  
. From (13), or (16) it follows that       .  

From (17),       
         

 
.  

From  (11) and (14), after eliminating   , we get 

   

  
  

   

      
 

         
  

             
                                                                 

Integrating equation (18) with respect to   yields 

                                                                                                              

where 

     
   

      
 

         
  

             
 

Therefore 

        
     

    
                                                                                    

From (7), (19), and (20), it follows that  

                  
               

      
     

    
          

                                                                                              

 

4. CONCLUSION 

The EMSEM is applied successfully to Phi-4 PDE. Clearly, (21) is an additional set of solutions of the Phi-4 PDE to the 

ones derived in [11] using the modified simple equation method. 
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