
Asian Journal of Applied Sciences (ISSN: 2321 – 0893) 

Volume 05 – Issue 05, October 2017 

Asian Online Journals (www.ajouronline.com)  1087 

Solution of Elastic Half Space Problem using Boussinesq 

Displacement Potential Functions 
 

 

Clifford U. Nwoji
1
, Hyginus N. Onah

2
, Benjamin O. Mama

3
, Charles C. Ike

4,*
 

 

1Dept of Civil Engineering 

University of Nigeria, Nsukka, Enugu State, Nigeria 

 

 2Dept of Civil Engineering 

University of Nigeria, Nsukka, Enugu State, Nigeria 

 
3Dept of Civil Engineering 

University of Nigeria, Nsukka, Enugu State, Nigeria 

 
4Dept of Civil Engineering 

Enugu State University of Science & Technology, Enugu State, Nigeria 

 
*
Corresponding author’s email: ikecc2007 [AT] yahoo.com 

 

__________________________________________________________________________________________________________ 

ABSTRACT---- In this study, the Boussinesq displacement potential functions were used to solve the elastic half 

space problem involving a point load acting at the origin. Displacement field components were obtained from the 

Boussinesq potential functions using Love’s expressions. Strain displacement and stress-strain laws were used 

simultaneously to obtain the stress fields from the displacement fields. It was found that solutions for stress and 

displacement fields were exactly the same expressions obtained by other researchers in the technical literature. 
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1. INTRODUCTION 
The elastic half space problem is the problem of finding stress fields and displacement fields in a loaded medium 

bounded by a horizontal boundary surface, and which extends infinitely in both the radial and depth coordinate 

directions, where the depth coordinate is defined as pointing downwards, perpendicularly to the boundary surface. Such 

problems are frequently encountered in geotechnical engineering where the elastic medium is the soil mass, idealized as 

semi-infinite in extent [1, 2]. They are also found in the mathematical theory of elasticity. Specific examples of the 

elastic half space problem include the Boussinesq, Kelvin, Mellin and Cerrutti problems [2, 3, 4]. 

 

The formulation and solution of elastic half space problems belong to the mathematical theory of elasticity in three 

dimensions. The fundamental equations are the differential equations of equilibrium, the material constitutive laws, the 

kinematic relations, and those are solved subject to the boundary conditions [5, 6]. The elastic half space medium can be 

linear elastic or non linear elastic, isotropic or anisotropic, homogeneous or heterogeneous. In this study, the elastic half 

space medium is assumed to be linear elastic, homogeneous and isotropic, yielding simplification in the governing 

equations. 

 

Two basic methods are commonly used in formulating elasticity problems; namely: displacement method and stress 

method. In displacement formulation, the governing equations are expressed such that unknown displacements are the 

primary variables, and stresses are eliminated from the equations [7, 8, 9]. In stress based formulation, displacements are 

eliminated from the governing equations, which we reformulated with stresses as the unknown primary variables. Stress 

based methods of elasticity problems have been presented by Beltrami-Michell for 3 dimensional problems as a system 

of six partial differential equations expressed in terms of the six components of stresses [10, 11]. Displacement based 

methods of elasticity problems have been presented by Navier, Lamé, as a system of three differential equations in terms 

of the three components of the displacement field [12, 13]. The simplification of the presentation of three dimensional 

elasticity problems have led to the development of stress and displacement functions that identically solve the stress 

based and the displacement based equations of elasticity theory [14, 15]. Some stress functions include: Airy stress 

functions, Morera stress functions, Maxwell stress functions, Michell stress functions. Displacement functions in 

elasticity theory include: Cerrutti functions, Boussinesq [5] functions, Green and Zerna [16] functions, Trefftz [17] 

functions, Boussinesq-Papkovich functions. 
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2. RESEARCH AIM AND OBJECTIVES 
The aim of this study is to use the Boussinesq displacement functions to solve the elastic half space problem. The 

objectives include: 

(i) to present the Boussinesq displacement functions in the general case; and then derive the Boussinesq 

displacement function for the specific case of elasic half space under point load applied at the origin 

(Boussinesq point load problem). 

(ii) to find the Cartesian components of the displacement field from the Boussinesq displacement potential functions 

using relations obtained by Love. 

(iii) to simultaneously use the strain displacement and the stress-strain equations to obtain the Cartesian components 

of the stress field in terms of the Boussinesq displacement potential functions. 

 

3. THEORETICAL FRAMEWORK 
The basic equations of the theory of elasticity that govern the elastic half space problem are the differential equations of 

equilibrium, the stress-strain laws, the strain displacement relations, the boundary conditions and the compatibility 

relations [1, 2, 3, 4, 6, 8, 12]. 

The differential equations of equilibrium when body forces are absent are [1, 7, 8, 11, 12, 13]: 
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where , ,xx yy zz    are the normal stresses, , ,xy yz   and zx  are shear stresses. 

The stress-strain laws are given by [1, 6, 8, 11, 12, 13]: 
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v xx yy zz         

where , ,xx yy zz    are normal strains, , ,xy yz zx    are shear strains,   is the Lamé’s constant, G is the shear 

modulus, v  is the volumetric strain,   is the Poisson’s ratio of the medium and E is the Young’s modulus of elasticity. 

The strain-displacement relations are given by [1, 6, 8, 11, 12, 13] 
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where ux, uy, and uz are the x, y, and z Cartesian components of the elastic displacement field. 

 

4. METHODOLOGY 

 
Let pz(x1, x2) denote the distribution of load in the z direction acting on a soil mass idealized as an elastic half space as 

shown in Figure 1. x1 and x2 are dummy variables introduced to avoid confusion with the x and y coordinate variables. 

 

 
Figure 1 

 

The load pz(x1, x2) is applied on an area, A, of the boundary surface, which is the xy coordinate plane (z = 0). For any 

arbitrary point B(x, y, z) within the soil half space, and an arbitrary point A1(x1, x2) on the loaded region of the surface, the 

distance R is given by: 
2 2 2 2

1 2( ) ( ) (0 )R x x x y z          (21) 

2 2 2 2
1 2( ) ( )R x x x y z          (22) 

Boussinesq’s potential functions fB1, fB2 and fB3 that satisfy the Laplace equation in three dimensional Cartesian 

coordinate space are given by: 
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
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
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For point load, P, applied at the origin O, (x1 = 0, x2 = 0, z = 0) of the elastic half space, the load p(x1, x2) can be 

represented using Dirac delta functions as: 

1 2 1 2( , ) ( 0, 0)p x x P x x         (28) 

where 1 2( 0, 0)x x    is the Dirac delta function. 
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The Boussinesq potential functions become for a point load P applied at the origin of the elastic half space: 

1 1 2 1 2( 0, 0)( ln( ) )B

A

f P x x z z R R dx dx         (29) 

1
( ln( ) )Bf P z z R R         (30) 
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Love [18] showed that the elastic displacement fields are derivable from the Boussinesq potential functions as follows: 

32 21
2

4

BB B

x

ff f
u z

G x x x

  
     

    
    (35) 

32 21
2

4

BB B

y

ff f
u z

G y y y

  
     

    
    (36) 

32

3

1
(1 2 )

4

BB

z B

ff
u f z

G z z

 
     

   
    (37) 

where ux, uy, and uz are the x, y, and z Cartesian components of the elastic displacement field, G is the shear modulus of 

the elastic half space. 

Rearranging, 
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The Boussinesq potential functions fB2 and fB3 both satisfy the Laplace equation in the space coordinates. Thus, 

2
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3
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5. RESULTS 
Using Love’s expressions, the displacement components are found as: 
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The stress components are obtained, by simultaneous application of the strain-displacement laws as follows: 
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By evaluation of the partial differentiation, and substitution, we obtain upon simplification, 
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where r
2
 = x

2
 + y

2
       (65) 

Alternatively, 
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Displacement on the surface (z = 0) 

The Cartesian components of the displacement field on the surface (z = 0) are from Equations (46), (49) and (52), given 

by: 
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At the point of application of the point load, r = 0, R = 0, and the expressions for displacement components are singular 

and hence indeterminate. The stresses are also indeterminate at the point of application of the point load as the 

expressions for stresses become singular at the origin. 

 

6. DISCUSSION 
In this study, the Boussinesq displacement potential functions have been successfully implemented to solve for stress 

fields and displacement fields in an elastic half space due to point load applied at the origin. The Boussinesq 

displacement potential functions were presented in general for distributed normal load on the elastic half space as 

Equations (23), (24) and (26). For point load applied at the origin, the Boussinesq displacement potential functions were 

found using Dirac delta function theory as Equations (30), (32) and (34). The displacement field components were 

obtained, using Love’s expressions as Equations (38), (39) and (40) for the general elastic half space problem. For the 

specific case of Boussinesq elastic half space problem, the displacement field components were obtained as Equations 

(46), (49) and (52). Strain displacement relations for small displacement, isotropic three dimensional elasticity and stress-

strain laws were simultaneously used to find the stresses in terms of the Boussinesq displacement potential function as 

Equations (53) – (58). For the Boussinesq problem, the stress fields were obtained as Equations (59) – (64). It was 

observed that the displacement fields and stress fields obtained were exactly the same expressions as displacement and 

stress fields obtained by Nwoji et al [1] using Green and Zerna displacement potential functions; Ike et al [4] using 

Trefftz potential functions, and, Ike et al [3] using Bessel functions in a stress based formulation. 

 

7. CONCLUSIONS 
The following conclusions can be drawn from this study: 

(i) The Boussinesq displacement potential functions have been successfully implemented in deriving the stress 

fields and displacement field components in a soil mass that is linear elastic, homogeneous, isotropic and of 

semi-infinite extent ( , , 0 )x y z             

(ii) The Boussinesq displacement potential functions simplify the problem of three dimensional elasticity involving 

the elastic homogeneous half space to the problem of partial differentiation of the Boussinesq potential functions 

in order to obtain displacement components and stress fields. 

(iii) The solutions obtained for the stress fields and displacement field components are valid and true at all points in 

the elastic half space, except at the point of application of the point load where the expressions for the stresses 

and displacements become singular and indeterminate. 
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