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_________________________________________________________________________________ 

ABSTRACT— Based on classical plate theory, the natural frequencies of thermally induced vibration of non-

homogeneous trapezoidal plate with varying thickness linearly in x-direction and parabolically in y-direction has been 

calculated by Rayleigh–Ritz method. Due to linear variation in density non-homogeneity arises in plate’s material. 

The frequency equation has been obtained by assuming the two-term deflection function with clamped-simply 

supported- clamped-simply supported boundary condition.  For a symmetric, non-homogeneous trapezoidal plate the 

effect of non-homogeneity constant, aspect ratios, thermal gradient and taper constants on the frequencies has been 

studied for first two modes of vibration. All the numerical results which have been obtained presented in tabular and 

graphical form. 
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1. INTRODUCTION 

In engineering, research and nuclear reactor technology the study of vibration of plates has attained tremendous 

significance. It has influence not only in constructive but also in destructive fields like aircraft engineering and 

earthquake respectively. Basically with the help of vibration analysis the perfect design of a system can be made and its 

performance can be increased. Vibration is required in various operations, so this phenomenon is not undesirable in every 

case. There has been a great fascination about vibration in various shapes of plates over the last century.  

Vibrations of plates depend on non-homogeneity of materials which come up because of variation in density. In 

modern technology trapezoidal plates of variable thickness are commonly used as structural constituent in various 

engineering applications like aircraft, ships, space craft and gas turbines to take into account the availability of resources, 

materials and cost of production to provide better efficiency and strength.  

Vibration analysis of different shapes of plates has attracted the interest of several researchers. Some of them are 

discussed here. Hassan and Makary [2] worked on the transverse vibrations of elliptical plate of linearly varying 

thickness with half of the boundary clamped and the rest simply supported. Chakraverty et al. [3] discussed the vibration 

of non-homogeneous orthotropic elliptic and circular plates with variable thickness. Lal et al. [4] used Chebyshev 

collocation method in the study of transverse vibrations of non-uniform rectangular orthotropic plates. Laura et al. [5] 

studied the transverse vibrations of a trapezoidal cantilever plate of variable thickness. McGee and Butalia [6] discussed 

the natural vibrations of shear deformable cantilevered skewed trapezoidal and triangular thick plates. Bhardwaj and 

Gupta [7] had worked on the axisymmetric vibrations of polar orthotropic circular plates of quadratically varying 

thickness resting on elastic foundation. Kavita et al. [8] studied the thermally induced vibration of non-homogeneous 

trapezoidal plate with parabolically thickness variation in both directions. Kavita et al. [9] discussed the temperature 

behaviour on thermally induced vibration of non-homogeneous trapezoidal plate with bi-linearly varying thickness. Liew 

and Lim [10] studied the transverse vibration of trapezoidal plates of variable thickness: symmetric trapezoids. 

Hosokawa et al. [11] discussed the free vibration analysis of cantilevered laminated trapezoidal plates. Larrondo et al. 

[12] studied the vibration of simply supported rectangular plates with varying thickness and same aspect ratio cutouts. 
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Gupta et al. [13] worked on the vibration of visco-elastic parallelogram plate with parabolic thickness variation. Leung et 

al. [14] presented the free vibration of laminated composite plates subjected to in-plane stresses using trapezoidal p-

element. Gupta et al. [15] did the vibration analysis of visco-elastic rectangular plate with thickness varies linearly in one 

and parabolically in other direction. Gupta and Sharma [16] observed the thermal effect on vibration on non-

homogeneous trapezoidal plate of linearly varying thickness. Gupta and Sharma [17] had studied the thermal gradient 

effect on frequencies of a trapezoidal plate of linearly varying thickness.  

It is identified from the analysis of literature that up to now no author encountered the paper with linearly varying 

thickness in x-direction and parabolically in y-direction and linearly varying density in x-direction with thermal effect. 

Therefore, the vibrational behaviour of symmetric, isotropic and non-homogeneous trapezoidal plate has been studied by 

considering variation in thickness and density. Rayleigh-Ritz method is applied to find the natural frequencies for first 

and second mode of vibration for C-S-C-S boundary condition by assuming a two term deflection function, where C and 

S stand for clamped and simply supported, respectively. Hence, the objective of this research paper is to examine the 

frequencies for both modes of vibration for different values of taper constants (1, 2), thermal gradient (), non-

homogeneity constant () and aspect ratio (c/b). All the numerical results are shown in tabular and graphical form. 

2. MATHEMATICAL ANALYSIS AND EQUATIONS OF MOTION 

With variable thickness and density a symmetric, isotropic and non-homogeneous trapezoidal plate has been considered 

and shown in figure1.   
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Figure 1. Geometry of the trapezoidal plate 

For a non-homogeneous trapezoidal plate temperature is assumed to vary linearly along the length of the plate i.e. x-axis 

as 
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where  denotes the excess above the reference temperature at a distance x

a
  and 

0 denotes the temperature excess 

above the reference temperature at the end 1

2
   .  

The temperature dependence of the modulus of elasticity for most of the elastic materials is described [1] as  
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where 0E is the value of Young’s modulus at reference temperature 0  and  is the slope of variation of E with . 

 

By using equation (1) into equation (2), modulus of variation becomes  

0

1
1

2
E E  

  
    

                                                                                                                                 (3) 

where 0 (0 1)       known as thermal gradient. 

Plates of variable thickness are generally come across in engineering applications and have greater efficiency for 

vibration as compared to plates of uniform thickness. In the present study thickness of symmetric and non-homogeneous 

trapezoidal plate is assumed to vary linearly in x-direction and parabolically in y-direction. Therefore, thickness can be 

expressed as   

   
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                                                        (4) 

where 0h h  at 1

2
    and 1 , 2 are taper constants. 

The non-homogeneity occurs in bodies because of imperfection of materials and it is assumed to arise due to linear 

variation in density along x-axis. Thus, it can be taken as  
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1
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where 0  is the mass density at
1

2
    and   is non-homogeneity constant.  

The governing differential equations of kinetic energy T and strain energy V for a non –homogeneous trapezoidal plate 

as expressed by [10] are  
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
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where   is the angular frequency of vibration,   is the Poisson ratio, A is the area of the plate and ( )D   is the flexural 

rigidity of the plate which can be defined as  
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where 
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b
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Substituting equation (3) in equation (9), we obtain 
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By using equation (10) into equation (8) the value of flexural rigidity becomes 
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On substituting equations (4), (5) in eq. (6) and eq. (11) in eq. (7), one can obtain the kinetic energy and strain energy as     
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and 
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3. METHOD OF SOLUTION 

The natural frequency of the existing problem is determined through Rayleigh-Ritz method which is based on the 

principle of conservation of energy i.e. the maximum strain energy must be equal to the kinetic energy. Thus, the 

consequent equation can be written as 

  0 .V T                                                                                                                                                       (14) 

Two term deflection function for a non-homogeneous trapezoidal plate which satisfies the clamped simply-supported 

clamped simply- supported boundary condition can be defined as 
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where 
1A  and 

2A  are two unknowns to be determined. 

In this way, the boundary conditions are defined by four straight lines as follows:  
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On using the boundary condition (16) into equations (12) and (13), we get     
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and 
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Substituting the values of T and V from equations (17) and (18) into equation (14), one gets 
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and  
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   is a frequency parameter.                                                          

Two unknowns 1A and 2A which are involved in Eq. (19) arise due to the use of the deflection function w is given by 

Eq. (15). These two unknowns can be determined from Eq. (19) in the subsequent method: 

                                                             2
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                                               (22) 

After solving equation (22), we get following form   

                                                         
1 1 2 2 0 , 1, 2 .m mb A b A m                                                 (23) 

where 
1mb ,

2mb (m=1, 2) involves parametric constants and the frequency parameter. The determinant of co-efficient of 

equation (23) must be zero for a non-zero solution. Thus, the obtained frequency equation for a symmetric and non-

homogeneous trapezoidal plate can be defined as 

        

11 12

21 22

0
b b

b b
                                                                                                                                              (24) 

From the solution of equation (24) one can get a quadratic equation in
2 which presents the two values of

2 known as 

first and second modes of vibration respectively.  

4. RESULTS AND DISCUSSION 

The purpose of the present work is to study the vibrational characteristics of symmetric, non-homogeneous and 

isotropic trapezoidal plate with variable thickness linearly in one and parabolically in other direction. Under the C-S-C-S 

boundary condition all the numerical values of frequency parameter  of trapezoidal plate has been calculated. In order 

to obtain the first two modes of vibration computation has been made for various values of taper constants
1 2, ,   

thermal gradient , aspect ratios a/b, c/b and non-homogeneity constant .  In order to attain all the values of frequency 

parameter Poisson’s ratio  is considered as 0.33. All the acquired results have been presented in tabular and graphical 

form. First mode and Second mode of vibrations are presented in Figure (a) and Figure (b) respectively.      

In table 1 numerical values of frequency parameter  has been calculated for taper constant
1 varies from 0.0 to 1.0, 

taper constant
2 0.6,  thermal gradient 0.0,0.4,  non-homogeneity constant 0.4,1.0  and aspect ratios 

a/b=1.0, c/b=0.5. So, one can observe from the table 1 that the value of frequency parameter increases on increasing 

the values of taper constant
1.  Moreover, it is also noticed from the tabulated values that on increasing the value of 

non-homogeneity constant  the frequency parameter decreases for both the modes of vibration. The variation of 

frequency parameter  with taper constant
1  is shown in figures 2(a) and 2(b) which represents that as taper constant 

increases the frequency parameter also increases for both modes of vibration. 

In table 2 numerical values of frequency parameter has been calculated for taper constant
2 which varies from 0.0 

to 1.0, taper constant
1 0.6,  thermal gradient 0.0,0.4,  non-homogeneity constant 0.4,1.0  and aspect ratios 

a/b=1.0, c/b=0.5. As a result it is quite clear from the table 2 that the value of frequency parameter  increases on 

increasing the values of taper constant
2 . It is also found that frequency parameter decreases when the value of non-

homogeneity constant  increases for both modes of vibration. The variation of frequency parameter with taper 

constant
2  is shown in figures 3(a) and 3(b) which represents that as taper constant increases the frequency parameter 

also increases for both modes of vibration.  

In table 3 numerical values of frequency parameter   has been calculated for thermal gradient   varies from 0.0 to 

1.0, taper constants
1 20.0,0.2& 0.0,0.6   , non-homogeneity constant 0.4,1.0  and aspect ratios a/b=1.0, 

c/b=0.5. From the tabulated values one can observe that the value of frequency parameter   decreases on increasing the 

values of thermal gradient . In addition, frequency decreases when values of non-homogeneity constant  increases for 

both modes of vibration. The behaviour of frequency parameter for both the modes of vibration with thermal gradient is 

shown in figures 4(a) and 4(b). So, one can observe from these figures that frequency parameter decreases on increasing 

the values of thermal gradient.  
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In table 4 and table 5 numerical values of frequency parameter has been calculated for aspect ratio c/b varies from 

0.25 to 1.0, non-homogeneity constant 0.4,   aspect ratio a/b=0.75 & 1.0 and different combinations of thermal 

gradient and taper constants
1 2&  .Therefore, these combinations have been taken as follows: 

 
1 2 0.0, 0.0       

 1 2 0.0, 0.4      

 1 2 0.6, 0.0       

 1 2 0.6, 0.4      

Table 4 and Table 5 demonstrate that frequency parameter   decreases on increasing the values of aspect ratio c/b. 

It is also observed from these tables that values of frequency parameter increases on increasing the values of taper 

constants. In addition, comparison of table 4 and table 5 give detail about aspect ratio that as aspect ratio a/b increases 

from 0.75 to 1.0 the values of frequency parameter  also increases for both modes of vibration. For both modes of 

vibration, the behaviour of frequency parameter with aspect ratio c/b is shown in figures 5(a) and 5(b). So, one can 

observe from these figures that frequency parameter decreases on increasing the values of aspect ratio c/b.  

In table 6 numerical values of frequency parameter has been calculated for non-homogeneity constant  varies 

from 0.0 to 1.0, taper constants
1 20.0,0.2& 0.0,0.6,   thermal gradient 0.0,0.4  and aspect ratios a/b=1.0, 

c/b=0.5. Table 6 clearly shows that the frequency parameter decreases for both modes of vibration when the values of 

non-homogeneity constant  increases. For both modes of vibration the behaviour of frequency parameter  with non-

homogeneity constant  is shown in figures 6(a) and 6(b). So, one can view from these figures that frequency parameter 

decreases on increasing the values of non-homogeneity constant. 

 

Table 1: Values of frequency parameter () for different values of taper constant (1), thermal 

gradient ( 0.0,0.4),  non-homogeneity constant ( 0.4,1.0),   taper constant 
2( 0.6)  and aspect ratios 

(a/b=1.0, c/b=0.5). 

 

Table 2: Values of frequency parameter () for different values of taper constant (2), thermal gradient ( 0.0,0.4),     
non-homogeneity constant ( 0.4,1.0),  taper constant 

1( 0.6)  and aspect ratios (a/b=1.0, c/b=0.5).

 

 

 

 

1
 

                 
20.4, 0.6    21.0, 0.6    

 0.0    0.4    0.0    0.4   

First  

mode 

Second 

mode 

First  

mode 

Second 

mode 

First  

mode 

Second 

mode 

First  

mode 

Second 

mode 

0.0 32.7052 151.485 31.5861 143.459 28.6357 131.474 27.6582 124.498 

0.2 33.2307 160.556 31.9209 150.719 28.9760 138.178 27.8368 129.699 

0.4 34.2231 172.462 32.6563 160.583 29.7431 147.542 28.3843 137.366 

0.6 35.6453 186.494 33.7572 172.401 30.8966 158.837 29.2625 146.821 

0.8 37.4483 202.121 35.1834 185.688 32.3889 171.548 30.4318 157.592 

1.0 39.5780 218.950 36.8920 200.088 34.1693 185.312 31.8514 169.342 

2
 

                 10.4, 0.6    11.0, 0.6    

 0.0    0.4    0.0    0.4   

First  

mode 

Second 

mode 

First  

mode 

Second 

mode 

First  

mode 

Second 

mode 

First  

mode 

Second 

mode 

0.0 31.1280 172.361 29.4797 159.276 26.9824 146.553 25.5559 135.415 

0.2 32.3424 173.730 30.6291 160.581 28.0335 147.818 26.5508 136.619 

0.4 33.8499 178.412 32.0567 164.928 29.3396 151.887 27.7877 140.395 

0.6 35.6453 186.494 33.7572 172.401 30.8966 158.837 29.2625 146.821 

0.8 37.7081 197.798 35.7114 182.839 32.6869 168.521 30.9586 155.763 

1.0 40.0082 211.979 37.8909 195.927 34.6841 180.649 32.8513 166.955 
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Table 3: Values of frequency parameter
 
() for different values of thermal gradient (), taper constants 

1 2( 0.0,0.2, 0.0,0.6),    non-homogeneity constant ( 0.4,1.0)  and aspect ratios (a/b=1.0, c/b=0.5). 

 

Table 4: Values of frequency parameter () for different values of aspect ratio for different combinations of thermal 

gradient (), taper constants (1&2), non-homogeneity constant (=0.4) and aspect ratio (a/b=0.75).

  

 

Table 5: Values of frequency parameter () for different values of aspect ratio for different combinations of thermal 

gradient (), taper constants (1&2), and non-homogeneity constant (=0.4) and aspect ratio (a/b=1.0). 

 

 

Table 6: Values of frequency parameter ()for different values of non-homogeneity constant (), with different 

combinations of thermal gradient  and taper constant (1&2) and aspect ratios (a/b=1.0, c/b=0.5). 

                   0.4   1.0   

 1 2 0.0     1 0.2,  2 0.6    1 2 0.0     1 0.2,  2 0.6   

First  

mode 

Second 

mode 

First  

mode 

Second 

mode 

First  

mode 

Second 

mode 

First  

mode 

Second 

mode 

0.0 28.5361 139.839 33.2307 160.556 24.9842 121.221 28.9760 138.178 

0.2 28.0475 136.110 32.5842 155.715 24.5573 117.984 28.4137 134.005 

0.4 27.5463 132.276 31.9209 150.719 24.1195 114.656 27.8368 129.699 

0.6 27.0311 128.328 31.2391 145.553 23.6696 111.229 27.2440 125.245 

0.8 26.5001 124.257 30.5363 140.198 23.2059 107.694 26.6330 120.628 

1.0 25.9510 120.049 29.8096 134.632 22.7265 104.040 26.0015 115.829 

c b  0.4   

 1 2 0.0,    

  0.0   

 1 2 0.0,    

 0.4   

 1 2 0.6,    

 0.0   

 1 2 0.6,    

 0.4   

First  

mode 

Second 

mode 

First  

mode 

Second 

mode 

First  

mode 

Second 

mode 

First  

mode 

Second 

mode 

0.25 33.5813 135.268 32.6579 129.777 40.1377 168.972 38.6114 158.948 

0.50 26.0026 106.976 25.1894 102.638 31.4673 133.122 30.0214 124.595 

0.75 20.7018 84.8782 19.9550 81.4414 25.8711 106.816 24.3660 99.2952 

1.0 17.2317 68.5711 16.5164 65.7228 22.7596 89.1680 21.0619 82.0190 

c b  0.4   

 1 2 0.0,    

  0.0   

 1 2 0.0,    

 0.4   

 1 2 0.6,    

 0.0   

 1 2 0.6,    

 0.4   

First  

mode 

Second 

mode 

First  

mode 

Second 

mode 

First  

mode 

Second 

mode 

First  

mode 

Second 

mode 

0.25 36.5554 175.053 35.4182 165.973 45.1242 232.040 43.0943 215.908 

0.50 28.5361 139.839 27.5463 132.276 35.6453 186.494 33.7572 172.401 

0.75 22.8059 110.358 21.9189 104.229 29.2467 148.966 27.3770 136.817 

1.0 18.9175 87.3524 18.0935 82.4016 25.3851 120.233 23.4029 109.605 

                                    1 2 0.0                             1 20.2, 0.6    

    0.0       0.4         0.0         0.4   

First  

mode 

Second 

mode 

First  mode Second 

mode 

First  mode Second 

mode 

First  

mode 

Second 

mode 

0.0 31.9645 158.443 30.8529 149.887 37.3900 183.507 35.9120 172.285 

0.2 30.1049 148.266 29.0595 140.253 35.1271 170.871 33.7408 160.411 

0.4 28.5361 139.839 27.5463 132.276 33.2307 160.556 31.9209 150.719 

0.6 27.1894 132.710 26.2472 125.528 31.6115 151.924 30.3668 142.610 

0.8 26.0170 126.574 25.1160 119.721 30.2079 144.559 29.0194 135.692 

1.0 24.9842 121.221 24.1195 114.656 28.9760 138.178 27.8368 129.699 
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Figure 2(a):   Variation of frequency parameter for different 

                      values of taper constant 
1  for the first mode. 

 

 
 

Figure 2(b):   Variation of frequency parameter for different 

                          values of taper constant 
1  for the second mode. 
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Figure 3(a):   Variation of frequency parameter for different 

                      values of taper constant 
2  for the first mode. 

 

 

 
 

Figure 3(b):   Variation of frequency parameter for different 

                           values of taper constant 2  for the second mode. 
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Figure 4(a):   Variation of frequency parameter  for different 

                      values of thermal gradient   for the first mode. 

 

 
 

Figure 4(b):   Variation of frequency parameter  for different 

                           values of thermal gradient   for the second mode. 

 

 

 

 

http://www.ajouronline.com/


Asian Journal of Applied Sciences (ISSN: 2321 – 0893) 

Volume 05 – Issue 04, August 2017 

 

Asian Online Journals (www.ajouronline.com)  666 

 
 

Figure 5(a).   Variation of frequency parameter  for different 

                values of aspect ratio c/b for the first mode. 

 

 

                     

Figure 5(b).   Variation of frequency parameter  for different 

                    values of aspect ratio c/b for the second mode. 
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Figure 6(a). Variation of frequency parameter  for different values 

               of non-homogeneity constant   for the first mode. 

 

 
 

Figure 6(b): Variation of frequency parameter  for different values 

                 of non-homogeneity constant   for the second mode. 
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5. CONCLUSION 

On the basis of classical plate theory the vibration behaviour of non-homogeneous trapezoidal plate of variable 

thickness and density has been examined by taking a two term deflection function. Using Rayleigh-Ritz method 

numerical results of natural frequencies for first two modes of vibration corresponding to C-S-C-S boundary condition 

has been calculated. To study the effect of thermal gradient on the frequencies of non-homogeneous trapezoidal plate 

with other plate’s parameters such as taper constants, non-homogeneity constant, aspect ratio is the significant purpose of 

the present work. From the graphical representation some of the important results have been obtained. Thus, it can be 

concluded that the frequency increases with the increase of taper constants and frequency decreases with the increase of 

thermal gradient, aspect ratio and non-homogeneity constant. 

Our main motive of research is prosperity of human beings and the development of technology by providing a 

theoretical mathematical model for scientists and design engineers. The research work is done in such a way that the 

technologists can become conscious of their prospective in various fields and increase their effectiveness and lastingness 

practically according to the need of the hour. Therefore, mechanical engineers are suggested to provide much better 

structure and machines with economy with the help of study of present research paper. 
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