Prediction of Mechanical Properties of Light Weight Brick Composition Using Artificial Neural Network on Autoclaved Aerated Concrete

Authors

  • Zul Kifli
  • Munzir Absa
  • Ali Musyafa Department of Engineering Physics, Faculty of Industrial Technology Institut Teknologi Sepuluh Nopember Kampus ITS Keputih Sukolilo, Surabaya,

Keywords:

Prediction, neural network, aac lightweight brick, composition, compressive strength

Abstract

Indonesia with raw material limestone abundant, light brick of Autoclaved Aerated Concrete (AAC) is the most important component in the construction of buildings, so that needs light brick AAC qualified in mechanical and thermal properties of acoustic. In the research domain lightweight brick lifting who qualified mechanical properties. Advantages of light brick AAC low density of about 500 to 650 kg/m3, more economical, suitable for multi-storey buildings can reduce the weight of 30 to 40 % compared with conventional brick (clay brick). One of the problems found in the fabrication of lightweight brick is how to determine the composition of raw materials used. The composition of materials in lightweight brick can affect its mechanical properties which are an important parameter for building materials. In this research the prediction of the effect of elements composition and density on compressive strength (AAC) using neural network has been done. Furthermore, the simulation on the effect of each element composition and the density on compressive strength also have been done. The best network developed in this research using feed forward back propagation architecture and Levenberg-Marquardt algorithm is to use 8 hidden nodes, with MSE (mean square error) training of 0.001605667 and MSE validation of 0.01455. Simulation results show that composition of Ca, Si, O, and density are all directly proportional to compresssive strentgh, while composition of Al is inversely proportional. The compressive strength prediction results obtained for 4 AAC, and for sample AAC-a = are 4.80 MPa, AAC-b= samples 5.24 MPa, AAC-c=3.23 MPa, and AAC-d= 3.67 MPa. The result of prediction shows that the neural network developed can predict the effect of composition and density on compressive strength of AAC.

References

N. Suryani and Munasir, "Fabrikasi Bata Ringan Tipe Celluler Lightweight Concrete dengan Bahan Dasar Pasir Vulkanik Gunung Kelud Sebagai Pengganti Fly Ash," Jurnal Inovasi Fisika Indonesia, vol. 04, no. 03, p. 106 – 111, 2015.

A. P. Sari, "Pengaruh Komposisi dan Suhu Pembakaran Terhadap Sifat Fisik, Kimia, dan Mekanik Bata Ringan Berbahan Dasar Abu Terbang dan Bentonit," Tugas Akhir, Kimia ITB, Bandung, 2014.

S. Nasution, "Efek Komposisi dan Aging Terhadap Sifat Mekanik dan Fisis pada Pembuatan Aerated Concrete (Beton Berpori)," Tesis, Fisika USU, Medan, 2009.

S. Lagiyono and M. Masykur, "Pengaruh Temperatur Terhadap Sifat Mekanik Pada Baja Karbon Sedang ST 60," Jurnal Bidang Teknik Fakultas Teknik Universitas Pancasakti, Tegal, 2011.

Standar Nasional Indonesia, Bata Beton Untuk Pasangan Dinding (SNI 03-0349-1989), 1989.

R. Bayuaji and T. R. Biyanto, "Model Jaringan Saraf Tiruan Kuat Tekan Beton Porus dengan Material Pengisi Pasir," Jurnal Teoretis dan Terapan Bidang Rekayasa Sipil, vol. 20, no. 1, 2013.

M. I. Jauhari, "Prediksi Sifat Mekanik Keramik Al2O3 Berdasar Penambahan Suhu Sintering dan Presentase Aditive Menggunakan Jaringan Saraf Tiruan," Tugas Akhir, Teknik Fisika ITS, Surabaya, 2015.

Zulhelmi, "Pembuatan dan Karakterisasi Bata Berpori dengan Agregat Batu Apung (Pumice) Sebagai Filter Gas Buang Kendaraan," Tesis, Fakultas Matematika Dan Ilmu Pengetahuan Alam USU, Medan, 2010.

Leslie, "Pengaruh Penggunaan Bahan Tambahan (Accelerator Admixture), Kapur dan Pengaruh Curing pada Pembuatan Bata Beton Ringan Sebagai Alternatif Pengganti Bata Merah," Jurnal Teknik Sipil USU, vol. 2, no. 2, 2013.

A. J. Hamad, "Materials, Production, Properties and Application of Aerated Lightweight Concrete: Review," International Journal of Materials Science and Engineering, vol. 2, no. 2, 2014.

S. Bernstein, "Determination Of Reaction Kinetics And Mechanisms of 1.13nm Tobermorite by In-Situ Neutron Diffraction," Disertasi. Fakultät für Geowissenschaften der Ludwig-Maximilians-Universität München., München, 2011.

Y. Ungkoon, "Analysis of Microstructure and Properties of Autoclaved Aerated Concrete Wall Construction Materials," J. Ind. Eng. Chem, vol. 13, no. 7, pp. 1103-1108, 2007.

N. Meller, K. Kyritsis and C. Hall, "The mineralogy of the CaO–Al2O3–SiO2–H2O (CASH) hydroceramic system from 200 to 350 °C," Cement and Concrete Research, vol. 39, pp. 45-53, 2009.

J. J. Siang, Jaringan Syaraf Tiruan & Pemrogramannya Menggunakan MATLAB, Yogyakarta: Penerbit Andi, 2004.

I. Galkin, "Crash Introsuction to Artificial NeuralNetwork," [Online]. Available: http://ulcar.uml.edu/~iag/CS/Intro-to-ANN.html. [Accessed 6 Juni 2016].

Y. H. Hu and J.-N. Hwang, Handbook of Neural Network Signal Processing, Florida: CRC Press, 2002.

Anonim, "Jaringan Syaraf Tiruan," [Online]. Available: http://share.its.ac.id/pluginfile.php/14163/ mod_resource/content/1/jst1.pdf. [Accessed 6 Juni 2016].

S. Muis, Teknik Jaringan Syaraf Tiruan, Yogyakarta: Penerbit Graha Ilmu, 2006.

H. Demuth, M. Beale and M. Hagan, Neural Network Toolbox™ 6 User’s Guide, Nathick, Massachusetts: The MathWorks, Inc, 2004.

C.-l. e. a. Wang, "Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings," Construction and Building Materials, vol. 104, p. 109–115, 2016.

K.e. a. Kunchariyakun, "Properties of autoclaved aerated concrete incorporating rice husk ash as partial replacement for fine aggregate," Cement & Concrete Composites, vol. 55, p. 11–16, 2015.

Zulkifli , Dyah Sawitri, Detak Yan Pratama Optimization Mechanics properties ceramic High Alumina†withRatio Composition effect of Additive based neural network, Riset BOPTN, pp. 1-83, 2014-2015

Zulkifli , Dyah Sawitri, Detak Y.P, Ali Musyafa, Prediction of Effective Thermal Conductivity in Light Brick-Autoclaved Aerated Concrete With the Material Additive Composition Variations Using Artificial NeuralNetwork Approach, Advances in Natural and Applied Sciences (ANAS), AENSI Publication pp 85-93 2017

Downloads

Published

2017-06-16

How to Cite

Kifli, Z., Absa, M., & Musyafa, A. (2017). Prediction of Mechanical Properties of Light Weight Brick Composition Using Artificial Neural Network on Autoclaved Aerated Concrete. Asian Journal of Applied Sciences, 5(3). Retrieved from https://ajouronline.com/index.php/AJAS/article/view/4754

Issue

Section

Articles