On a Fuzzy Completely Closed Filter with Respect of Element in a BH-algebra

Mohsin Shaalan Abdalhussein College of physical planning\Regional Planning Department University of Kufa, Iraq

Email: mohsins.alakayshee [AT] uokufa.edu.iq

ABSTRACT—In this paper, we introduce a new notion that we call a fuzzy completely closed filter with respect of an element in a BH-algebra, and we link this notion with notions filter and ideal of BH- algebra, We give some properties of fuzzy completely closed filter with respect of an element and we study properties of it.

Keywords— fuzzy completely closed filter with respect of an element, BH-algebra, fuzzy filter, fuzzy ideal, fuzzy completely closed filter and fuzzy completely closed filter.

1. INTRODUCTION

The notion of a BCK-algebras and a BCI-algebras was formulated first in 1966 [6] by (Y.Imai) and (K.Iseki). In 1991, C. S. Hoo introduced the notions of a filter and closed filter of a BCI-algebra[2].In 1996, M. A. Chaudhry and H. F-Ud-Din studied the concepts of filter and closed filter of a BCH-algebra[7]. In the same year, (J.Neggers) introduced the notion of d-algebra[5]. In 1998, Y.B.Jun, E.H.Roh and H.S.Kim introduced a new notion, called a BH-algebra[11]. In 2012, H.H.Abass and H.A.Dahham introduced the notions of a completely closed ideal and completely closed ideal with respect to an element of a BH-algebra[3]. In this paper, we introduced the notions as we mentioned in the abstract. On the other hand, we will mention the development of a fuzzy set, fuzzy subalgebra, fuzzy ideals, fuzzy closed ideals and some other types of fuzzy ideals. In 1965, L. A. Zadeh introduced the notion of a Fuzzy subset of a set as a method for representing uncertainty in real physical world[12]. In 1991, O. G. Xi applied the concept of fuzzy sets to the BCKalgebras[13]. In 1993, Y. B. Jun was the first author who solved the problem of classifying fuzzy ideals by their family of level ideals in BCK(BCI)-algebras[15]. In the same year, Y. B. Jun introduced the notion of closed fuzzy ideals in BCIalgebras[16]. In 1994, Y. B. Jun and J. Meng introduced the notion of fuzzy p-ideals in BCI-algebras[14]. In 1999, Y. B. Jun introduced the notion of Fuzzy closed ideals in BCH-algebras[17]. In 2002, C. Lele, C. Wu and T.Mamadou introduced the notion of Fuzzy filter in BCI-algebras[6]. In 2009, A. B. Saeid and M. A. Rezvani . In 2011, H. H. Abass and H. M. A.Saeed introduced the notion of Fuzzy closed ideals with respect to an element of BH-algebras[10]. In 2012, H. H. Abass and H. A. Dahham, Some Types of Fuzzy Ideal With Respect To an Element Of a BG-Algebra[9] .

2. PRELIMINARIES

In this section, we review some basic definitions and notations of BH-algebras, fuzzy completely closed filter, filter, ideals and other notions, that we need in our work.

Definition (1.1) [12]:

Let X be a non-empty set. A fuzzy set A in X (a fuzzy subset of X) is a function from X into the closed interval [0,1] of the real number.

Definition (1.2) [8]:

Let A and B be two fuzzy sets in X, then :

- 1. $(A \cap B)(x) = \min\{A(x), B(x)\}, \text{ for all } x \in X.$
- 2. $(A \cup B)(x) = \max{A(x), B(x)}$, for all $x \in X$.
 - $A \cap B$ and $A \cup B$ are fuzzy sets in X.

In general, if $\{A\alpha, \alpha \in \Lambda\}$ is a family of fuzzy sets in X, the :

 $\bigcap_{i \in \Gamma} A_i$ (x)=inf{Ai (x), i \in \Gamma}, for all x \in X and (x)=sup{ Ai (x), i \in \Gamma}, for all x \in X.

which are also fuzzy sets in X.

Definition (1.3) [5]:

A BH-algebra is a nonempty set X with a constant 0 and a binary operation"*" satisfying the following conditions:

- 1) $x^*x=0, \forall x \in X.$
- 2) $x^*y=0$ and $y^*x=0$ imply $x = y, \forall x, y \in X$.
- 3) $x*0 = x, \forall x \in X$.

Example (1.4)[4]:

Let $X = \{0,1,2\}$ be a set with the following table:

*	0	1	2
0	0	1	2
1	1	0	1
2	2	2	0

Then (X, *, 0) is a BH-algebra.

Definition (1.5)[9]:

A BH-algebra X is called an associative BH-algebra if:

 $(x^*y)^*z=x^*(y^*z)$, for all x,y,z $\in X$.

Definition (1.6)[9]:

Let X be a BH-algebra and $b \in X$, a filter F is called a completely closed filter with respect to b (denoted by b-completely closed filter) if $b^*(x^*y) \in F \quad \forall x, y \in F$

Definition (1.7)[19]:

A fuzzy set M in a BH-algebra X is said to be fuzzy normal if it satisfies the inequality $M((x^*a)^*(y^*b)) \ge \min\{M(x^*y), M(a^*b)\}$, for all a, b, x, y \in X.

Definition (1.8) [14]:

A fuzzy set A in a BH-algebra X is said to be a fuzzy subalgebra of X if it satisfies: $A(x*y) \ge \min\{A(x), A(y)\}, \forall x, y \in X.$

Definition (1.9)[6] :

A non constant fuzzy set A of X is a fuzzy filter if

1- A $(x \land y) \ge \min\{A(x), A(y)\}$ and A $(y \land x) \ge \min\{A(x), A(y)\}$ For any $x, y \in X$.

2- $A(y) \ge A(x)$, when $x \le y$.

Definition (1.10)[9]:

Let X be a BH-algebra, A be a fuzzy filter of X and $b \in X$. Then A is called a fuzzy closed filter with respect to an element $b \in X$, denoted by a fuzzy b-closed filter of X, if $A(b^*(0^*x)) \ge A(x)$, $\forall x \in X$.

Definition (1.11)[9]:

Let X be a BH-algebra and A be a fuzzy filter of X. Then A is called a fuzzy completely closed filter , if $A(x*y) \ge \min\{A(x),A(y)\} \forall x,y \in X$.

Definition (1.12) [5]:

A fuzzy subset A of a BH-algebra X is said to be a fuzzy ideal if and only if:

1) For any $x \in X$, $A(0) \ge A(x)$.

2) For any x, $y \in X$, $A(x) \ge \min\{A(x^*y), A(y)\}$.

Definition (1.13)[9]:

Let X be a BH-algebra and A be a fuzzy ideal of X. Then A is called a fuzzy completely closed ideal , if $A(x*y) \ge \min\{A(x),A(y)\}, \forall x,y \in X$.

Definition (1.14)[9] :

Let X be a BH-algebra and A be a fuzzy ideal of X. Then A is called a fuzzy completely closed ideal with respect to an element $b \in X$, denoted by a fuzzy b-completely closed ideal of X, if $A(b^*(x^*y)) \ge \min\{A(x), A(y)\} \quad \forall x, y \in X$.

Theorem (1.15)[9]:

Let X be a BH-algebra and A be a fuzzy set . Then A is a fuzzy filter if and only if A'(x)=A(x)+1-A(0) is a fuzzy filter.

Theorem (1.16)[9]:

Let X be an associative BH-algebra. Then every fuzzy normal set of X is a fuzzy filter.

Proposition (1.17)[9]:

Let X be a BH-algebra and A is a fuzzy completely closed filter then $A(0) \ge A(x) \ \forall x \in X$.

Proposition(1.18)[9]:

Let X be a BH-algebra. If M is a fuzzy normal set, then $M(0) \ge M(x) \ \forall x \in X$.

3. MAIN RESULTS

In this section, we define the a fuzzy completely closed filter with respect to an element, and link the notion with another notions in BH-algebra.

Definition (2.1): Let X be a BH-algebra and A be a fuzzy filter of X. Then A is called a fuzzy completely closed Filter with respect to an element $b \in X$, denoted by a fuzzy b-completely closed Filter of X, if $A(b^*(x^*y)) \ge \min\{A(x),A(y)\} \forall x,y \in F$.

Example (2.2):

Let $X = \{1, 2, 3\}$ be a BH-algebra, with the following table:

*	0	1	2
0	0	1	2
1	1	0	1
2	2	2	0

The fuzzy filter A which is defined by :. $A(x) = \begin{cases} 0.6 & x = 0.2 \\ 0.3 & x = 1 \end{cases}$ is a fuzzy 2-completely closed Filter of X, since

$$A(2^*(0^*0)) = A(2^*0) = A(2) = 0.6 \ge \min\{A(0), A(0)\} = 0.6$$

$$A(2^*(0^*1)) = A(2^*1) = A(2) = 0.6 \ge \min\{A(0), A(1)\} = 0.3$$

 $A(2^{*}(0^{*}2)) = A(2^{*}2) = A(0) = 0.6 \ge \min{A(0), A(2)} = 0.6$

 $A(2^{*}(1^{*}0)) = A(2^{*}1) = A(2) = 0.6 \ge \min\{A(1), A(0)\} = 0.3$

$$A(2^{*}(1^{*}1)) = A(2^{*}0) = A(2) = 0.6 \ge \min\{A(1), A(1)\} = 0.3$$

 $A(2^{*}(1^{*}2)) = A(2^{*}1) = A(2) = 0.6 \ge \min\{A(1), A(2)\} = 0.3$

$$A(2^{*}(2^{*}0)) = A(2^{*}2) = A(0) = 0.6 \ge \min\{A(2), A(0)\} = 0.6$$

$$A(2^{*}(2^{*}1)) = A(2^{*}2) = A(0) = 0.6 \ge \min{A(2), A(1)} = 0.3$$

 $A(2^*(2^*2)) = A(2^*0) = A(2) = 0.6 \ge \min\{A(2), A(2)\} = 0.6$

Theorem (2.3):Let X be BH-algebra such that if $x^*y=0$ implies $x=y \forall x,y \in X$. Then every fuzzy b-completely closed filter is a fuzzy filter.

Proof : Let A be a fuzzy b-completely closed filter and $x,y \in X$.

 $1)A(x^*(x^*y)) \geq \min\{A(x), A(y)\} \quad [Since A is a fuzzy b-completely closed filter]$

Similarly, $A(y^*(y^*x)) \ge \min \{A(x), A(y)\}$

2)Let x≤ y

 $\Rightarrow x^*y=0 \Rightarrow x=y$

 $\Rightarrow A(y) = A(x) \ge A(x)$

∴ A is a fuzzy filter

Theorem (2.4):Let X be an associative BH-algebra. Then every fuzzy b- completely closed filter is a fuzzy b- closed filter.

Proof :Let A is fuzzy b- completely closed filter

Now,0,x \in F,b \in X

 $A(b^{*}(0^{*}x)) \ge \min{A(0),A(x)}$ [A is fuzzy b-completely closed filter, definition (2.1)]

 $A(b^*(x^*y)) \ge A(x) \qquad [A(0) \ge A(x) \forall x \in X, Proposition (1.17)]$

 \therefore A is a fuzzy b- closed filter.

Proposition (2.5):Let X be an associative BH-algebra. Then every fuzzy normal set $\forall b \in X$,s.t (M(b)=M(0)) is a fuzzy b-completely closed filter. Proof :Let M be a fuzzy normal set.

 \Rightarrow M is a fuzzy filter [(1.16)]

Now,Let $x, y \in M, b \in X$

 $M(b^{*}(x^{*}y))=M(b^{*}((x^{*}y)^{*}(0^{*}0)))$

 $=M((b^{*} (x^{*}y))^{*}(0^{*}0))$ $\geq \min \{M(b),M((x^{*}y)\}$ [Since M is a fuzzy normal set, definition (1.7)] $\geq \min \{M(0),M((x^{*}y)\}$ [M(b)=M(0)]

 $= \mathbf{M}((\mathbf{x}^*\mathbf{y}) \qquad [\mathbf{A}(0) \ge \mathbf{A}(\mathbf{x}) \ \forall \ \mathbf{x} \in \mathbf{X}, \text{ Proposition (1.18)}]$

 $\geq \min \{M(x), M(y)\}$ [Since M is a fuzzy normal set definition (1.7)]

: M is a fuzzy b-completely closed filter.

Proposition (2.6):Let X be a BH-algebra and A is a fuzzy b- completely closed filter. Then A α is a b- completely closed filter $\forall \alpha \in (0,1]$.

Proof :Let A be a fuzzy b- completely closed filter.

To prove $A\alpha$ is a filter,

1)Let $x, y \in A\alpha$

 $\Rightarrow A(x) \ge \alpha, A(y) \ge \alpha$

 $\Rightarrow \min\{A(x),A(y)\} \ge \alpha$.

but $A(x^*(x^*y)) \ge \min\{A(x), A(y)\}$ [Since A is a fuzzy filter, definition (1.9)]

 $\Rightarrow A(x^*(x^*y)) \ge \alpha$,

 $\therefore x^*(x^*y) \in A\alpha$

Similarly,

 $y^*(y^*x) \in A\alpha$

2)Let $x \in A\alpha$ and $x^*y=0$

 $\Rightarrow A(x) \ge \alpha$.

```
But A(y) \ge A(x) [Since A is a fuzzy filter and x \le y., definition (1.9)]
```

 $\Rightarrow A(y) \ge \alpha$,

 $\Rightarrow y \in A\alpha$

 \therefore A α is a filter

Now,Let $x,y \in F$, $b \in X$, $x,y \in A\alpha$

 $\Rightarrow A(x) \ge \alpha$.

 $\Rightarrow A(y) \ge \alpha$.

 $\Rightarrow \min\{A(x), A(y)\} \ge \alpha$

but $A(b^*(x^*y)) \ge \min\{A(x), A(y)\}$ [Since A is a fuzzy b- completely closed filter, definition (2.1)]

 $\Rightarrow A(b^*(x^*y)) \ge \alpha$

 $\Rightarrow b^*(x^*y) \in A\alpha$

∴ A α is a b- completely closed filter $\forall \alpha \in (0,1]$.

Proposition(2.7): Let X be a BH-algebra and A be a fuzzy b- completely closed filter. Then the set $X_A = \{x \in X: A(x) = A(0)\}$ is a b- completely closed filter.

Proof :Let A be a fuzzy filter,

Since A(0)=A(0) $\therefore 0 \in X_A$ \therefore X_A is a non-empty set 1) Let x, $y \in X_A$ $\Rightarrow A(x)=A(y)=A(0)$ \Rightarrow min{A(x),A(y)}=A(0) But $A(x^*(x^*y)) \ge \min\{A(x), A(y)\} = A(0)$ [Since A is a fuzzy filter. definition (1.9)] $\therefore A(x^*(x^*y)) \ge A(0)$ But $A(0) \ge A(x^*(x^*y))$ [Since A is a fuzzy completely closed filter. definition (1.11)] $\therefore A(x^*(x^*y)) = A(0)$ $\therefore x^*(x^*y) \in X_A$ Similarly, $y^*(y^*x) \in X_A$ 2)Let $x \in X_A, x \le y$ $\Rightarrow A(y) \ge A(x) = A(0)$ [Since A is a fuzzy filter, definition (1.9)] But $A(0) \ge A(y)$, [Since A is a fuzzy completely closed filter., definition (1.11)] $\therefore A(y) = A(0)$ $\therefore y \in X_A$ $\therefore X_A$ is a filter. Now,Let x, $y \in F$, $b \in X_A$ $\Rightarrow A(x)=A(y)=A(0)$ \Rightarrow min{A(x),A(y)}=A(0) But $A(b^*(x^*y)) \ge \min\{A(x), A(y)\} = A(0)$ [Since A is a fuzzy b-completely closed filter definition (2.1)] $\therefore A(x^*y) \ge A(0)$

[Since A is a fuzzy completely closed filter, definition (1.11)]

But $A(0) \ge A(x*y)$ $\therefore A(b*(x*y)) = A(0)$

 $\therefore b^*(x^*y) \in X_A$

 $\therefore X_A$ is a b-completely closed filter.

Proposition (2.8): Let {Ai: $i \in \Gamma$ } be a family of fuzzy b-completely closed filter of a BH-algebra X. Then $\left(\bigcap_{i \in \Gamma} A_i\right)$ s a fuzzy b-completely closed filter of X.

Proof :
To prove that
$$\left(\bigcap_{i=r}^{A_i} A_i\right)$$
 is a fuzzy filter,
(1) Let $x_i \neq X$.
 $\left(\bigcap_{i=r}^{A_i} A_i\right) (x^*(x^*y)) = \inf\{Ai((x^*(x^*y))), i \in \Gamma\}$
 $\geq \inf\{\prod_{i=r}^{A_i} A_i(x), (\bigcap_{i=r}^{A_i} A_i)(y) \}$
Similarly $\left(\bigcap_{i=r}^{A_i} A_i\right) (y^*(y^*x))$
(2) Let $x \in X$ and $x \leq y$
 $\Rightarrow \left(\bigcap_{i=r}^{A_i} A_i\right) (x) = \inf\{Ai(x), i \in \Gamma\}$
 $\geq \inf\{Ai(y), i \in \Gamma\}$ [Since Ai is a fuzzy filter, $\forall i \in \Gamma$, definition (1.9)]
 $= \left(\bigcap_{i=r}^{A_i} A_i\right) (x) = \inf\{Ai(x), i \in \Gamma\}$
 $\geq \inf\{Ai(y), i \in \Gamma\}$ [Since Ai is a fuzzy filter, $\forall i \in \Gamma$, definition (1.9)]
 $= \left(\bigcap_{i=r}^{A_i} A_i\right) (x) = \inf\{Ai(x), i \in \Gamma\}$
 $\geq \inf\{Ai(x), Ai(y), i \in \Gamma\}$
 $\geq \inf\{Ai(x), Ai(y), i \in \Gamma\}$
 $\geq \inf\{\min\{Ai(x), Ai(y), i \in \Gamma\}$
 $\geq \min\{(\bigcap_{i=r}^{A_i} A_i) (x), (\bigcap_{i=r}^{A_i} A_i) (y) \}$
 $\Rightarrow \left(\bigcap_{i=r}^{A_i} A_i\right) b^*(x^*y) \geq \min\{(\bigcap_{i=r}^{A_i} A_i) (x), (\bigcap_{i=r}^{A_i} A_i) (y) \} \forall x, y \in \Gamma$
Therefore, $\left(\bigcap_{i=r}^{A_i} A_i\right)$ is a fuzzy b-completely closed filter of X.
Proposition (1.2):
Let (Ai: |C|) be a family of fuzzy b-completely closed filter of a BH-algebra X. Then $\left(\bigcup_{i=r}^{A_i} A_i\right)$ is a fuzzy b-completely closed filter of a BH-algebra X. Then $\left(\bigcup_{i=r}^{A_i} A_i\right)$ is a fuzzy filter,
Froof:
To prove that $\left(\bigcup_{i=r}^{A_i} A_i\right)$ is a fuzzy filter,
 $\left(\bigcup_{i=r}^{A_i} A_i\right)$ is a fuzzy filter,
 $\left(\bigcup_{i=r}^{A_i} A_i\right)$ is a fuzzy filter,
 $\left(\bigcup_{i=r}^{A_i} A_i\right)$ is a fuzzy b-completely closed filter of a BH-algebra X. Then $\left(\bigcup_{i=r}^{A_i} A_i\right)$ is a fuzzy b-completely closed filter of x.
Proof:
To prove that $\left(\bigcup_{i=r}^{A_i} A_i\right)$ is a fuzzy filter,
 $\left(\bigcup_{i=r}^{A_i} A_i\right)$ is a f

But $\{Ai: i \in \Gamma\}$ is a chain \Rightarrow there exist $j \in \Gamma$ such that

 $\sup\{\min\{\operatorname{Ai}(x^*y),\operatorname{Ai}(y)\}, i \in \Gamma\} = \min\{\operatorname{Aj}(x),\operatorname{Aj}(y)\}$ $= \min\{\sup\{\operatorname{Ai}(x), i \in \Gamma\}, \sup\{\operatorname{Ai}(y), i \in \Gamma\}\}$ $\geq \min\{\left(\bigcup_{i\in F} A_i\right)(\mathbf{x}), \left(\bigcup_{i\in F} A_i\right)(\mathbf{y})\}$ Similarly $\left(\bigcup_{i\in F} A_i\right)(\mathbf{y}^*(\mathbf{y}^*\mathbf{x}))$ (2) Let $x \in X$ and $x \le y$ $\Rightarrow \left(\bigcup_{i \in \Gamma} A_i\right)(\mathbf{x}) = \sup\{\operatorname{Ai}(\mathbf{x}), i \in \Gamma\}$ $\geq \sup\{\operatorname{Ai}(\mathbf{y})\}, i \in \Gamma\} \quad [\text{Since Ai is a fuzzy filter, } \forall i \in \Gamma, \text{ definition (1.9)}]$ $= \left(\bigcup A_i \right)(\mathbf{y})$ $\Rightarrow \left(\bigcup_{i \in \Gamma} A_i\right) \text{ is a fuzzy filter}$ To prove that $\left(\bigcup_{i \in \Gamma} A_i\right)$ is a fuzzy b-completely closed filter of X Let $x, y \in F$, $b \in X$ $\left(\bigcup_{i\in\Gamma} \mathbf{A}_{i}\right)(b^{*}(x^{*}y)) = \sup\{\operatorname{Ai}(b^{*}(x^{*}y)), i\in\Gamma\}$ $\geq \sup\{\min\{\operatorname{Ai}(x),\operatorname{Ai}(y)\}, i\in\Gamma\}$ $\geq \min\{\sup \operatorname{Ai}(x), \inf \operatorname{Ai}(y)\}, i \in \Gamma \}$ $\geq \min\{\left(\bigcup_{i=1}^{n} A_i\right)(\mathbf{x}), \left(\bigcup_{i=1}^{n} A_i\right)(\mathbf{y})\}$ $\Rightarrow \left(\bigcup_{i \in \Gamma} A_i\right) (b^*(x^*y)) \ge \min\{\left(\bigcup_{i \in \Gamma} A_i\right)(x), \left(\bigcup_{i \in \Gamma} A_i\right)(y) \} \forall x, y \in F$ Therefore $\left(\bigcup_{i \in \Gamma} A_i\right)$ is a fuzzy b-completely closed filter of X. Proposition (2.10): Let {Ai: $i \in \Gamma$ } be a family of fuzzy b-closed filter of a BH-algebra X. Then $\left(\bigcap A_i\right)$ is a fuzzy b-closed filter of X. Proof: $\left(\bigcap A_{i}\right)$ is a fuzzy filter [proposition (2.8)] $\left(\bigcap_{i\in\Gamma} A_i\right) \text{ to prove is a fuzzy b-closed filter} \\ \det b \in X, x \in F$ $\left(\bigcap_{i\in\Gamma} A_i\right) (b^*(0^*x)) = \inf\{ \operatorname{Ai}(b^*(0^*x)), i\in\Gamma \}$ $\geq \inf \{ \operatorname{Ai}(\mathbf{x}), \mathbf{i} \in \Gamma \}$ $\geq \left(\bigcap A_i\right)(\mathbf{x}),$ $\Rightarrow \left(\bigcap A_i\right)(b^*(0^*x)) \ge \left(\bigcap A_i\right)(x)$ Therefore, $\left(\bigcap_{i=r} A_i\right)$ is a fuzzy b- closed filter of X. Proposition (2.11): Let {Ai: $i \in \Gamma$ } be a family of fuzzy b-closed filter of a BH-algebra X. Then $\bigcup A_i$ is a fuzzy b-closed filter of X. Proof: $\left(\bigcup A_{i}\right)$ is a fuzzy filter [proposition (2.9)] $\left(\bigcup_{i=1}^{n} A_{i}\right)$ to prove is a fuzzy b-closed filter

$$\left(\bigcup_{i\in\Gamma} A_i\right) (b^*(0^*x)) = \sup\{\operatorname{Ai}(b^*(0^*x)), i\in\Gamma\}$$

$$\geq \sup\{\operatorname{Ai}(x), i\in\Gamma\}$$

$$\geq \left(\bigcup_{i\in\Gamma} A_i\right) (x)$$

$$\Rightarrow \left(\bigcup_{i\in\Gamma} A_i\right) (b^*(0^*x)) \geq \left(\bigcup_{i\in\Gamma} A_i\right) (x)$$

$$\left(\bigcup_{i\in\Gamma} A_i\right) (b^*(0^*x)) \geq \left(\bigcup_{i\in\Gamma} A_i\right) (x)$$

Therefore, $\left(\bigcup_{i\in\Gamma}^{A_i}\right)$ is a fuzzy b-closed filter of X.

Proposition (2.12):

Let X be BH-algebra and A be a fuzzy set of X. Then A is a fuzzy b-completely closed filter if and only if A'(x)=A(x)+1-A(0) is a fuzzy b-completely closed filter.

Proof:

Let A be a fuzzy b-completely closed filter,

 \Rightarrow A is a fuzzy filter. [Proposition (2.3)]

 \Rightarrow A' is a fuzzy filter. [By theorem(1.15)]

Now,Let $x, y \in A, b \in X$

 $A'(b^*(x^*y))=A(b^*(x^*y))+1-A(0)$

 $\geq \min{A(x),A(y)}+1-A(0)$ [Since A is a fuzzy b-completely closed filter]

 $\geq \min\{A(x) + 1 - A(0), A(y) + 1 - A(0)\}$

 $\geq \min\{A'(x),A'(y)\}$

- \therefore A'(x) \geq min{A'(x), A'(y)}
- : A' is a fuzzy b-completely closed filter

Conversely

Let A' be a fuzzy b-completely closed filter,

 \Rightarrow A' is a fuzzy filter. [By theorem(1.15)]

 \Rightarrow A is a fuzzy filter. [By theorem(1.15)]

Now,Let $x, y \in A, b \in X$

```
A(b^{*}(x^{*}y))=A'(b^{*}(x^{*}y))-1+A(0)
```

 $\geq \min\{A'(x),A'(y)\}-1+A(0)$ [Since A' is a fuzzy filter, definition (1.9)]

 $\geq \min\{A'(x) - 1 + A(0), A'(y) - 1 + A(0)\}$

- $\geq \min\{A(x),A(y)\}$
- $\therefore A(b^*(x^*y)) \ge \min\{A(x), A(y)\}$
- \therefore A is a fuzzy b-completely closed filter.

Proposition (2.13): Let X be BH-algebra and A be a fuzzy set of X. Then every fuzzy completely closed filter is a fuzzy b-completely closed ideal, $\forall b \in X, A(b) = A(0)$.

Proof : Let A be a fuzzy completely closed filter.

To prove A is a fuzzy ideal,

- 1) $A(0) \ge A(x) \forall x \in X$ [Proposition (1.16)]
- 2) $A(x)=A(x^*0) = A(x^*(y^*y))$ = $A((x^*y)^*y))$ [Since X is an associative. By definition(1.5)]

 $\geq \min \{A(x^*y), A(y)\}$ [Since A is a fuzzy completely closed filter By definition(1.11)]

 \therefore A is a fuzzy ideal.

 $A(b^*(x^*y)) \ge \min\{A(b), A(x^*y)\}$ [A is a fuzzy completely closed filter. By definition(1.11)]

 $\geq \min\{A(0), A(x^*y)\}$ $\geq A(x^*y)$

 $\geq \min\{A(x),A(y)\}$

∴ A is a fuzzy b-completely closed ideal.

Proposition (2.14):

Let X be BH-algebra such that if $x^*y=0$ implies $x=y \forall x,y \in X$. Then every fuzzy sub algebra is a fuzzy filter.

Proof :Let A be a fuzzy sub algebra and $x,y \in X$.

1)A($x^{*}(x^{*}y)$) $\geq \min{A(x),A(x^{*}y)}$ [Since A is a fuzzy sub algebra, definition (1.8)]

If $\min\{A(x), A(x^*y)\} = A(x) \ge \min\{A(x), A(y)\}$

If $\min\{A(x), A(x^*y)\} = A(x^*y) \ge \min\{A(x), A(y)\}$

 $\therefore A(x^*(x^*y)) \ge \min\{A(x), A(y)\}$

Similarly, $A(y^*(y^*x)) \ge \min \{A(x), A(y)\}$

2)Let x≤ y

 $\Rightarrow x^*y=0 \Rightarrow x=y$

 $\Rightarrow A(y) = A(x) \ge A(x)$

∴A is a fuzzy filter

Theorem (2.15):

Let X be BH-algebra such that $x^*y=0$ implies $x=y \forall x, y \in X$. Then every fuzzy sub algebra is a fuzzy b-completely closed filter, $\forall b \in X$ such that A(b) = A(0).

Proof :

A is a fuzzy filter

[proposition(2.14)]

 $A(b^{*}(x^{*}y)) \ge \min\{A(b), A(x^{*}y)\}$ [A is a fuzzy sub algebra, definition (1.8)]

 $\geq \min\{A(0),A(x*y)\}$

 $\geq A(x^*y)$

 $\geq \min\{A(x),A(y)\}$

 \therefore A is a fuzzy b-completely closed filter.

4. REFERENCES

[A is a fuzzy sub algebra, definition (1.8)]

[1] A. B. Saeid, A. Namdar and R.A. Borzooei, "Ideal Theory of BCH-Algebras", World Applied Sciences Journal 7 (11): 1446-1455, 2009.

[2] A. B. Saeid and M. A. Rezvani "On Fuzzy BF-algebras ", International Journal of Fuzzy System, Vol. 4, No. 1, 13-25, 2009.

[3] B. Ahmad, "On classification of BCH-algebras", Math. Japonica 35, no. 5, 801–804, 1990.

[4] C. B. Kim and H. S. Kim, "On BG-algebras", Demonstratio Mathematica, Vol.XLI, No 3, 2008.

[5] C. H. Park, "Interval-valued fuzzy ideal in BH-algebras", Advance in fuzzy set and systems 1(3), 231–240, 2006.

[6] C. Lele, C. Wu and T. Mamadou, "Fuzzy Filters in BCI-algebras", IJMMS, 29:1, 47-54, 2002.

[7] C. S. Hoo, "Filters and ideals in BCI-algebra, Math. Japonica 36, 987-997, 1991.

[8] D. Dubois and H. Prade, "FUZZY SETS AND SYSTEMS", ACADEMIC PRESS. INC. (London) LTD., ACADEMIC PRESS. INC. fifth Avenue, New York, 1980.

[9] H. H. Abass and H. A. Dahham," Some Types of Fuzzy Ideal With Respect To an Element Of a BG-Algebra" Msc. Thesis Kufa university ,2012.

[10] H. H. Abass and H. M. A. Saeed, "The Fuzzy Closed Ideal With Respect To An Element Of a BH-Algebra", Kufa University, Msc thesis, 2011.

[11] J. Neggers and H. S. Kim, "On B-algebras", Mate Vesnik, 54, 21-29, 2002.

[12] L. A. Zadeh, "Fuzzy Sets", Information and control, Vol. 8, PP. 338-353, 1965.

[13] O. G. Xi, "Fuzzy BCK-algebra", Math. Japonica 36, no. 5, 935–942, 1991.

[14] Q. Zhang, E. H. Roh and Y. B. Jun, "On fuzzy BH-algebras", J. Huanggang, Normal Univ. 21(3), 14–19, 2001.

[15] Y. B. Jun and J. Meng, "Fuzzy p-ideals in BCI-algebras", Math. Japon, 40, 271-282, 1994.

[16] Y. B. Jun, "characterization of fuzzy ideal by their level ideals in BCK(BCI)-algebra", Math. Japon., 38, 67-71, 1993.

[17] Y. B. Jun, "Closed fuzzy ideals in BCI-algebras", Math. Japon.ica 38, no. 1, 199-202, 1993.

[18] Y. B. Jun, "Fuzzy closed ideals and fuzzy filters in BCH-algebras", J. Fuzzy Math. 7, no. 2, 435-444, 1999.

[19] Y. B. Jun, E. H. Roh and H. S. Kim, "On Fuzzy B-algebras", Czechoslovak Mathematical Journal. Japan, 52(127), 375-384, 2002.