Kind of Weak Separation Axioms by D_{ω} , $D_{\alpha-\omega}$, $D_{pre-\omega}$, $D_{b-\omega}$ and $D_{\beta-\omega}$ –Sets

Mustafa H. Hadi (Babylon/ Hillah, Iraq) University of Babylon, College of Education for Pure Science, Mathematics Department

Email: mustafahh1984 [AT] uobabylon.edu.iq

ABSRACT---- In this paper we define new types of sets we call them $D_{\omega}, D_{\alpha-\omega}, D_{pre-\omega}, D_{b-\omega}, and D_{\beta-\omega}$ —sets and use them to define some associative separation axioms. Some theorems about the relation between them and the weak separation axioms introduced in [5] are proved, with some other simple theorems.

Keywords--- Separation axioms, weak open sets, T_i spaces.

1. INTRODUCTION

Throughout this paper , (X, T) stands for topological space. Let (X, T) be a topological space and A a subset of X. A point x in X is called condensation point of A if for each U in T with x in U, the set U \cap A is uncountable [6]. In 1982 the ω –closed set was first introduced by H. Z. Hdeib in [6], and he defined it as: A is ω –closed if it contains all its condensation points and the ω –open set is the complement of the ω –closed set. Equivalently. A sub set W of a space (X, T), is ω –open if and only if for each $x \in W$, there exists $U \in T$ such that $x \in U$ and $u \in U$ is countable. The collection of all ω –open sets of (X, T) denoted u form topology on X and it is finer than T. Several characterizations of ω –closed sets were provided in [1,6,7].

In [3,8,9] some authors introduced α –open , pre –open, b –open , and β –open sets. On the other hand in [10] T. Noiri, A. Al-Omari, M. S. M. Noorani introduced the notions $\alpha-\omega$ –open, pre $-\omega$ –open, $\beta-\omega$ –open, and b $-\omega$ –open sets in topological spaces. In [2,5] used the ω – open sets to define types of weak separation axioms called $\omega-R_0$, $\omega-R_1$ and ω^*-T_1 spaces .They defined them as follows:

Definition 1.1. [10] A subset A of a space X is called:

- 1. $\alpha \omega$ -open if $A \subseteq \operatorname{int}_{\omega}\left(\operatorname{cl}(\operatorname{int}_{\omega}(A))\right)$ and the complement of the $\alpha \omega$ -open set is called $\alpha \omega$ -closed set.
- 2. pre $-\omega$ -open if $A \subseteq \operatorname{int}_{\omega}(\operatorname{cl}(A))$ and the complement of the pre $-\omega$ -open set is called pre $-\omega$ -closed set.
- 3. $b \omega$ -open if $A \subseteq int_{\omega}(cl(A)) \cup cl(int_{\omega}(A))$ and the complement of the $b \omega$ -open set is called $b \omega$ -closed set.
- $4. \ \beta \omega \ open \ if \ A \subseteq cl \left(int_{\omega} (cl(A)) \right) \ and \ the \ complement \ of \ the \ \beta \omega \ open \ set \ is \ called \ \beta \omega \ closed \ set.$

In [10] T. Noiri, A. Al-Omari, M. S. M. Noorani introduced relationships among the weak open sets above by the lemma below:

Lemma 1.2. [10] In any topological space:

- 1. Any open set is ω -open.
- 2. Any ω –open set is $\alpha \omega$ –open.
- 3. Any $\alpha \omega$ -open set is pre $-\omega$ -open.
- 4. Any pre ω open set is b ω open.
- 5. Any b ω –open set is β ω –open.

The converse is not true [10].

For our results in this paper we need the following definitions:

Definition 1.3. [10] A subset A of a space X is called

- 1. An ωt -set, if $int(A) = int_{\omega}(cl(A))$.
- 2. An ω B –set if A = U \cap V, where U is an open set and V is an ω t –set.
- 3. An ωt_{α} -set, if int(A) = int $_{\omega}$ (cl(int $_{\omega}$ (A))).
- 4. An ωB_{α} -set if $A = U \cap V$, where U is an open set and V is an ωt_{α} -set.
- 5. An ω -set if $A=U\cap V$, where U is an open set and $int(V)=int_{\omega}(V)$.

Definition 1.4. [5] Let (X, T) be topological space. It said to be satisfy

- 1. The ω –condition if every ω –open set is $\omega-t$ –set.
- 2. The $\omega-B_{\alpha}$ -condition if every $\alpha-\omega$ -open set is $\omega-B_{\alpha}$ -set.
- 3. The ω B –condition if every pre ω –open is ω B –set.

Lemma 1.5. [10] For any subset A of a space X, We have

- 1. A is open if and only if A is ω -open and ω -set.
- 2. A is open If and only if A is $\alpha \omega$ –open and ωB_{α} –set.
- 3. A is open if and only if A is pre $-\omega$ -open and ω B -set.

Lemma 1.6. If (X, T) is a door space, then

- 1. Every pre $-\omega$ open set is ω open. [10]
- 2.Every $\beta \omega$ –open set is is $b \omega$ –open.[5]

Lemma 1.7. [10] Let (X, T) be a topological space and let $A \subseteq X$. If A is $b - \omega$ –open set such that $int_{\omega}(A) = \emptyset$, then A is $pre - \omega$ –open.

The classes of the sets in Definition 1.1 are larger than that sets in [3,8,9]. In [5] we introduce some weak separation axioms by utilizing the notions of T. Noiri, A. Al-Omari, M. S. M. Noorani. Let us summarize them in the following definitions.

Definition 1.3.[5] Let X be a topological space. If for each $x \neq y \in X$, either there exists a set U, such that $x \in U$, $y \notin U$, or there exists a set U such that $x \notin U$, $y \in U$. Then X called

- 1. ωT_0 space, whenever U is ω -open set in X.
- 2. $\alpha \omega T_0$ space, whenever U is $\alpha \omega$ -open set in X.
- 3. pre $-\omega T_0$ space, whenever U is pre $-\omega$ -open set in X.
- 4. $b \omega T_0$ space, whenever U is $b \omega$ -open set in X.
- 5. $\beta \omega T_0$ space, whenever U is $\beta \omega$ -open set in X.

Definition 1.4.[5] Let X be a topological space. For each $x \neq y \in X$, there exists a set U, such that $x \in U$, $y \notin U$, and there exists a set V such that $y \in V$, $x \notin V$, then X is called

- 1. ω T_1 space if U is open and V is ω –open sets in X.
- 2. $\alpha \omega T_1$ space if U is open and V is $\alpha \omega$ -open sets in X.
- 3. $\omega^* T_1$ space [1] if U and V are ω -open sets in X.
- 4. $\alpha-\omega^{\star}-T_1$ space if U is ω -open and V is $\alpha-\omega$ -open sets in X.
- 5. $\alpha-\omega^{\star\star}-T_1$ space if U and V are $\alpha-\omega$ —open sets in X.
- 6. pre $-\omega T_1$ space if U is open and V is pre $-\omega$ -open sets in X.
- 7. pre $-\omega^* T_1$ space if U is ω -open and V is pre $-\omega$ -open sets in X.
- 8. α pre – ω T_1 space if U is α ω open and V is pre – ω –open sets in X.

- 9. pre $-\omega^{**} T_1$ space if U and V are pre $-\omega$ -open sets in X.
- 10. $b \omega T_1$ space if U is open and V is $b \omega$ -open sets in X.
- 11. $b \omega^* T_1$ space if U is ω -open and V is $b \omega$ -open sets in X.
- 12. $\alpha b \omega T_1$ space if U is $\alpha \omega$ -open and V is $b \omega$ -open sets in X.
- 13.pre $-b \omega T_1$ space if U is pre $-\omega$ -open and V is $b \omega$ -open sets in X.
- 14. b $-\omega^{**} T_1$ space if U and V are b $-\omega$ -open sets in X.
- 15. $\beta \omega T_1$ space if U is open and V is $\beta \omega$ -open sets in X.
- 16. $\beta \omega^* T_1$ space if U is ω -open and V is $\beta \omega$ -open sets in X.
- 17. $\alpha \beta \omega T_1$ space if U is $\alpha \omega$ -open and V is $\beta \omega$ -open sets in X.
- 18.222 2 2 2, space if U is pre $-\omega$ –open and V is $\beta \omega$ –open sets in X.
- 19. $\beta \omega^{**} T_1$ space if U and V are $\beta \omega$ -open sets in X.
- 20. b $-\beta \omega T_1$ space if U is b $-\omega$ -open and V is $\beta \omega$ -open sets in X

Definition 1.5. [5] Let X be a topological space. And for each $x \neq y \in X$, there exist two disjoint sets U and V with $x \in U$ and $y \in V$, then X is called:

- 1. ω T_2 space if U is open and V is ω –open sets in X.
- 2. $\alpha \omega T_2$ space if U is open and V is $\alpha \omega$ -open sets in X.
- 3. $\omega^* T_2$ space if U and V are ω -open sets in X.
- 4. $\alpha \omega^* T_2$ space if U is ω -open and V is $\alpha \omega$ -open sets in X.
- 5. $\alpha \omega^{**} T_2$ space if U and V are $\alpha \omega$ -open sets in X.
- 6. pre $-\omega T_2$ space if U is open and V is pre $-\omega$ -open sets in X.
- 7. pre $-\omega^* T_2$ space if U is ω -open and V is pre $-\omega$ -open sets in X.
- 8. α pre – ω T_2 space if U is α –open and V is pre ω –open sets in X.
- 9. pre $-\omega^{**} T_2$ space if U and V are pre $-\omega$ -open sets in X.
- 10. b $-\omega T_2$ space if U is open and V is b $-\omega$ -open sets in X.
- 11. $b \omega^* T_2$ space if U is ω -open and V is $b \omega$ -open sets in X.
- 12. $\alpha b \omega T_2$ space if U is $\alpha \omega$ -open and V is $b \omega$ -open sets in X.
- 13. pre $-b \omega T_2$ space if U is pre $-\omega$ -open and V is $b \omega$ -open sets in X.
- 14. $b \omega^{**} T_2$ space if U and V are $b \omega$ -open sets in X.
- 15. $\beta \omega T_2$ space if U is open and V is $\beta \omega$ -open sets in X.
- 16. $\beta \omega^* T_2$ space if U is ω -open and V is $\beta \omega$ -open sets in X.
- 17. $\alpha \beta \omega T_2$ space if U is $\alpha \omega$ -open and V is $\beta \omega$ -open sets in X.
- 18. pre $-\beta \omega T_2$ space if U is pre $-\omega$ -open and V is $\beta \omega$ -open sets in X.
- 19. $\beta \omega^{**} T_2$ space if U and V are $\beta \omega$ -open sets in X.
- 20. b $-\beta \omega T_2$ space if U is b $-\omega$ -open and V is $\beta \omega$ -open sets in X.

2. D_{ω} , $D_{\alpha-\omega}$, $D_{nre-\omega}$, $D_{b-\omega}$ AND $D_{\beta-\omega}$ -SETS

In this article we shall define new types of sets and use them to define new spaces with associative separation axioms.

Definition 2.1. A subset A of a topological space (X, T) is called D –set [4] (resp.D $_{\omega}$ –set , D $_{\alpha-\omega}$ –set , D $_{pre-\omega}$ –set , D $_{b-\omega}$ –set , D $_{b-\omega}$ –set). If there are two open (resp. ω –open, α – ω –open, pre – ω –open, β – ω –open, and b – ω –open) sets U and V with U \neq X and A = U\V.

Remark 2.2. It is true that every ω –open, (resp. α – ω –open, pre – ω –open, b – ω –open, and β – ω –open) set U \neq X is D_{ω} –set (resp. $D_{\alpha-\omega}$ –set, $D_{pre-\omega}$ –set, $D_{b-\omega}$ –set, and $D_{\beta-\omega}$ –set) if A=U and $V=\emptyset$.

Using Definition 2.1 and Lemma 1.2, Lemma 1.6, and Lemma 1.5 we can easily prove the following Propositions:

Proposition 2.3. In any topological space X.

- 1. Any D –set is D_{ω} –set.
- 2. Any D_{ω} –set is $D_{\alpha-\omega}$ –set.
- 3. Any $D_{\alpha-\omega}$ -set is $D_{pre-\omega}$ -set.
- 4. Any $D_{pre-\omega}$ -set is $D_{b-\omega}$ -set.
- 5. Any $D_{b-\omega}$ -set is $D_{\beta-\omega}$ -set.

Proposition 2.4. In any topological door space :

1. Any
$$D_{pre-\omega}$$
 -set is D_{ω} -set.

2.Any
$$D_{\beta-\omega}$$
 -set is $D_{b-\omega}$ -set.

Proposition 2.5. In any topological space satisfies ω –condition. Any D_{ω} –set is D –set.

Proposition 2.6. In any topological space satisfies $\omega - B_{\alpha}$ –condition. Any $D_{\alpha-\omega}$ –set is D –set.

Proposition 2.7. In any topological space satisfies $\omega - B$ –condition. Any $D_{pre-\omega}$ –set is D –set.

Proposition 2.8. In any topological space. Any $D_{b-\omega}$ –set with empty ω –interior is $D_{pre-\omega}$ –set .

Proof:

Let X be a topological space, and let A be a $D_{b-\omega}$ -set with empty ω -interior in X, then there are two $b-\omega$ -open which are by Lemma 1.7 also pre $-\omega$ -open sets U and V with $U \neq X$, and $A = U \setminus V$

Similarly we can prove the other cases.

From the lemmas above we can get the following figure:

Figure 1: Relation among the weak D -sets

3. D_{ω} , $D_{\alpha-\omega}$, $D_{pre-\omega}$, $D_{b-\omega}$ AND $D_{\beta-\omega}$ –SETS AND ASSOCIATIVE SEPARATION AXIOMS

Utilizing the weak D_{ω} sets we can define our separation axioms as follows:

Definition 3.1. Let X be a topological space. If $x \neq y \in X$, either there exists a set U, such that $x \in U$, $y \notin U$, or there exists a set U such that $x \notin U$, $y \in U$. Then X called

- 1. ωD_0 space, whenever *U* is D_{ω} -set in *X*.
- 2. $\alpha \omega D_0$ space, whenever *U* is $D_{\alpha \omega}$ -set in *X*.
- 3. $pre-\omega D_0$ space, whenever U is $D_{pre-\omega}$ -set in X.
- **4.** $b \omega D_0$ space, whenever *U* is $D_{b-\omega}$ -set in *X*.
- 5. $\beta \omega D_0$ space, whenever U is $D_{\beta \omega}$ –set in X.

Definition 3.2. We can define the spaces $ω - D_i$, $α - ω - D_i$, $pre - ω - D_i$, $b - ω - D_i$, $β - ω - D_i$, for i = 0,1,2. And $ω^* - D_i$, $α - ω^* - D_i$, $α - ω^{**} - D_i$, $pre - ω^* - D_i$, $pre - ω - D_i$, pre - ω

Remark 3.3. For the relations among weak D_i , i = 0,1,2 we can make a figures coincide with these for weak T_i s spaces in [5].

Theorem 3.4. Let (X, T) be a topological space:

- $\begin{array}{l} 1. \text{ If } (\ X,T\) \text{ is } \omega-T_i, \text{ (} \text{ resp. } \alpha-\omega-T_i, \text{ pre}-\omega-T_i, \text{ } b-\omega-T_i, \text{ } \beta-\omega-T_i, \text{ for } i=0,1,2, \text{ and } \omega^*-T_i, \alpha-\omega^*-T_i, \alpha-\omega^*-T_i, \alpha-\omega^*-T_i, \text{ } b-\omega-T_i, \text{ } b-\omega-T_i, \text{ } b-\omega-T_i, \text{ } b-\omega-T_i, \text{ } b-\omega^*-T_i, \text{ } b-\omega^*-T_i, \text{ } pre-b-\omega-T_i, \text{ } b-\omega^*-T_i, \text{ } a-\omega^*-T_i, \text{ } a-\omega^*-T_i, \text{ } b-\omega^*-T_i, \text{ } a-\omega^*-T_i, \text{ } a-\omega^*-T_i,$
- $\begin{array}{l} 2. \ \ If \ (X,T) \ is \ \omega D_i, \ (\ \ resp. \ \alpha \omega D_i, \ \omega^* D_i, \ \alpha \omega^* D_i, \ \alpha \omega^{**} D_i, pre \omega D_{1i}, pre \omega^* D_i, \alpha \omega^* D_i, \alpha \omega^* D_i, pre \omega D_{1i}, pre \omega^* D_i, \alpha \omega^*$

Proof:

- 1. Follows immediately by the Remark 3.3.
- 2. Directly from Definition 2.1. Definition 3.1, and Definition 3.2.

By the following theorems we recognize the importance of the weak D_i -spaces, for i = 0,1,2.

 $\begin{array}{l} \textbf{Theorem 3.5.} \ \ \text{Let} \ (\textbf{X},\textbf{T}) \ be \ a \ topological space. \ Then \textbf{X} \ is \ \omega - D_1\text{,} \ (\text{ resp.} \ \alpha - \omega - D_1, \omega^* - D_1, \alpha - \omega^* - D_1, \\ \alpha - \omega^{**} - D_1 \ , \ \text{pre} \ - \omega - D_1 \ , \ \text{pre} \ - \omega^* - D_1 \ , \ \text{pre} \ - \omega^* - D_1 \ , \ \text{pre} \ - \omega^* - D_1 \ , \ \text{pre} \ - \omega^* - D_1 \ , \ \text{pre} \ - \omega^* - D_1 \ , \ \text{pre} \ - \omega^* - D_1 \ , \ \text{pre} \ - \omega^* - D_1 \ , \ \text{pre} \ - \omega^* - D_1 \ , \ \text{pre} \ - \omega^* - D_1 \ , \ \text{pre} \ - \omega^* - D_1 \ , \ \text{pre} \ - \omega^* - D_1 \ , \ \text{pre} \ - \omega^* - D_1 \ , \ \text{pre} \ - \omega^* - D_2 \$

Proof:

The proof of the forward direction is a step by step similar to that of Theorem 4.8 in [4] .The inverse direction follows immediately from (2) of theorem 3.4 above.

Theorem 3.6. Let (X, T), be a topological space. Then X is $\alpha - \omega - T_0$ (resp. $\omega - T_0$, pre $-\omega - T_0$, b $-\omega - T_0$, $\beta - \omega - T_0$) if and only if it is $\alpha - \omega - D_0$ (resp. $\omega - D_0$, pre $-\omega - D_0$, b $-\omega - D_0$).

Proof:

The forward direction follows immediately from (1). of Theorem 3.4.

For the opposite side let X be $\alpha-\omega-D_0$, so for $x\neq y\in X$, there is a $D_{\alpha-\omega}$ –set U such that $x\in U$, but $y\notin U$. Then by the definition of the $D_{\alpha-\omega}$ –set , $U=W\setminus V$, where V and $W\neq X$ are $\alpha-\omega$ – open sets. Now if $x\in W$, but $y\notin W$, and W is an $\alpha-\omega$ – open set in X. So X is $\alpha-\omega-T_0$. Then whenever $x\in U=W\setminus V$ and $y\in (W\cap V)$. Then $y\in V$, and $x\notin V$. Thus X is $\alpha-\omega-T_0$ space.

For the following definition we need the definition of the ω –neighbourhood from [5]:

Definition 3.7.[5] Let (X, T) be a topological space. A subset U of X is ω –neighbourhood of a point $x \in X$, if and only if there exists an ω –open set V such that $x \in V \subseteq U$.

Definition 3.8. A point $x \in X$ which has only X as ω —neighbourhood is called an ω —net point.

Proposition 3.9. Let (X, T) be a topological space If X is $\omega - D_1$ space, then it has no ω -net point.

Proof:

Since X is $\omega - D_1$ so each point x of X contained in a D_{ω} -set $W = U \setminus V$, $U \neq X$, and U and V are ω -open sets. So it contained in the ω -open set $U \neq X$, which implies x is no ω -net point.

Theorem 3.10. Let X be a door topological space, has no ω –net point. Then it is ω – D₁ space.

Proof:

Since (X, T) be a door topological space, so for each point x in X , {x} is either ω –open or ω –closed. This implies for each x \neq y \in X, at least one of them say x has ω –neighbourhood U \neq X containing x but not y, U is D_{ω} –set. If X has no ω –net point, then y is not ω –net point , so there is an ω –neighbourhood V \neq X of y. Thus V\U is D_{ω} –set containing y but not x. Hence X is ω – D_1 space .

To introduce Theorem 3.12 we need the following Definition from [5]:

Definition 3.11. [5] Let (X, σ) and (Y, τ) be two topological spaces. A map $f: (X, \sigma) \to (Y, \tau)$ is called ω-continuous (resp. α – ω-continuous, pre –ω –continuous, b –ω –continuous and β – ω –continuous) at $x \in X$, if and only if for each ω –open (resp. α – ω –open, pre –ω –open, b –ω –open and β – ω –open) set V containing f(x), there exists an ω –open (resp. α – ω –open, pre –ω –open, b –ω –open and β – ω –open) set U containing x, such that $f(U) \subset V$. If f is ω – continuous (resp. α – ω – continuous, pre –ω – continuous, b –ω – continuous and β – ω –continuous) at each $x \in X$, we call it ω – continuous (resp. α – ω – continuous, pre –ω – continuous, b –ω –continuous).

Theorem 3.12. If $f:(X,\tau)\to (Y,\sigma)$ is $\omega-$ continuous (resp. $\alpha-\omega-$ continuous, $\beta-\omega-$ continuous, $b-\omega-$ continuous) onto function and A is $D_{\omega}-$ set (resp. $D_{\alpha-\omega}-$ set, $D_{pre-\omega}-$ set, $D_{b-\omega}-$ set, $D_{b-\omega}-$

Proof:

Let A be D_{ω} – set in Y, so there are two ω – open sets $U \neq Y, V$ in Y such that $A = U \setminus V$. Then by the ω –continuous function definition, we have $f^{-1}(U)$ and $f^{-1}(V)$ are ω –open sets in X, such that $f^{-1}(U) \neq X$. And $f^{-1}(A) = f^{-1}(U \setminus V) = f^{-1}(U) \setminus f^{-1}(V)$ is D_{ω} –set in X.

The other cases are the same .

Theorem 3.13. For any two topological spaces (X, τ) and (Y, σ) .

- 1. If (Y, σ) be an $\omega^* D_1$ and $f: (X, \tau) \to (Y, \sigma)$ is an ω -continuous bijection, then (X, τ) is $\omega^* D_1$.
- 2. If (Y, σ) be an, $\alpha \omega^{\star\star} D_1$ and $f: (X, \tau) \to (Y, \sigma)$ is an $\alpha \omega$ -continuous bijection, then (X, τ) is, $\alpha \omega^{\star\star} D_1$.
- 3. If (Y, σ) be a, pre $-\omega^{\star\star} D_1$ and f: $(X, \tau) \to (Y, \sigma)$ is a pre $-\omega$ -continuous bijection, then (X, τ) is pre $-\omega^{\star\star} D_1$.
- 4. If (Y, σ) be a, $b \omega^{\star\star} D_1$ and $f: (X, \tau) \to (Y, \sigma)$ is a $b \omega$ -continuous bijection, then (X, τ) is $b \omega^{\star\star} D_1$.
- 5. If (Y, σ) be a, $\beta \omega^{**} D_1$ and f: $(X, \tau) \to (Y, \sigma)$ is a $\beta \omega$ -continuous bijection, then (X, τ) is $\beta \omega^{**} D_1$.

Proof of (1):

Let Y be an $\omega^{\star}-D_1$ space. Let $x\neq y\in X$, since f is bijective and Y is $\omega^{\star}-D_1$ space, so there exist two D_{ω} —sets U and V such that U containing f(x) but not f(y) and V containing f(y) but not f(x), then by Theorem 3.12. $f^{-1}(U)$ and $f^{-1}(V)$ are D_{ω} —sets such that $f^{-1}(U)$ containing x but not y and $f^{-1}(V)$ containing y but not x. So (X,τ) is $\omega^{\star}-D_1$.

By the same way we can prove the other cases.

Theorem 3.14. A topological space (X,T) is $\omega^* - D_1$ (resp. $\alpha - \omega^{**} - D_1$, pre $-\omega^{**} - D_1$, $b - \omega^{**} - D_1$, $\beta - \omega^{**} - D_1$) if and only if for each pair of distinct points $x,y \in X$, there exists an ω -continuous (resp. $\alpha - \omega$ -continuous, pre $-\omega$ -continuous, $b - \omega$ -continuous, $\beta - \omega$ -continuous) onto function $f:(X,\tau) \to (Y,\sigma)$ such that f(x) and f(y) are distinct, where (Y,σ) is $\omega^* - D_1$ (resp. $\alpha - \omega^{**} - D_1$, pre $-\omega^{**} - D_1$, $b - \omega^{**} - D_1$, $\beta - \omega^{**} - D_1$) space.

Proof:

Let (X,τ) be an ω^*-D_1 , let $x,y\in X$, then we can find an onto function $f\colon (X,\tau)\to (Y,\sigma)$, where (Y,σ) is an ω^*-D_1 is defined by f(x)=x, such that f(x) and f(y) distinct. For the opposite direction. Let $x\neq y\in X$, and $f\colon (X,\tau)\to (Y,\sigma)$ be an onto ω —continuous function such that f(x) and f(y) distinct, and (Y,σ) is ω^*-D_1 space. We must prove (X,τ) is ω^*-D_1 space. Since (Y,σ) is an ω^*-D_1 space and f(x) and f(y) are distinct points in it, then by Theorem 3.5 there are two distinct disjoint D_ω —sets U and V in Y such that U containing f(x) and V containing f(y). Then since f is ω —continuous function so $f^{-1}(U)$ and $f^{-1}(V)$ are two disjoint D_ω —sets in X such that $f^{-1}(U)$ containing X and Y containing Y and Y is Y such that Y such

4. REFERENCES

- [1]. A. Al-Omari and M. S. M. Noorani, " *Regular generalized \omega-closed sets*", Internat. J. Math. Math. Sci., vo. 2007. Article ID 16292, doi: 10.1155/2007/16292, 11 pages, 2007.
- [2]. Luay. A. Al Swidi, Mustafa. H. Hadi, "Characterizations of Continuity and Compactness with Respect to Weak Forms of ω-Open Sets", European Journal of Scientific Research, Vol. 57, No. 4, pp. 577-582, 2011.
- [3]. D. Andrijevic, " On b-open sets", Mat. Vesnik 48, pp. 59-64, 1996.
- [4]. S. Athisaya and M. Lellis, "Another form of separation axioms", Methods of Functional Analysis and Topolog, vol.13,no.4,pp. 380-385,2007.
- [5]. M. H. Hadi, "Weak forms of ω -open sets and decomposition of separation axioms", M. Sc. Thesis, Babylon University (2011).
- [6]. H. Z. Hdeib, "ω-closed mappings", Rev. Colomb. Maht,vol.16,no. 3-4, pp. 65-78, 1982.
- [7]. H. Z. Hdeib, " ω-continuous functions", Dirasat, vol. 16, no.2, pp. 136-142 1989.
- [8]. A. S. Mashhour, M. E. Abd El- Monsef and S. N. El- Deeb, " *On pre-continuous and weak pre-continuous functions*", Proc. Math. Phys. Soc. Egypt, no. 51, pp. 47-53, 1982.
- [9]. O. Njastad, " On some classes of nearly open sets ", Pacific. J. Math. 15, pp. 961-970, 1965.
- [10]. T. Noiri, A. Al-Omari and M. S. M. Noorani, "Weak forms of ω -open sets and decomposition of continuity", E.J.P.A.M. vol.2, no. 1, pp. 73-84, 2009.