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ABSTRACT---- A congruence, characterized by J*-relations, is constructed on a regular type A semigroup.
The resulting set of congruence classes is shown to be a type A semigroup. Commutativity of the
morphisms between the semigroups, described by their kernels, is established.

1. INTRODUCTION

A congruence p on a semigroup S is a compatible equivalence on S. The quotient S/p can be given a
semigroup structure in a natural way and the map p*: S > S/p defined by xp* =xp (x €YS) is a
morphism. p is called idempotent — separating if each p-class cantains at most one idempotent. p is called a
group congruence if S/p is a group. We, in this piece of article, zero in on the case where S is a type A
semigroup.

By constructing a semigroup T consisting of one — one maps between certain left ideals in a type A
semigroup S, proving T to be a type A semigroup and then providing a representation of S by T, Asibong —
Ibe [1] showed that a representation exists for a type A semigroup similar to Vagner — Preston’s
representation on inverse semigroups. The result of this work (Asibong-lbe’s work in [1]) is basically the stem
of our own result here.

Here, we construct a congruence and then show that its quotient set is a type A semigroup. We then marry
up Asibong’s representation in [1] with our construction to produce commuting isomorphisms.

2. PRELIMINARIES

Let S be a semigroup and a,b € S. Then, (a,b) € L* if aLb in an oversemigroup of S. Thus, by this
definition, L* contains the Green’s relation L on S. In an alternative characterisation, Lawson in [7] gave that
fora,b €S, (a,b) € L*ifVx,y € S, ax = ay if and if bx = by.

Lemma 2.1: Let S be a semigroup and e an idempotentin S. Then, Va € S, the following are equivalent:
i) (e,a) €L and (i) Vx,y € S,ax = ayifandif ex = ey.
R* is dual to L* and the above definition of L* apply in dual manner to R*.

The intersection of L* and R* is denoted by H*. The join of L* and R* on S is the equivalence D*. In
general, L*oR* + R*oL* and neither equals D*. Basically, aD*b if and only if there exists elements
X1,X9,X3, ... ,X, in Ssuchthat al*x;R*xyL*x3 ... x,_1L*x, R*D.

DS D*and HCS H*.If S isregular,then L =L* and R = R".
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Let S be a semigroup and I an ideal of S. Then [ is called *-ideal if L, S1and R; < I for all a € I. The
smallest *-ideal containing a is the principal *-ideal generated by a and is denoted by J*(a). For a,b € S,
aJ*bifand onlyif J*(a) = J*(b).The J*-class containing the element a € S is denoted by J;

From Lawson in [7], we note that L* is a right congruence and R is a left congruence. Thus, J* is a
congruence and by congruence property, we have -

Ja-Ja=Jaw, UD*>= T2 Ju < Ji, Ja < Ji. Therelation* contains D*.

A semigroup S is said to be *-simple if all its elements are J* related and *-bisimple semigroup if it contains
one D*-class.

A semigroup S is said to be an abundant semigroup if each L*-class and each R*-class contains an
idempotent and it is superabundantif each H*-class contains an idempotent.

An abundant semigroup S whose idempotents form a semilattice E(S) is called adequate. In an abundant
semigroup, the idempotents in each L*-class and each R*-class are unique. If S is adequate, and a is an
element of S, then a*(a™) will denote the unique idempotent in the L*-(R*-)class of a . Thus, in an adequate
semigroup, al*h & a* =b*and aR*h & at =bh"

An adequate semigroup S is said to be a type A semigroup if for each a in S and e in E(S), ea = a(ea)” and
ae = (ae)ta.

Fountain in [4] characterised a type A semigroup as follows:

Lemma 2.2: Let S be an adequate semigroup. Then, Va € S and Ve € E(S), the following are equivalent:

(i) S is a type A semigroup.
(ii) eS'naS! =eaSt and S'e n Sta = Slae and
(iii) There exist embeddings A;: S = S; and A,:S = S, into inverse semigroup S1,S, such that

a*l; = (al;)1(al;y) and a*d, = (ady)(ady) .

A type A semigroup is called a *-bisimple semigroup if it contains precisely one D*-class and one regular D-
class.

Let S be a type A semigroup with a,b € S. The relation D is defined on S by (a,b) € D if and only if
(a*,b*) € D and (a*,b™) € D for some a*, b* a* and b*. D is an equivalence relation and the inclusion-
D < D < D* holds.

Asibong — Ibe [2] showed that for an adequate semigroup S, D* and D coincide if and only if every nonempty
H*-class contains a regular element. The equality - D* = D, guarantees the equality - D* = L*oR* = R*oL".

A semigroup homomorphism p: S = T is said to be a good homomorphism if for all a,b € S, a L*(S)b
implies ap L*(T)bp and that a R*(S)b implies ap R*(T)bp.

A congruence § on a semigroup S is said to be a good congruence if the natural homomorphism from S onto
S/d is good.

The following lemmas are adapted from El-Qallali in [3] :

Lemma 2.3: Let S be an abundant semigroup and p:S = T a semigroup homomorphism. Then the
following statements are equivalent:

i The homomorphism p is good
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ii. For each element a € S, there are idempotents e, f, with e € L, f € R}, such that apL*(T)ep
and apR*(T)fp

Lemma 2.4: Let p be a congruence on an abundant semigroup S. Then the following statements are
equivalent:

i. p is a good congruence
ii. For all a € S, there are idempotents e, f, with e € L;, f € R} such that apL*(S/p)ep and

apR*(S/p)fp

It therefore implies that a congruence p on an abundant semigroup S is good if Va € S and Vx,y € S! there
are idempotents e, f, with eL*a, fR"a such that (ax,ay) € p implies (ex,ey) € p and (xa,ya) € p
implies (xf,yf) € p. Corresponding interpretation also goes to a good homomorphism on an abundant
semigroup.

In general, the homomorphic image of an abundant semigroup is not abundant. We however can quote from
[8] that the good homomorphic image of an abundant semigroup is always abundant. The following lemma
comes from [8]

Lemma 1.5: The intersection of good congruences is a congruence.

Proof: Let p, o be good congruences and suppose a € S and that (ax,ay) € pno forall x,y € S'. Then
(ax,ay) €p and (ax,ay) € c and therefore for some eq,e; € L; NE(S), (e1x,e1y) Ep and
(e;x,e,y) € 0. Now, for some e € L), NE(S), (eeix,ee;y) €p and (eeyx,ee,y) € a. Since e, e, are
right identities in L}, we have (ex, ey) € p N a. Similarly, [(xa,ya) € p N a] = [(xf,yf) € p N g] for some
fER;NE(S).

We conclude the section with the following definitions:

A semigroup homomorphism ¢: S — T is said to be a *-homomorphism ifforalla,b € S, a L*(S)b if and
only if ap L*(T)bep and a R*(S)b if and only if ap R*(T)b¢.

A congruence § on a semigroup S is said to be a *-congruence if the natural homomorphism from S onto
S/8isa *-homomorphism.

3. A CONGRUENCE ON A TYPE A SEMIGROUP

In this and subsequent sections, the term semigroup S will refer to a regular type A semigroup S with E(S)
as its set of idempotents. We recall that a semigroup S is called regular if for all a € S there exists x € S such
that axa = a. Now, for a € S, a*,a* € E(S),a* =aa™',a* =a 'a andaa* = ata = a.

Lemma 3.1: Foralla,b € S, the following statements are true:
i) a*bt = (ab™)* iii) att = at v) a*b = b(ab)*
ii) a(abt)* = (abHta iv) (abH)t = (ab)”* vi) (ab)* = (a*b )*

Let S be a type A semigroup S and E(S) its semilattice of idempotents. Now let the J*-class containing an
element e € E(S) be denoted by E(e). For a,b € S, define a relation § on S by (a,b) € § if and only if
b = eaf and a = gbh forsome e € E(a™), f € E(a*), g € E(b™) and h € E(b*).
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Lemma 3.2: Then, & is a congruence on S.
Proof: We start by showing that § is an equivalence.
(a,a) € § since ataa* = aa* =a fora™ € E(a*) and a* € E(a*). Thus, § is reflexive.

By definition, § is symmetric. For transitivity, let (a,b) € § and (b,c) € § with a,b,c € S. Therefore, for
some e; € E(at), fy € E(a*), 91,92 € E(bY), hy,hy, € E(b*), e; € E(ct) and f, € E(c*),

b =eqaf; and a = g;bhy ; b =e,cf; and ¢ = g,bh,
So that a = giexcfrhy and ¢ = gpejafih;
With  gie, € E(bTct) =E(ctb*) CE(c*) and fohy € E(c*b*) = E(b*c*) S E(c*) ;
g,e; € E(bta™) =E(a™b*) €E(a™) and fih, € E(a*b*) =E(b*a*) S E(a").
Hence, (a, c) € 6, which establishes transitivity of 8.

Now, for compatibility of &, assume (a,b) € § so that b = eaf and a = gbh for some e € E(a%) ,
f€E(a*),g€E(MD"Y) and h € E(b*). Foranyc € S, bc = eafc.

If we choose f to be equal to a*, then bc = eaa*c = eac(ac)* = e(ac)Tac(ac)*.

We recall that each E(e), [e € E(S)], is a J*-class and therefore a congruence class. So that
e(ac)t € E(a™).E(ac)” = E(a™)(ac)t = E(ac)*(a™) € E(ac)*.

And if we choose h to be equal to b*,
ac = ghb*c = gbc(bc)* = g(bc)*tbc(bc)*, g(bc)™ € E(bc)™.

Therefore, (ac,bc) € §. Thus, § is right compatible. Proof of left compatibility of § comes in a similar
fashion. We therefore conclude that § is a congruence.

Proposition 3.3: § isgoodon S.

Proof: Fora,x,y € S, let (ax, ay) € 6. This implies that ay = eaxf and ax = gayh for some e € E(ax)",
f € E(ax)*, g € E(ay)" and h € E(ay)".

ay = eaxf = a ‘ay = a leaxf.If we choose e = (ax)™, then we have
alav = a1 + _ -1 O P |

y=a (ax)Taxf =a axf =(a "ax)"a “axf.
ala € L},and f € E(ax)* =E(aalax)* € E(a lax)*

lax = a 'gayh.

Now, ax = gayh = a~
Taking g = (ay)™, wehave a~lax = a '(ay)Tayh =alayf = (a 'ay)ta layh.
h € E(ay)* = E(aa"tay)* S E(a lay)*

We have just shown that for all a,x,y € S, there exists u=a"'a € L, suchthat [(ax,ay) €] =
[(ux, uy) € §].

In a similar approach, it can be shown that [(xa,ya) € §] = [(xv,yv) € §] with v € R;.

Thus, § is good.
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Having established that § is a congruence, the very natural next step is to define a binary operation on the
guotient set S/8§ which is the set of congruence classes of §. We define the operation in a natural way as
follows: (ad)(bS) = (ab)é

Compatibility of § makes it possible and easy to see that our operation here is well-defined. We notice that
forall a,b,c,d € S,

ad =cdandbd =d5 = (a,c) €Edand(b,d) €S = (ab,cd) €S = (ab)d = (cd)d.
Obviously the operation is associative, and therefore S/§ is a semigroup.
Theorem 3.4: S/§ is a type A semigroup.
We establish the proof through the following lemmas:
Lemma3.5 Forall a,b €S,

i. (ad,bd) € L*(S/96) if and only if (a,b) € L*(S) and
ii. (ad,bd) € R*(S/8) if and only if (a, b) € R*(S)

Proof: Assume (ad, bd) € L*(§/6). This implies that for all ¢c§,ds € S/ (which implies Vc,d € S)
ad.céd = ad.dd ifandonlyif bd.c6 = b6.dS. Thatis acd = adé if and only if bcd = bdd

Now, acé =adé means (ac,ad) € 5§ and this implies that for some e € E(ac)t , f € E(ac)?,
g € E(ad)t and h € E(ad)*, ad = eacf and ac = gadh

Choosing e = (ac)* and f = (ac)*, then we have ad = (ac)tac(ac)* = ac(ac)* = ac
Choosing g = (ad)t and f = (ad)* will also produce ac = ad.

Similarly, taking up bcé = bdd will produce bc = bd. Therefore, (a,b) € L*(S).
Conversely, let (a, b) € L*(S). Thenforall ¢,d € S, ac = ad and bc = bd.
Since ac,ad, bc and bd areallin S, acd,add, bcd and bdéd are allin S/4.

With ac = ad and bc = bd, we have acd = add and bcéd = bdé.

Thatis adcd = addd and bécd = bddd forall ¢§,d6 € S/6

Thus, (ad, bd) € L*(S/9).

Proof of (ii) is similar.

The following corollary is consequent upon the right above lemma.

Corollary 3.6 Let ad,bd € S/6, then

i. (aé,bd) € H*(S/6) ifand only if (a,b) € H*(S) and
ii. (aé,b6) € D*(S/6) ifand only if (a,b) € D*(S)

Proof: (i) [(ad,bd) € H'(S/8)] < [(ad,bS) € L*(S/8) and (a8, bS) € R*(S/5)]

& [(a,b) € L*(S) and (a,b) € R*(S)] & (ab) € H*(S).
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(ii) For some ¢4, c;6, c36, ..., c,6 €S/6,
[(ad,bd) € D*(S/6)] © [adL*(S/6)c16R*(S/8)c8L*(S/6)c36 ...c, 6R*(S/8)b6]

& [al*(S)c R* (S)c L™ (S)c3 ..., R*(S)b] < (a,b) € D*(S).
Lemma 3.7 An element ad € S/§ is an idempotent if and only if a € S is an idempotent.
E(S5/6), the set of idempotents of §/§, is a semilattice.
Proof: Suppose aé is idempotent in S/&. It means that (a8)? = a?§ = ab. Thatis (a?, a) € §.
So that for some € E(a®)*, f € E(a®)*,g € E(a)* and h € E(a)*, a = ea’f and a? = gah.

Choosing g =e and h=af guarantees a =a’. And g=e and h=af are well — chosen since
e€E@)* € E(a)* and af € E(a)*. E(a®)* = E(a)*(a®)* = E(a®)*(a)* S E(a)".

Conversely, a? = a implies that a?6 = a8. Thatis (a8)? = aé.
Now, assume ed, f& € E(S/8).Thene, f € E(S) and therefore (e§)(f6) =efd = fed = (f6)(ed)
Andife < f, ef = fe =e,andso edfd = féed = ed.Thus, E(S/9) is a semilattice.

For a€S,a* €L, a” €R} and ada*§ = aa*§ = ad, a*6ad = atad = ad. So, we evidently have the
following facts:

Lemma 3.8 Foreachad € S/6, (ad,a*6) € L*(5/86) and (ab,a*s) € R*(S/6).

Furthermore, let L5 and R,s be, respectively, the L*(S/8) and R*(S/6) classes containing ad. Let us
denote by ad* and a8* the unique idempotents in L, 5 and R 5 respectively.
Now, fora € S and e € E(S), ea = a(ea)* and ae = (ae)ta.
Consequently, edad = ead = a(ea)*s = [ad][(ea)* 5] = [ad][(ead)’]
= [ab][(edad)*] = ad(edad)*
Similarly, ade8 = (aded)* ad. Thus, we have shown that

Lemma 3.9 For each ad,ed € S/8, edal = ab(eSad)* and aded = (aded)™ ab.
All the lemmas 2.5 to 2.9 and the observations therein make the proof of theorem 2.4.
4, THE ISOMORPHISMS

Asibong in [1] established that there is a Vagner — Preston type representation from a type A semigroup S
into a type A semigroup T of mappings, where T = {a,| a € S, a,: Sa™ - Sa*}. It was, thus, shown that
that the mapping ¢:S - T with a@p = a, is an isomorphism from S onto T. It follows from the general
definition given by Howie in [6] that

Kerp = ¢ o¢@~' = {(a,b) €S x S:ap = bg}

Kerg is obviously an equivalence relation on S. It is not just an equivalence, it is a congruence on S. To see
this, let (a,b),(x,y) € Kerg. This implies that ap = bp and x@ = y@. Therefore, axp = apxp =
bpyp = by@. So that (ax,by) € Kerg.

We know, from our elementary algebra, that there should be a natural morphism y (say) from S onto
S/Kerep defined by ay = aKerg, (a € S). Similarly, we have a natural morphism 9:S5 — S/é defined
ad = ad, (a €5).

For convenience, let us, for the rest of this section, denote Kerg by k. The last paragraph is part of the
following theorem:
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Theorem 3.1 § € k.Thereis aisomorphism  from S/§ onto S/k whose kernel —k/§, is a congruence
on S/6& such that (§/8)/(x/d) is isomorphic to S/x and such that the diagram

y »
S > S/k

commutes.

J B

< N
Proof: /8 "We start by shoWg@AQ@a}) .

Suppose (a,b) €8, a,b €S. This implies that for some e € E(at), f€E(a*), geE(b*') and
h € E(b*), b =eaf anda = gbh.

Sothat ap = gbhg = geafhyp = gopepapfohp = (ge)p. ap.(fR)g = (ge)a(fh)e.
Now, ge € E(b*) .E(a*) = E(b")(a*) = E(a™)(b*) € E(a™)

and fh € E(a*) .E(b*) = E(a*)(b*) = E(b*)(a*) € E(a*).

Therefore, ap = (ge)a(fh)p = bp. Thus, (a,b) € k.

Next,

Defineamap m: S/8 » S/k by (ad)m = ak witha € S. 1 is well defined since [adé = b6]
= [(a,b)€d] =[(a,b) € k] =[ak=bk]=][(ad)mr = (bS)m].

1 is @ morphism since (aébd)r = (abd)r = (ab)k = akbk = (ad)mw (bd)m .

Now, suppose akx = bk. This implies that ap = b and therefore a, = a;, which in turn implies that
Sat =Sb*, Sa = Sb, the domains and ranges of a, and a, respectively. Sat = Sh™ means that
Eat = Eb*, Sa = Sb also means that Ea = Eb and evidently, Ea* = Eb*. Thus, with a € Ea™, we have
a € Eb™. Similarly, a € Eb*. So that there is some g € Eb* and some h € Eb" such that a = gbh. In the
same vein, b € Ea* and b € Ea* and for some e € Eat and f € Ea*, b = eaf.Hence, ad = bé. Thatis,
is one — one.

The definition of m makes it obviously surjective since for all a € S, every ak corresponds to ad. Thus, T is an
isomorphism.

The kernel of i is defined as follows:
kerm = mon™! = {(ad,b8) € S/6 xS/8 : (ad)m = (bS)w} = {(a8,b5) € S/6 X S/8 : ak = bk }.
We can therefore denote the kernel of r as x/& and then write

k/6 = {(ad,bs) € S/6 xS5/6:(a,b) Exk}.

K/ is clearly an equivalence on S/§. To show that it is a congruence on S/§, assume (ad, bd), (¢6,ds) €
K /8. This implies that (a, b), (c,d) € k, and therefore

ak .ck = bk .dx . Sothat ack = bdk. Thence, (ac, bd) € k. This implies that
(acé,bds) = (adcd,bdéds) € k/5, with (adcs, bdds € S/6).

As usual, there is therefore a natural morphism &:S/6 = (5/6)/(x/8) defined by
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(a8)¢ = (ab)(x/8) where ab € S/6.

Now, define the map B:(S/8)/(k/8) = S/k by [(ad)(k/8)]B = ax.

To show that 3 is well defined, let us suppose that a8(k/8) = b8 (x/5).

[a8(xc/8) = bS(k/8)] = [(ad,bd) € k/8] =[(a,b) € k] = [ax = bx].
Having ascertained that § is well defined, we shall now show that it is a morphism.
[(ad)(x/5) .(b6)(x/8)1B = [abbb(x/6)]B = [abs(k/5)]B

[(ad)(x/8)]B [(b)(x/5)]B-

= abk = akxbk
Thus, S is a morphism.

Our next goal is to show that 8 is one — one. And to do that, assume ax = bk. So that (a, b) € k, which
guarantees that (ad, bd) € x/6. And therefore, ad(k/8) = bd (/) as required.

By the definition of 8, for all a € S, every akx in S/x has [(ad)(x/8)] in (5/8)/(x/F) assigned to it. So,
evidently, 8 is surjective. f is therefore an isomorphism.

Finally, we notice that
()9 = (ad)m = ak, ay = ak. Therefore 9w =y.
(ad)ép = [(ad)(x/d)]B = ak. Therefore éf =m.

Thus, 9¢8 =9 = y. Hence the diagram commutes.

5. ACKNOWLEDGEMENT

Thanks to Prof. U. I. Asibong-lbe of the Dept. of Mathematics, University of Port Harcourt, for his kind and
committed supervision.

6. REFERENCES
[1] Asibong-lbe U : Representation of Type A Monoids. Bull Austral Math Soc. 44(1991) 131 — 138.
[2] Asibong-lbe U: *-Simple Type A w-Semigroups. Semigroup Forum 47 (1993) 135 — 149.

[3] El-Qallali: Quasi - Adeqaute Semigroups. International Center for Theoretical Physics, Trieste -
Italy (1987).

[4] Fountain ]. B: Adequate Semigroups. Proc. Edinburgh Math. Soc. 22 (1979) 113 - 125.
[5] Howie ]. M: Fundamentals of Semigroup Theory. Oxford University Press Inc. (1995)

[6] Howie ]J. M: The Maximum Idempotent - Separating Congruence on an Inverse Semigroup.
Glasgow University (1963).

[7] Lawson M.V : The Structure of Type A Semigroups. Quart. J, Math. Oxford (2), 37 (1986), 279 — 298.

[8] Ren X. M., Shum K. P: The Structure of Q*-Inverse Semigroups. Journal of Algebra 325 (2011) 1 -17.

Asian Online Journals (www.ajouronline.com) 465



http://www.ajouronline.com/

