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Abstract

For a context, a matroid is induced by an equivalent relation which is produced
from the above bipartite graph. Each member in one of Zhang’s three attribute classes
is characterized through the above matroid. After that, this paper searches out the
composition of a reduct set. All these results show the potential and merit in using
matroidal approaches for designing and studying concept lattice.
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1 Introduction

Concept lattice, that is, Formal Concept Analysis (FCA), was first introduced in [1]

and has grown to a powerful theory for data analysis, information retrieval and knowledge

discovery (cf. [2-4]).

Attribute reduction for a context, one of focus issues in FCA, is very useful to explore

the lattice structure of all concepts in a context, because fewer attributes will make the

constructing process of the lattice easier. There are many ways for concept lattice reduction

and attribute reduction (see [3-8]). Searching new methods for attribute reduction are an

aspiration for researchers.

Matroids were first proposed in [9]. It has been found that matroids are effective and

useful in concept lattice theory (see [9-13]), and also used as a research method in knowledge

reduction of information systems (see [14,15]). We hope to search out the methods on

attribute reduction in the matroid framework.

How can we fulfill the duty provided above? We find that with bipartite graph, Abello

et al [16] deal with some properties in FCA. This hints that bipartite graph may be an

successful assistant for our completing the duty.

The main goal in this paper is to characterize Zhang’s three classes of attributes. We

will use bipartite graph model to search our matroidal approaches.

The concrete process in this paper is that with the established bipartite graph for a

context in [16], we present the construction of a matroid which is able to determine the
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classes of attributes. After that, we search out the consistency of all the attribute reducts.

The rest of the paper is organized as follows. Section 2 reviews some fundamental no-

tations relative to concept lattices, matroids and graphs. Section 3 characterizes Zhang’s

three classes of attributes and explores all the attribute reducts for a context.

We declare that in this paper, the basic facts of lattice theory and poset theory are as

discussed in [17]. Throughout, MinA denotes the set of minimal elements in a poset A;

L1
∼= L2 if the same two mathematical structures L1 and L2, e.g. two lattices L1 and L2,

are isomorphic.

2 Preliminaries

This section introduces some basic facts of concept lattices, matroids and graphs.

2.1 Concept lattices

This subsection gives only a brief overview of the basic facts for concept lattices. For a

more detailed description, please refer to [3].

Definition 2.1.1 (1) [3, p.17] A context (O,P, I) consists of two sets O and P and a

relation I between O and P . The elements of O (of P ) are called the objects (attributes) of

(O,P, I) and I is called the incidence relation of (O,P, I). We write oIp or (o, p) ∈ I.

(2) [3, p.18] For A ⊆ O and B ⊆ P , we define A′ := {p ∈ P | oIp for all o ∈ A} and

B′ := {o ∈ O | oIp for all p ∈ B}. A concept of (O,P, I) is a pair (A,B) with A ⊆ O,

B ⊆ P,A′ = B and B′ = A. We call A the extent (B the intent) of the concept (A,B).

(3) [3, pp.19-20] Let (A1, B1) and (A2, B2) be two concepts of (O,P, I). If A1 ⊆ A2

(which is equivalent to B2 ⊆ B1), then we write (A1, B1) ≤ (A2, B2). The relation ≤ is

called the hierarchical order of the concepts. The set of all the concepts of (O,P, I) ordered

in this way is denoted by B(O,P, I) and is called the concept lattice of (O,P, I).

In this paper, (O,P, I) denotes a context. The following statements are for (O,P, I).

(2.1.1) Let BO(O,P, I) = {X | (X,B) ∈ B(O,P, I) for some B ⊆ P}. The authors

[3] indicate that if BO(O,P, I) has the same hierarchical order as B(O,P, I), then there is

B(O,P, I) ∼= BO(O,P, I).

We still denote as BO(O,P, I) if BO(O,P, I) owns the same hierarchical order as B(O,P, I).

(2.1.2) According to the discussions in [3, p.24], this paper does not consider the context

with full rows and full columns.
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Let a ∈ O and b ∈ P satisfy (a, y) 6∈ I and (x, b) 6∈ I for any y ∈ P and x ∈ O. We will

not consider the above object a and attribute b.

(2.1.3) Considering (2.1.1) and (2.1.2), we may state that in this paper, (∅, P ) and (O, ∅)

are the minimum and the maximum in B(O,P, I) respectively.

In [8], Zhang provides a description for attribute reduction for a context (O,P, I).

Definition 2.1.2 [8] (1) If there exists D ⊆ P such that B(O,P, I) ∼= B(O,D, ID), then

D is called a consistent set of (O,P, I). If D is a consistent set and no proper subset of D is

consistent, then D is referred to as an attribute reduct of (O,P, I), where ID = I ∩ (O×D).

(2) Let Bk be an attribute reduct of (O,P, I), (k ∈ I; I is an index set which includes all

its reducts). The attributes are classified into the following three types:

(i) absolute necessary attribute b : b ∈
⋂

k∈I

Bk.

(ii) relative necessary attribute c : c ∈
⋃

k∈I

Bk \
⋂

k∈I

Bk.

(iii) absolute unnecessary attribute d : d ∈ P \
⋃

k∈I

Bk.

Additionally, Zhang presents the following properties for his attribute reduction.

Lemma 2.1.1 [8] Let Ga = {g | g ∈ P, a′ ⊂ g′} for any a ∈ P . Then,

(1) a is an absolute necessary attribute ⇔ (a′′ \ {a})′ 6= a′.

(2) a is a relative necessary attribute ⇔ (a′′ \ {a})′ = a′ and G′
a 6= a′.

(3) a is an absolute unnecessary attribute ⇔ (a′′ \ {a})′ = a′ and G′
a = a′.

By dual, we can obtain object reduction from the correspondent results of attribute

reduction. Hence, we need only to focus our attention on attribute reduction.

2.2 Matroids

Matroids will aid us in our discussions in this paper. Hence, in this subsection, we will

recall notations and properties relative to matroids, and for more detail, we refer to [18].

Definition 2.2.1 [18, p.7] A matroid M is a finite set S and a collection I of subsets

of S (called independent sets) such that (i1)-(i3) are satisfied.

(i1) ∅ ∈ I;

(i2) If X ∈ I and Y ⊆ X, then Y ∈ I;

(i3) If X,Y ∈ I with |X| = |Y | + 1, then there exists x ∈ X \ Y such that Y ∪ x ∈ I.

A base of M is a maximal independent set.

Lemma 2.2.1 [18, pp.121-123] Let M1, . . . ,Mn be matroids on S. Let I = {X | X =

X1 ∪ . . . ∪ Xn;Xi ∈ I(Mi), (1 ≤ i ≤ n)}. Then I is the collection of independent sets of a
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matroid M1 ∨ . . . ∨ Mn on S.

2.3 Graphs

In this paper, for the definitions of bipartite graph and complete bipartite graph, please

see [19, p.4]; for the definition of subgraph and induced subgraph, please refer to [19, p.9];

for the definition of neighbour set, please see [19, p.72].

We only review and discuss bits of notations and terminologies of graph theory. For

more detail of graph theory, please refer to [19].

Some notations 2.3.1 Let G be a graph.

(1) The set of edges in G is denoted as E(G); the set of vertices is in notation V (G).

(2) If V (G) = ∅, then it is in notation G = ∅.

(3) G[V ∗] is an induced subgraph of G where V ∗ ⊆ V (G) and V ∗ 6= ∅.

(4) The neighbor set of x ∈ V (G) is in notation NG(x).

Sometimes, if it does not follow a confusion from the text, we denote NG(x) as N(x).

Let S ⊆ V (G). NG(S), simply N(S), is {y ∈ V (G) | y ∈ N(x) for every x ∈ S}.

(5) If G is simple and e ∈ E(G) with u and v as its two connected vertices, then e is

sometimes in notation uv.

From graph theory, we easily gain the following statements.

Lemma 2.3.1 Let G be a bipartite graph with V (G) = X ∪ Y satisfying X ∩ Y = ∅.

Then for A,B ⊆ X (or A,B ⊆ Y ), there are the following statements.

(1) N(A) =
⋂

a∈A

N(a). (2) N(A∪B) = N(A)∩N(B). (3) N(A) ⊆ N(B) if B ⊆ A.

To reformulate some results and search out some properties on FCA in matroid frame-

works, we introduce a graph construction and obtain some properties on this construction.

Definition 2.3.1 [16] G(O,P,I), a bipartite graph inducing from a context (O,P, I), is

(O ∪ P, {(o, p) | oIp}), i.e. V (G(O,P,I)) = O ∪ P and E(G(O,P,I)) = {(o, p) | oIp}.

Lemma 2.3.2 G(O,P,I) has the following properties.

(1) G(O,P,I) is simple.

(2) X ′ = N(X) for any X ⊆ O (or X ⊆ P ).

(3) If X ⊆ O and Y ⊆ P , then X = ∅ ⇒ N(X) = P ; Y = ∅ ⇒ N(Y ) = O;

X = O ⇒ N(X) = ∅; Y = P ⇒ N(Y ) = ∅.

Especially, if X is an extent and Y is an intent, then

N(X) = P ⇒ X = ∅; N(Y ) = O ⇒ Y = ∅.
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Proof (1)-(3) are straightforward from Definition 2.1.1 and Definition 2.3.1 with (2.1.3).

In fact, X ⊂ O ⇔ N(X) ⊂ P is true for every contexts considered in this paper accord-

ing to Subsection 2.1 and Definition 2.3.1.

Corollary 2.3.1 (X,Y ) ∈ B(O,P, I) ⇐⇒ X = N(Y ) and Y = N(X) in G(O,P,I).

Proof Routine verification from Definition 2.1.1 and Lemma 2.3.2.

For clarity of exposition, in what follows, G(O,P,I) is sometimes in notation G if we find

no confusion from text.

3 Attribute reduction

Assisted by the inducing bipartite graph of a context in [16], this section, with matroid

approaches, discusses reducing attributes. Generally, in order to facilitate the discussion for

attribute reduction, some authors utilize the expression of Ganter’s (cf. [3, p.24]) and some

people use the description of Zhang’s (cf. Definition 2.1.2) though Ganter’s is the original.

We will deal with attribute reduction according to Zhang.

Lemma 3.1 Put a ∈ P . Let [a] = {x ∈ P | N(a) = N(x)}, Ia = {{x} | x ∈ [a]} ∪ {∅}

and Fa = {g ∈ P | N(a) ⊂ N(g)}. Then

(1) [a] is an equivalent class on P .

(2) (P,Ia) is a matroid with B
a = {{x} | x ∈ [a]} as its family of bases and |Ba| ≥ 1.

(3) a′′ = Fa ∪ [a].

Proof The item (1) is evident. The item (2) is routine from Definition 2.2.1 and

{a} ∈ Ba. The item (3) is straightforward from Definition 2.1.1 and Lemma 2.3.2.

Let P = {a0, a1, a2, . . . , an}.

Algorithm 1 To obtain [a0].

Input N(a0),N(a1),N(a2), . . . ,N(an)

Output [a0]

Step 1. j = 0, [a0] = {a0}.

Step 2. If j < n, then j = j + 1, go to Step 3; otherwise, stop.

Step 3. If N(a0) = N(aj), then [a0] = [a0] ∪ {aj}, go to Step 2;

otherwise, [a0] = [a0], go to Step 2.

Let a ∈ P . By the definition of Fa, we obtain Fa = Fx for any x ∈ [a]. Let P \ [a] =
s⋃

i=1
[a∗i ]. It is easily seen that if a∗i ∈ Fa, then x∗ ∈ Fa for any x∗ ∈ [a∗i ].
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Algorithm 2 To obtain Fa

Input N(a),N(a∗i ), [a
∗
i ], (i = 1, . . . , s)

Output Fa

Step 1. j = 0, Fa = ∅.

Step 2. If j < s, then j = j + 1, go to Step 3; otherwise, stop.

Step 3. If N(a) ⊂ N(a∗j ), then Fa = Fa ∪ [a∗j ], go to Step 2;

otherwise, Fa = Fa, go to Step 2.

Assisted by matroids, we characterize the elements in each class of Zhang’s attributes.

Theorem 3.1 Put a ∈ P . Let B
a, Fa and (P,Ia) be defined as Lemma 3.1.

(1) a is an absolute necessary attribute if and only if |Ba| = 1 and N(a) ⊂ N(Fa).

(2) a is an absolute unnecessary attribute if and only if N(a) = N(Fa).

(3) a is a relative necessary attribute if and only if |Ba| > 1 and N(a) ⊂ N(Fa).

Proof N(Fa) =
⋂

g∈Fa

N(g) ⊇ N(a) holds by Lemma 2.3.1 since N(a) ⊂ N(g) for any

g ∈ Fa. G′
a = F ′

a ⊇ a′ holds using Lemma 2.3.2(2) where Ga is defined as Lemma 2.1.1.

No matter to suppose B
a \ {a} = {{aj} : j = 1, . . . , t = |Ba| − 1}. We easily receive

N(aj) = N(a) from Lemma 3.1, (j = 1, . . . , t), and (a′′ \ {a})′ = ({a1, . . . , at} ∪ Fa)
′ =

N({a1, . . . , at} ∪ Fa) owing to Lemma 3.1(3). |Ba| ≥ 1 holds by Lemma 3.1(2).

If |Ba| = 1. Then (a′′ \ {a})′ = N(Fa ∪ ∅) = N(Fa) = F ′
a = G′

a.

If |Ba| > 1. Then t > 1, and further (a′′\{a})′ = (
t⋂

j=1
N(aj))∩N(Fa) = N(a)∩N(Fa) =

N(a) = a′ since Lemma 2.3.1(1) and Lemma 2.3.2(2).

Next to prove item (1).

(⇒) We receive |Ba| = 1 and N(a) ⊂ N(Fa) since a′ = N(a) ⊆ N(Fa) = (a′′ \ {a})′,

(a′′ \ {a})′ 6= a′ and the above for |Ba| > 1.

(⇐) It follows (a′′ \ {a})′ 6= a′ since (a′′ \ {a})′ = N(Fa) ⊃ N(a) = a′. Therefore, by

Lemma 2.1.1, a is an absolute necessary attribute.

Next to prove item (2).

(⇒) By Lemma 2.1.2, F ′
a = a′ holds since G′

a = a′ and G′
a = F ′

a.

If |Ba| > 1. Then, using the above, we get (a′′\{a})′ = a′ and N(Fa) = F ′
a = a′ = N(a).

If |Ba| = 1. Then, it follows (a′′ \ {a})′ = N(Fa) = F ′
a = a′ = N(a).

(⇐) If |Ba| > 1. Then (a′′ \ {a})′ = a′. In addition, we obtain G′
a = a′ according to

N(Fa) = F ′
a, N(a) = a′, F ′

a = G′
a and N(a) = N(Fa).

If |Ba| = 1. Then (a′′ \ {a})′ = N(Fa). Thus, we receive (a′′ \ {a})′ = a′ and G′
a = a′

owing to (a′′ \ {a})′ = N(Fa) = F ′
a = G′

a,N(Fa) = N(a) and N(a) = a′.

In one word, a is an absolute unnecessary attribute according to Lemma 2.1.1.

The following is to prove item (3).

(⇒) We obtain |Ba| > 1 by (1), and N(Fa) 6= N(a) by (2). So, N(Fa) ⊃ N(a) holds.
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(⇐) Routine verification from Definition 2.1.2(2) and the items of (1) and (2).

Let a be an absolute necessary attribute. Then [a] = {a} holds by Theorem 3.1. In

addition, according to Definition 2.1.2(2), a belongs to any reduct set. The following will

discuss the relative properties for the attributes which are not absolute necessary.

Before our presentation of Lemma 3.2, we give a few notations and a bit of description

for a relative and not absolute necessary attribute a ∈ P , and a reduct set Bk containing a.

(1) N(q),NBk
(s),NBk\{a}(r) is the neighbor set of q ∈ P, s ∈ Bk and r ∈ Bk \ {a} (or

q, s, r ∈ O) in the inducing graph G(O,P,I), G(O,Bk ,IBk
) and G(O,Bk\{a},IBk\{a}) respectively,

where IBk
= I ∩ (O × Bk) and IBk\{a} = I ∩ (O × (Bk \ {a})).

NBk
(T ) =

⋂

t∈T

NBk
(t) and NBk\{a}(U) =

⋂

u∈U

NBk\{a}(u) for T ⊆ Bk and U ⊆ Bk \ {a}.

(2) By definitions in Section 2.1, we easily indicate IBk\{a} = IBk
∩ (O × (Bk \ {a}));

NBk
(t) = ∅ if t ∈ P \ Bk; NBk

(t) = N(t) if t ∈ Bk. Moreover, NBk
(a) = N(a) = N(x) =

NBk
(x) holds. Additionally, for s ∈ O and t ∈ Bk, we obtain NBk

(s) = {a} ∪ NBk\{a}(s) if

a ∈ NBk
(s); NBk

(s) = NBk\{a}(s) if a 6∈ NBk
(s); NBk

(t) = NBk\{a}(t) if t 6= a.

Lemma 3.2 Let a ∈ P and x ∈ [a] \ {a}.

(1) If a is a relative necessary attribute, then x is also.

(2) If a is an absolute unnecessary attribute, then x is also.

(3) If a is not an absolute necessary attribute, then a and x are not in the same reduct

set.

Proof (S1) By Lemma 3.1, x ∈ [a] implies [x] = [a], and further, B
a = B

x and

Fa = Fx, and so N(Fa) = N(Fx). Thus, since Theorem 3.1, items (1) and (2) are accepted.

Item (3) will be proved by (S2.1) and (S2.2).

(S2.1) Let a be an absolute unnecessary attribute. By Definition 2.1.2 and item (2), a

and x will not belong to any reduct set. Hence, a and x are not in the same reduct set.

(S2.2) Let a be a relative necessary attribute. Suppose that there is a reduct set Bk

containing a and x. The needed result is proved by the following (S2.2.1)-(S2.2.3).

(S2.2.1) To prove: (X,Y ) ∈ B(O,Bk, IBk
) ⇒ X ∈ B(O,Bk \ {a}, IBk\{a}).

It is easily seen: a ∈ Y ⇔ x ∈ Y . Thus, a ∈ Y ⇔ [a]Bk
⊆ Y holds where [a]Bk

= [a]∩Bk.

We distinguish two cases to continue the proof.

Case 1. a ∈ Y .

It is easily seen X = NBk
(Y ), NBk

(a) = NBk
(x) and x ∈ Y . We obtain X = NBk

(a) ∩

(
⋂

y∈Y \{a}

NBk
(y)) = NBk

(x)∩(
⋂

y∈(Y \{a})\{x}

NBk
(y)) = NBk\{a}(x)∩(

⋂

y∈(Y \{a})\{x}

NBk\{a}(y)) =

NBk\{a}(Y \ {a}). In addition, it has Y = {a} ∪ {z ∈ Bk \ {a} | X ⊆ NBk
(z)} =

{a} ∪ {z ∈ Bk \ {a} | X ⊆ NBk\{a}(z)} = {a} ∪NBk\{a}(X) = {a} ∪ (Y \ {a}). This follows

NBk\{a}(X) = Y \{a}. Therefore, by Corollary 2.3.1, (X,Y \{a}) ∈ B(O,Bk \{a}, IBk\{a}).

Case 2. a 6∈ Y .
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This implies [a]Bk
∩ Y = ∅. Hence, it follows Y = Y \ {a} and X = NBk

(Y ) =
⋂

y∈Y

NBk
(y) =

⋂

y∈Y \[a]Bk

NBk
(y) =

⋂

y∈Y \[a]Bk

NBk\{a}(y) = NBk\{a}(Y \ {a}), and further,

Y \ {a} = Y = NBk
(X) = {z ∈ Bk | X ⊆ NBk

(z)} = {z ∈ Bk \ {a} | X ⊆ NBk\{a}(z)} =

NBk\{a}(X). Thus, we obtain (X,Y ) ∈ B(O,Bk \ {a}, IBk\{a}) by Corollary 2.3.1.

(S2.2.2) To prove: (A,B) ∈ B(O,Bk \ {a}, IBk\{a}) ⇒ A ∈ BO(O,Bk, IBk
).

Combining Corollary 2.3.1, we infer to B ⊆ Bk \ {a}, and so A =
⋂

b∈B

NBk\{a}(b) =
⋂

b∈B

NBk
(b). We continue the discussion by the following Cases 3 and 4.

Case 3. x ∈ B.

A = NBk
(x) ∩ (

⋂

b∈B\{x}

NBk
(b)) describes A ⊆ NBk

(x). However, it is easily seen

NBk
(x) = N(x) = N(a) = NBk

(a). Thus, A ⊆ NBk
(a) holds. Hence we are assured:

A = NBk
(a)∩A = NBk

(a)∩ (
⋂

b∈B

NBk
(b)) =

⋂

b∈B∪{a}

NBk
(b) = NBk

(B ∪ {a}). B ⊆ Bk \ {a}

follows B = NBk\{a}(A) = {b ∈ Bk \ {a} | A ⊆ NBk\{a}(b)} = {b ∈ Bk \ {a} | A ⊆ NBk
(b)}.

Thus, NBk
(A) = {t ∈ Bk | A ⊆ NBk

(t)} = {a} ∪ {t ∈ Bk \ {a} | A ⊆ NBk
(t)} = {a} ∪ B.

Therefore, (A,B ∪ {a}) ∈ B(O,Bk, IBk
) holds by Corollary 2.3.1.

Case 4. x 6∈ B.

By x 6∈ B and B = NBk\{a}(A) = {b ∈ Bk \ {a} | A ⊆ NBk\{a}(b)}, we receive

A 6⊆ NBk\{a}(x). However, because NBk
(x) = NBk\{a}(x) and NBk

(t) = NBk
(x) for any

t ∈ [a]Bk
, we obtain A 6⊆ NBk

(x) and A 6⊆ NBk
(t) for any t ∈ [a]Bk

, especially, A 6⊆ NBk
(a)

since a ∈ [a]Bk
. This implies A =

⋂

b∈B

NBk\{a}(b) =
⋂

b∈B

NBk
(b) = NBk

(B) and B = {b ∈

Bk | A ⊆ NBk
(b)} = NBk

(A). Thus, (A,B) ∈ B(O,Bk, IBk
) is followed.

(S2.2.3) Taking (S2.2.1) and (S2.2.2) with (2.1.1), we say that Bk is not a reduct, a

contradiction. That is to say, a and x are not in the same reduct set.

Using Lemma 3.1 with Algorithm 1, for any x ∈ P , we can obtain [x], and further B
x.

Thus, we receive {[ai] | i = 1, . . . ,m} and {Bai | i = 1, . . . ,m} such that [ap] ∩ [aq] = ∅ if

p 6= q, (p, q = 1, . . . ,m) and P =
m⋃

i=1
[ai]. Using Algorithm 2, we can obtain Fai

, and further

N(Fai
), (i = 1, . . . ,m).

Algorithm 3 To obtain the set C of all the absolute necessary attributes and the set

R of all the relative necessary attributes.

Input N(ai),B
ai ,N(Fai

), [ai], (i = 1, . . . ,m)

Output C, R

Step 1. j = 1, C = ∅, R = ∅.

Step 2. If j < m + 1, then go to Step 3; otherwise, stop.

Step 3. If N(aj) = N(Faj
), then C = C,R = R, j = j + 1, go to Step 2;

otherwise, go to Step 4.

Step 4. If |Baj | = 1, then C = C ∪ aj, j = j + 1, go to Step 2;
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otherwise, R = R ∪ [aj ], j = j + 1, go to Step 2.

Lemma 3.3 Let I be an index set including all the reducts in (O,P, I) and a ∈ P be

a relative necessary attribute. Then, Bk ∩ [a] 6= ∅ holds for any reduct set Bk (k ∈ I).

Proof Otherwise, there is a reduct set Bk satisfying Bk ∩ [a] = ∅.

Lemma 2.1.1 points out (N([a]),N(N([a]))) ∈ B(O,P, I). However, if N([a]) 6= N(D)

for any D ⊆ Bk, then (N([a]),N(N([a]))) 6∈ B(O,Bk, IBk
), a contradiction to B(O,P, I) ∼=

B(O,Bk, IBk
). Hence, suppose B ⊆ Bk satisfying N(B) = N([a]). By virtue of

⋂

b∈B

N(b) =

N(B) = N([a]) =
⋂

t∈[a]

N(t) = N(a), we obtain N(a) ⊆ N(b) for any b ∈ B.

If N(b0) = N(a) for some b0 ∈ B, then b0 ∈ B∩ [a], a contradiction to B∩ [a] = ∅. That

is to say, N(a) ⊂ N(b) is correct for any b ∈ B. This follows B ⊆ Fa. So, N(Fa) ⊆ N(B)

holds according to Lemma 2.3.1, and further, N(a) = N(B) =
⋂

b∈B

N(b) ⊇ N(Fa) holds.

By Theorem 3.1, this is a contradiction to the property of a as a relative necessary attribute.

By extension, we can express the following result.

Theorem 3.2 Let C be the set of all the absolute necessary attributes and [R] = {[xj ] |

xj is a relative necessary attribute} satisfying [xp] ∩ [xq] = ∅ if p 6= q; p, q = 1, . . . , t = |[R]|.

Then {C ∪ {y1, . . . , yt} | yj ∈ [xj ], j = 1, . . . , t} = {Bk | Bk is a reduct set of P, k ∈ I},

where I is an index set including all the reducts in (O,P, I).

Proof By Definition 2.1.2, for any reduct Bk (k ∈ I), c ∈ Bk holds for every k ∈ I and

c ∈ C. Lemma 3.3 follows Bk ∩ [xj ] 6= ∅, and besides, |Bk ∩ [xj]| = 1 holds since Lemma 3.2

(j = 1, . . . , t). Hence, every C ∪ {y1, . . . , yt} is a reduct and every Bk can be written as the

style of C ∪ {y1, . . . , yt}. Therefore, the needed result is obtained.

Theorem 3.2 implies the existence of reducts. This is the same as [8]. In addition,

Theorem 3.2 gives the composition of a reduct.

Using Theorem 3.2, we present an algorithm to search out any reduct set.

Algorithm 4 To obtain Bk: a reduct set.

Input P = {a1, a2, . . . , an}

Output Bk

Step 1. Using Algorithm 1, obtain [aj ], (j = 1, . . . , n).

Further, obtain {[ap] : p = 1, . . . ,m}, where [au] ∩ [aw] = ∅ if u 6= w; (u,w = 1, . . . ,m),

and obtain B
ap = {{x} | x ∈ [ap]}, (p = 1, . . . ,m).

Step 2. Using Algorithm 2, obtain Fap , (p = 1, . . . ,m).

Step 3. Using Algorithm 3, obtain C, the set of all the absolute necessary attributes;

R, the set of all the relative necessary attributes, and [R] = {[yl] : l = 1, . . . , t} such that

yl ∈ R, (l = 1, . . . , t) and [yi] ∩ [yj ] = ∅ if i 6= j; (i, j = 1, . . . , t).
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Step 4. Bk = C ∪ {y1, . . . , yt}.

We present an example to demonstrate the use of Algorithm 4.

Example 3.1 A context (O,P, I) is given, where O = {1, 2, 3, 4}, P = {a, b, c, d, e},

and I is shown in Table 3.1.

a b c d e

1 × × 0 × ×
2 × × × 0 0

3 0 0 0 × 0

4 × × × 0 0

Table 3.1 A context for using Algorithm 4

The inducing bipartite graph of (O,P, I) is Figure 3.1.

1 2 3 4

a b c d e

r r r r

r r r rr

Figure 3.1 Inducing bipartite graph for the context in Table 3.1

By Definition 2.3.1, we obtain N(a) = {1, 2, 4},N(b) = {1, 2, 4},N(c) = {2, 4},N(d) =

{1, 3},N(e) = {1}.

Using Algorithm 1, we find [a] = {a, b}, [c] = {c}, [d] = {d}, [e] = {e}. Hence, from

the definition of B
x for any x ∈ P in Lemma 3.1, we obtain B

a = {{a}, {b}} = B
b,

B
c = {{c}},Bd = {{d}},Be = {{e}}.

In light of P \ [a] = [c]∪ [d]∪ [e] = {c, d, e}, using Algorithm 2, it follows Fa = Fb = ∅. In

light of P \ [c] = [a] ∪ [d] ∪ [e] = {a, d, e}, using Algorithm 2, we find Fc = {a, b}. Similarly,

Fd = ∅ and Fe = {a, b, d}.

In view of N(Fe) =
⋂

x∈Fe

N(x) = {1}, we obtain N(e) = {1} = N(Fe). Analogously, we

obtain N(Fc) = N({a, b}) = {1, 2, 4}, and in addition, we gain N(Fa) = N(Fb) = N(Fd) =

N(∅) = O since Lemma 2.3.2.

Moreover, there are N(e) = N(Fe),N(a) ⊂ N(Fa),N(c) ⊂ N(Fc) and N(d) ⊂ N(Fd).

Using Algorithm 3, it produces C = {c, d}, R = {a, b}. Hence, [R] = {[a]} = {[b]} holds.

Using Algorithm 4, there are two reducts, one is C ∪ {a} = {a, c, d} and another is

C ∪ {b} = {b, c, d}.

The context in Example 3.1 comes from [8, Example 1]. Using the matroid-based ap-

proach presented in this section, we obtain C,R and all the reducts for the context. All

these consequences are the same to the correspondent results in [8] which uses a different

method from ours. Hence, we may state that our methods are successful.
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In the future works, with matroidal approaches, for a context, we will study on how to

search out the reduce attributes, and explore the wider applications of concept lattices.
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