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ABSTRACT---- The spatio-temporal delivery of essential substances across biological membrane is critical to its 

survival and the wellbeing of the owner-organism. The process presupposes a permeable soft membrane and the 

transport are marked by reaction and diffusion phenomena. The spherical configuration of many biological 

membranes informs the present study on the reaction-diffusion phenomena around spherical membranes, with 

probability current. The diffusion equation describing the ensemble of reacting molecules around such membranes 

holds well in elucidating the delivery of drugs across biological cells.  
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1. INTRODUCTION 

    Animated life is endowed with cells. The cells consist of outer boundaries (plasma membranes) and inner 

compartments (organelles). The cells are supplied with these outer boundaries and the inner compartments by the 

membranes. Membranes are barriers that insulate the cells against undue access. The flow of information between cells is 

moderated by the membranes. This is achieved either by the recognition of signal molecules received from other cells, or 

by transmitting electrical signals to other cells [1, 2]. Biological membranes are structured in a continuous bilayer [1, 2, 

3, 4]. Both small molecules and large particles cross membranes; however, they are selectively permeable, and thus 

regulate the movement of substances in and out of the cells. By means of simple diffusion process, small hydrophobic 

molecules pass through phospholipid bilayers, by dissolving in the hydrophobic core. We emphasize „simple‟ here; it is 

noteworthy that sugars, ions and amino-acids undergo mediated (facilitated) diffusion process [1, 5]. This process 

involves transportation by integral membrane proteins. Facilitated diffusion is known to be selective and saturable. The 

saturability condition inhibits the increase in diffusion, even with increasing concentration of a solute. Most biological 

membranes are electrically charged, and therefore the transport of ions is moderated by membrane potential.  

       In the mathematical details here and elsewhere [6, 7, 8], most biological membranes are spherical in 

configuration. We were guided by this understanding. As earlier indicated, membranes are (selectively) permeable. Their 

insulating propensity induces wall reaction, as molecules-in-solution tend to permeate. We target the reaction delivered in 

the event of an arbitrary membrane being impinged upon by molecules. The physical law governing the diffusion process 

is best described by Fick‟s law. This law, loosely stated, relates the rate of diffusion of the molecules (in the present case) 

to their concentration in space. Since reaction is accompanied by diffusion, the reaction-diffusion equation is critical in 

determining what prevails around a spherical biological membrane. Pertinent literatures have used reaction-diffusion 

(RD) equations to describe various physical phenomena [9, 10, 11]. In the realm of biology, Nickolson [12] studied 

diffusion process in brain tissue; Lefèvre and Mangin [13] applied reaction-diffusion equation to human brain 

development. The diffusion of proteins on a spherical membrane engaged the attention of Amatore et al. [14]. Volpert 

and Petrovskii [15] reviewed reaction-diffusion in wave propagation. Away from membranes spherical configuration to 

cylindrical, Chaudhry et al. [16] simulated reaction-diffusion process in non-spherical cell geometry.  

      From statistical point of view, the space-time description of a diffusing molecule is rather stochastic than 

deterministic. Stochastic models are more reliable in providing understanding of the RD processes in biological 

structures. Thus, they are of choice when biologically observed phenomena depend on random fluctuations (see Radek et 

al [17]).This work therefore sought a probability density function (pdf) which is capable of furnishing the likely position 

of a given molecule at any time.  Away from here [18], we inquired into stochastic differential equation that holds well 

for the position of a particle in a random walk around a circular cylinder. Fokker–Planck equation met the need. It is a 

second order partial differential equation which describes the time evolution of the probability density function of a 

stochastic process. It was employed in the present case to describe time evolution of the reaction-diffusion process 

around a spherical membrane. 

 

 

 

http://www.ajouronline.com/


Asian Journal of Applied Sciences (ISSN: 2321 – 0893) 

Volume 04 – Issue 04, August 2016 

 

Asian Online Journals (www.ajouronline.com)  936 

2. DIFFUSION PROCESS 

2.1 Reaction-diffusion equation 

Here we present a general equation that holds well for reaction-diffusion systems. The systems are marked by two 

kinds of processes occurring on different scales: the evolution of macroscopic variables, xi (i=1,…,n) such as 

concentrations and the temperature T; and the molecular dynamics, which are described by ensemble of parameters γ. 

These parameters include: the rate constant k𝜌 of reaction 𝜌, heat or mass diffusivity coefficients Di, or the heat ΔH𝜌 of 

reaction ρ. This gives rise to a set of balance equations of the form [19]; (see also [20]) 

 

                
  iiji

i xDxV
t

x 2],[ 





                                                                                                                               
(2.1) 

where the first term in the right hand side stand for the effect of the chemical reactions, and the second term represents  

transport.  We assume that there is no bulk motion, and there are no cross effects in transport. When the RD equations 

(2.1) are endowed with appropriate boundary conditions, they generate numerous spatial and spatio-temporal patterns. 

Such boundary conditions may include: Dirichlet, Neumann, and mixed Robin boundary conditions.  The method of 

derivation of RD equation may be seen in [21]. Let us consider what prevails in two regions, R1 (vicinity) and R2 of the 

spherical membrane (refer to Fig. 1.1).  
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            Figure.2.1: CONCENTRATION profile of reacting molecules in the vicinity of a porous spherical membrane. 

 

In R1, the transport phenomena occur outside the membrane, with the molecules diffusing through the inert boundary 

layer surrounding it. This region is marked by „external‟ or „interphase‟ transport effects. In the internal or intraphase 

transport region R2, the molecules diffuse into the pores of the membrane. Each of the transport effects is important in the 

RD process. Consider, for simplicity, two component molecules diffusing through the stagnant boundary layer 

surrounding the spherical membrane. Since we are yet in the vicinity of the membrane, a trip to one spatial dimension 

leads to the describing Stephan-Maxwell equations which read: 
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where  Xi is the fraction of component i, C is the total concentration, Yi  is the flux of component i, and Dij is the 

diffusivity of component i in  j.  If A, B are two components of a mixture, then relationship for diffusion of A in a two 

component mixture at constant total concentration may be obtained from the simplified Stefan-Maxwell equations as (see 

[22]): 
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(2.3)     

 

By assuming that concentrations are so dilute that XA (YA + YB ) can be neglected we get the dilute molecular 

concentration of A as 

                   
AA C

AB
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(2.4) 

which is the well known Flick‟s first law. The flux of molecule A through the stagnant boundary layer surrounding 

membrane may be obtained by solving equation (2.4) with suitable boundary conditions. This may be found in [22].What 

happens at the stagnant boundary layer may be treated as RD in the plane (1D). (We have done the treatment above for 

the purpose of awakening our consciousness to what obtains in the vicinity of the spherical membrane of our interest; one 

may find [23, 24] very suitable for more clue to diffusion in 1D (corresponding to R1 in Fig.1.1)). If we consider R1 as the 

drift region, wherein the molecules migrate (deterministically) toward the membrane, then the stochastic differential 

equation that governs the system is given by Fokker-Planck (Smoluchowski) equation which reads: 
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(2.5)                    

where D
1
 is some distribution representing the drift process while D is the diffusion constant. The stochastic nature 

underscores the invitation of the probability density function p(x,t). Observe that the associated Fick‟s law holds if D
1
=0. 

We observe also that equation (2.4) contains concentration gradient while equation (2.5) contains probability gradient. 

This is not out of context because we are rather interested in the spatio-temporal description of the molecules than the 

concentration. 

 

2.2 Gauss Function and spherical diffusion 

The study of spherical diffusion translates to finding Green‟s function as an extension of Gauss function to the sphere 

(see Thomas [25]). In order to transit from Gauss to Green we convolve the image with the Gaussian kernel  
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(2.6) 

When expressed in plane polar co-ordinates (r; θ), we may write the Gauss function in r as 
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(2.7) 

 

The probability )0,,( 1xtxG  that a molecule starting at x1at time t = 0 is located between x+ ∆x, after time t is given by 
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The Gaussian distribution is similar to letting the image evolve under the diffusion equation 
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with the spherical diffusion equation given by 
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where 
2 is the spherical Laplace operator. In spherical coordinate (r, φ, ϕ) it is given by 
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(2.11) 

 

We conceive of a situation where the diffusing molecules are distributed at initial distance r0 from the center of the 

membrane; we assume that the distribution preserves equal likelihood in all directions. We therefore describe the 

probability of finding the molecule at a distance r, and at time t by a spherically symmetric distribution  00 ,, trtrp  

since neither the initial condition nor the reaction-diffusion have no predilections for orientation. The diffusion equation 

describing the ensemble of reacting molecules reads 
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(2.12) 

If the molecules are uniformly distributed at a distance r0 from the center of the membrane, then initial condition is 

prescribed [24] such that 
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(2.13)    

where δ(r) is the Dirac distribution. Suppose that the distribution vanishes at distances from the membrane which are 

much larger than r0. We therefore impose the natural boundary condition  
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                 𝑙𝑖𝑚 𝑟→∞  00,, trtrp =0                                                                                                                                                  

(2.14) 

A radiation boundary condition (BC) may also describe the reaction at the membrane. This form of BC is known as 

Robin BC. In considering a spherical boundary we may write 
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(2.15)                  

where  .n̂ (r) denotes a unit vector normal to some surface  ∂Ωi at r and J(r) is the flux operator that determines the 

spatial boundary conditions since it allows one to measure molecule probability at the shell of the diffusion space Ω.  

 

Consider equation (2.11) once more. Assume that the probability distribution is spherically symmetric. It therefore 

depends only on r. With this, we may write the equation of the radial component as 
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(2.16)                      

and we get the diffusion equation 
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(2.17)                                                   

The parameter κ in equation (2.15) is such that if the surface is unreactive (i.e. reflective BC), then 𝜅 =0; if every 

collision induces reaction, then 𝜅 →∞ (i.e. absorbing BC).The solution of the Robin problem (2.13, 2.14, 2.15, and 2.17) 

may be put in the form 
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(2.18)                    

with initial condition 
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(2.20)                      

The sum of the functions in (2.19) and (2.20) must satisfy the Robin BC. The function  0001 ,, trttrp   must satisfy 
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(2.22)             

 The Fourier transform of equation (2.22) gives [24] 
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(2.23)     

 The solution  0002 ,, trttrp   must satisfy 
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(2.24)                            

 with initial condition 

                     0,, 0002  trttrrp                                                                                                                                                     

(2.25)                                                                               

By means of Laplace transforms we get a solution that satisfies the natural BC (2.14)  
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Where the BC (2.15) determines H(s|r0) . Taking the Laplace transform of the BC (2.15) and denting by  00 ,,~ trsrp the 

Laplace transform of the solution  00 ,, trtrp  (see [24] for detailed derivation) we get 
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(2.27)                                                                

where: 
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(Note that the Fourier domain is compatible with space while the Laplace domain is compatible time.) The inverse 

transform gives 
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Where  =
Da

Dka
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3. TIME EVOLUTION OF REACTING SPECIES 
A homogeneous well-stirred space domain obeys a general reaction mechanism given by the equation 

 

              s1,ρA1+s2,ρA2+…+sN,ρAN→v1,ρA1+v2,ρA2+…+vN                                                                                                                                                          

(3.1)      

                                                              
where sj,ρ (ρ=1,2,…R)  and vj,ρ are the stoichiometry coefficients and Aj (j=1, 2, …, N) is the molecular species. By 

stochastic kinetic theory, the probability of a time hallowed reaction ρ to occur in the next infinitesimal time-interval [t, 

t+dt] may be expressed as  
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where: 

           kρ is the probability coefficient;  

            nj is the number of Aj molecules present at time t in the reactive domain. 

 

 A probability density function pρ (n) is defined for each one reaction, which is dependent only on the state of the system 

n = (n1, n2,…,nN)
T 

. In a stochastic system, as being considered, the time course of all the species in the reacting systems 

is described by a finite difference partial differential equation known as the master equation. The reacting system is a 

Markov process, with probability density function. In the present case we may circumvent the intricacies of the master 

equation by simulating the stochastic time evolution of a reacting system [29].By summing all pρ(n)  
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(3.3)                       

we may obtain the jump density probability in the infinitesimal time-interval [t, t+dt] . It was shown [30] that a certain 

waiting-time interval Δτ occurs between two consecutive reactive events as given by the relation 
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(3.4)                        

The stochastic evolution of a reacting system is thus perceived as a sequence of waiting-time intervals accompanied by 

instantaneous reactive events occurring according to the probability 
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where ∆n𝛒 = (v1,𝛒-s1,𝛒, v2,𝛒-s2,𝛒,…,vN,𝛒-sN,𝛒)
T
 represents the jump vector related to reaction ρ. Diffusion processes occur 

along with molecular reactions in the system after a certain waiting time. Thus, the waiting time that precedes diffusion is 

observed just at the absorbing boundary.  

 

4. BOUNDARY CONDITIONS    
We shall consider solutions, in equation (2.28), that apply to two boundary conditions:  (i) reflective BC in which r = a 

and k = 0 (ii) absorbing BC in which k→ ∞.    

 

4.1 Reflective boundary   
This is a case of unreactiveness at the boundary. Thus k=0 and from the above we get  
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(4.1)                                                                        

                                                                                                                                                                                         
Observe that equation (2.29) is in harmony with the Gauss kernel (2.8) for the reflective boundary; the differential is a 

sequel to the convolution about the radial coordinate.                                                           

 

4.2 Absorbing boundary 
 Absorption is anchored on membrane permeability (One may find [31] quite interesting). Permeability χ is given by 
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(4.2)                             

where α is the partition constant; h is the membrane thickness.By inspection, the absorbing boundary 

equation (2.8) can offer some clue to the solution we need. If the membrane boundary absorbs, then we observe the 

asymptotic behavior of the error function and limiting the error; we find that the solution as k→∞ (from (2.28)) is 
         

                        
  























































0

2
0

0

2
0

00
00

4

2
exp

)(4
exp

)(4

1

4

1
,,

ttD

arr

ttD

rr

ttDrr
trtrp


.                                         

(4.3)     

The spatio-temporal co-ordinate of molecules undergoing reaction-diffusion processes around the membrane is given by 

equation (4.3). The reaction and diffusion rates are critical in the time evolution of the reaction-diffusion process. If 

diffusion is slow, then it dominates the process; conversely if reaction is slow, then it dominates the process.  At 

diffusion-limited regime, the rate depends on the supply of new molecular species to the membrane surface. In this case 

the so-called Thiele modulus [32] is much greater than one (i.e. hT ≫1). Conversely, Thiele modulus is much less than 

one (i.e. hT ≪1) at reaction-limited regime. 

 

  
                     
                     
         
 
          hT ≪1: substrate fills the sphere                      hT ≫1: substrate does not get to the centre 

                                   Figure.4.1: LIMITED regimes for reaction and diffusion 

 
5. SUMMARY 

       Reaction-diffusion process in molecular biology was treated. The spherical configuration of the permeable 

membrane, as conceived, is in line with physiological state of numerous cells and tissues. There is conventionality of 

measuring molecular transport across a barrier or mass transport of molecules in a solution by fluxes. Molecular transport 

across membranes may be caused diffusion. Diffusion is the random movement of molecules in a solution, which causes 

only a net transport of molecules in the presence of concentration gradient. This may not be said of the movement of each 

solute molecule in solution, induced by an external force, which migration explains. The randomness of a diffusion 

process informs the invitation of probability current. It was assumed that the diffusing molecules are distributed at initial 

distance r0 from the center of the membrane; further to this, the distribution preserves equal likelihood in all directions. 

We described the probability of finding a molecule at a distance r, and at time t by a spherically symmetric distribution. 

In the stochastic differential equations that ensued, reflective and absorbing boundary conditions were discussed. At the 

membrane wall, reaction occurs at some time interval, after which diffusion takes place. 
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        Reaction-diffusion processes find explanation in drug delivery through physiological membranes, subject to 

membrane permeability. Most often, passive diffusion process is induced. This enhances observability of the linear 

relationship between flux and concentration gradient. Thus, drug transport is examined at a range of concentration 

gradients. In preparation to drug delivery the choice of highest possible stirring rate, which minimizes concentration 

gradients in the donor and receiver compartment, is of the essence. 
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