Some Basic Properties of Γ -Q-Algebra

Pairote Yiarayong¹ and Phakakorn Panpho²

Department of Mathematics, Faculty of Science and Technology,
 Pibulsongkram Rajabhat University, Phitsanuloke 65000, Thailand
 Faculty of Science and Technology, Pibulsongkram Rajabhat University,
 Phitsanuloke 65000, Thailand

Corresponding author's email: pairote0027 [AT] hotmail.com

ABSTRACT— The purpose of this paper is to introduce the notion of a Γ -Q-algebras, we study Γ -ideals, Γ -subalgebras and upper sets in Γ -Q-algebras. Some characterizations of Γ -ideals and Γ -subalgebras are obtained. Moreover, we investigate relationships between Γ -ideals, Γ -subalgebras and upper sets in Γ -Q-algebras.

Keywords— Γ -Q-algebra, Γ -ideal, Γ -subalgebra, upper set, Q-algebra.

1. INTRODUCTION

A Q-algebra is a nonempty set X with a constant 0 and a binary operation "*" satisfying axioms: for each $x, y, z \in X$,

- 1. x * x = 0,
- 2. x * 0 = x,
- 3. (x*y)*z = (x*z)*y

Y. Imai and K. Is'eki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras([5, 6]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [3, 5], Q. P. Hu and X. Li introduced a wide class of abstracts: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. In [8], J. Neggers, etc introduced the notion of an Q-algebra as a dualization of a generation of a BCK/BCI-algebras. In [1], Ahn and Kim introduced the notion of QS-algebra which is a generalization of Q-algebras. It is easy to see that every Q-algebras is Γ -Q-algebras.

In this paper is to introduce the notion of a Γ -Q-algebras, we study Γ -ideals, Γ -subalgebras and upper sets in Γ -Q-algebras. Some characterizations of Γ -ideals and Γ -subalgebras are obtained. Moreover, we investigate relationships between Γ -ideals, Γ -subalgebras and upper sets in Γ -Q-algebras.

2. BASIC PROPERTIES

In this section is to introduce the notion of a Γ -Q-algebras.

Definition 2.1. Let X and Γ be any nonempty sets. The structure $(\Gamma, X; 0)$ is called a Γ -Q-algebra If there exists a mapping $X \times \Gamma \times X \to X$ written as (x, γ, y) by $x \gamma y$, that satisfies the following condition

- 1. $x\gamma x = 0$, for all $x \in X$ and $\gamma \in \Gamma$,
- 2. $x \gamma 0 = x$, for all $x \in X$ and $\gamma \in \Gamma$,
- 3. $(x\gamma y)\beta z = (x\gamma z)\beta y$ for all $x, y, z \in X$ and $\gamma, \alpha \in \Gamma$.

Throughout this paper X will denote a Γ -Q-algebra. We introduce a relation \leq on X by $x \leq y$ if and only if $x \gamma y = 0$.

Example 2.2. Let $(\Gamma, X, 0)$ be an arbitrary Q-algebra and Γ any nonempty set. Define a mapping $X \times \Gamma \times X \to X$, by $x \gamma y \mapsto x * y$ for all $x, y \in X$ and $\gamma \in \Gamma$. It is easy to see that X is a Γ -Q-algebra. Indeed,

1.
$$x\gamma x$$
 = $x*x$
= 0,
2. $x\gamma 0$ = $x*0$
= x ,
3. $(x\gamma y)\beta z$ = $(x*y)\beta z$
= $(x*y)*z$
= $(x*z)*y$
= $(x\gamma z)\beta y$

 $x, y, z \in X$ and. $\gamma, \alpha \in \Gamma$. Thus every Q-algebra implies a Γ -Q-algebra.

Example 2.3. Let $X = \{0, a, b, c, d\}$ in which "·" is defined by

•	0	а	b	С	d
0	0	а	b	С	d
а	0	0	b	b	d
b	0	а	0	а	d
С	0	0	0	0	d
d	d	d	d	d	0

Let $\Gamma \neq \emptyset$. Define a mapping $X \times \Gamma \times X \to X$ by $x\gamma y = yx$ for all $x, y \in X$ and $\gamma \in \Gamma$. Then X is a Γ -Q-algebra. But it is not a Q-algebra because $d \cdot 0 = d \neq 0$.

Lemma 2.4. Let X be a Γ -Q-algebra. Then $x\gamma y = x\beta y$ for any $x, y \in X$ and $\gamma, \beta \in \Gamma$.

Proof. Let $x, y \in X$ and $\gamma, \beta \in \Gamma$. Then

$$x\gamma y = (x\beta 0)\gamma y$$
$$= (x\beta y)\gamma 0$$
$$= x\beta y.$$

Hence $x\gamma y = x\beta y$.

Theorem 2.5. If X is a Γ -Q-algebra, then $(x\gamma(x\beta y))\alpha y = 0$, for any $x, y \in X$ and $\gamma, \alpha, \beta \in \Gamma$.

Proof. Let $x, y \in X$ and $\gamma, \alpha, \beta \in \Gamma$. Then

$$(x\gamma(x\beta y))\alpha y = (x\gamma y)\alpha(x\beta y)$$
$$= (x\gamma y)\alpha(x\gamma y)$$
$$= 0.$$

Hence $(x\gamma(x\beta y))\alpha y = 0$.

Theorem 2.6. If X is a Γ -Q-algebra, then $0\gamma(x\alpha y) = (0\gamma x)\alpha(0\gamma y)$ for any $x, y \in X$ and $\gamma, \alpha \in \Gamma$.

Proof. Let $x, y \in X$ and $\gamma, \alpha, \beta \in \Gamma$. Then

$$0\gamma(x\alpha y) = ((0\beta y)\delta(0\beta y))\gamma(x\alpha y)$$

$$= ((0\beta y)\delta(x\alpha y))\gamma(0\beta y)$$

$$= (((x\beta y)\gamma x)\delta(x\alpha y))\gamma(0\beta y)$$

$$= (((x\beta y)\gamma(x\alpha y))\delta x)\gamma(0\beta y)$$

$$= (0\delta x)\gamma(0\beta y)$$

$$= (0\gamma x)\alpha(0\gamma y).$$

Hence $0\gamma(x\alpha y) = (0\gamma x)\alpha(0\gamma y)$.

3. Γ-Q-ALGEBRAS

The results of the following lemmas seem play an important role to study e medial Γ -Q-algebra; these facts will be used so frequently that normally we shall make no reference to this definition.

Definition 3.1. A Γ -Q-algebra X is said to be medial if it satisfies the following property:

$$(x\gamma y)\alpha(z\beta u) = (x\gamma z)\alpha(y\beta u),$$

for any $x, y, z, u \in X$ and $\gamma, \alpha, \beta \in \Gamma$.

Lemma 3.2. If X is a medial Γ -Q-algebra, then $y\gamma x = 0\alpha(x\gamma y)$ for any $x, y \in X$ and $\gamma, \alpha \in \Gamma$.

Proof. Let $x, y \in X$ and $\gamma, \alpha, \beta \in \Gamma$. Then

$$y\gamma x = (y\gamma x)\alpha 0$$

$$= (y\gamma x)\alpha(y\gamma y)$$

$$= (y\gamma y)\alpha(x\gamma y)$$

$$= 0\alpha(x\gamma y).$$

Hence $y\gamma x = 0\alpha(x\gamma y)$.

Lemma 3.3. If X is a medial Γ -Q-algebra, then $x\gamma(y\alpha z) = z\gamma(y\alpha x)$ for any $x, y, z \in X$ and $\gamma, \alpha \in \Gamma$.

Proof. Let $x, y, z \in X$ and $\gamma, \alpha, \beta \in \Gamma$. Then

$$x\gamma(y\alpha z) = 0\beta((y\alpha z)\gamma x)$$
$$= 0\beta((y\alpha x)\gamma z)$$
$$= z\gamma(y\alpha x).$$

Hence $x\gamma(y\alpha z) = z\gamma(y\alpha x)$.

Lemma 3.4. If X is a medial Γ -Q-algebra, then $x\gamma(x\alpha y) = y$ for any $x, y \in X$ and $\gamma, \alpha \in \Gamma$.

Proof. Let $x, y \in X$ and $\gamma, \alpha, \beta \in \Gamma$. Then

$$x\gamma(x\alpha y) = 0\beta((x\alpha y)\gamma x)$$

$$= 0\beta((x\alpha x)\gamma y)$$

$$= y\gamma(x\alpha x)$$

$$= y\gamma 0$$

$$= y\gamma 0.$$

Hence $x\gamma(x\alpha y) = y$.

Lemma 3.5. If X is a medial Γ -Q-algebra, then $0\gamma(0\alpha y) = y$ for any $y \in X$ and $\gamma, \alpha \in \Gamma$.

Proof. Let $y \in X$ and $\gamma, \alpha \in \Gamma$. Then

$$0\gamma(0\alpha y) = y\alpha 0$$

= y.

Hence $0\gamma(0\alpha y) = y$.

Theorem 3.6. A Γ -Q-algebra X is medial if and only if it satisfies one of the following conditions: for any $x, y, z \in X$ and $\gamma, \alpha, \beta \in \Gamma$.

- 1. $y\gamma x = 0\alpha(x\gamma y)$
- 2. $x\gamma(y\alpha z) = z\gamma(y\alpha x)$
- 3. $x\gamma(x\alpha y) = y$
- 4. $0\gamma(0\alpha y) = y$.

Proof: \Rightarrow It is clear.

$$\leftarrow$$
 . Let $x, y, z \in X$ and $\gamma, \alpha, \beta \in \Gamma$. Then

$$(x\gamma y)\alpha(z\beta u) = u\alpha(z\beta(x\gamma y))$$
$$= u\alpha(y\beta(x\gamma z))$$
$$= (x\gamma z)\alpha(y\beta u)$$

Hence $(x\gamma y)\alpha(z\beta u) = (x\gamma z)\alpha(y\beta u)$, which completes the proof.

4. Γ -IDEALS IN Γ -Q-ALGEBRAS

In this section we first introduce the notion of Γ -ideal in Γ -Q-algebras and next study some of elementary properties.

Definition 4.1. Let X be a Γ -Q-algebra and A a nonempty subset of X. A is said to be a Γ -ideal of X if it satisfies: $x \in X$ and $\gamma \in \Gamma$

- $1.0 \in A$
- 2. $x\gamma y \in A$ and $y \in A$ imply that $x \in A$.

Obviously, $\{0\}$ and X are Γ -ideals of X. We call $\{0\}$ and X the zero ideal and the trivial ideal of X, respectively. An Γ -ideal A is said to be proper if $A \neq X$.

Definition 4.2. Let X be a Γ -Q-algebra and A a nonempty subset of X. A is said to be a Γ -subalgebra of X if $AA \subseteq A$.

Lemma 4.3. Let X be a Γ -Q-algebra. If A is a Γ -ideal of X, $X\Gamma A \subseteq A$ and $A\Gamma X \subseteq A$.

Proof. Let X be a Γ -Q-algebra X and let A be a Γ -ideal of X. Let $x \in X$. Then $x\gamma x = 0 \in A$, for all $\gamma \in \Gamma$ so $A\Gamma X \subseteq X\Gamma X \subseteq A$.

Definition 4.4. Let X be a Γ -Q-algebra and $a \in X, \gamma \in \Gamma$. Define $A(\gamma a)$ by

$$A(\gamma a) = \{0\} \cup \{x \in X : x\gamma a = 0\}..$$

Then we call $A(\gamma a)$ the initial section of the element a.

Definition 4.5. Let X be a Γ -Q-algebra and $a,b \in X, \gamma, \beta \in \Gamma$. Define $A(\gamma a, \beta b)$ by

$$A(\gamma a, \beta b) = \{0\} \cup \{x \in X : (x\gamma a)\beta b = 0\}.$$

We call $Aig(\gamma a, eta big)$ an upper set of a and b .

Theorem 4.6. Let X be a Γ -Q-algebra, $x, y \in X$ and $\gamma, \beta \in \Gamma$. Then

(1)
$$0 \in A(\gamma a)$$
, $0 \in A(\gamma a, \beta b)$.

- (2) $a \in A(\gamma a)$.
- (3) If $0\alpha y = 0$, then $A(\gamma a) \subseteq A(\gamma a, \beta b)$.
- (4) If $0\alpha y \neq 0$, then $A(\gamma a) \{0\} \subseteq X A(\gamma a, \beta b)$.
- (5) $A(\gamma a, \beta b) = A(\beta b, \gamma a)$.

Proof. Let X be a Γ -Q-algebra X, $a,b \in X$ and let $\gamma,\beta \in \Gamma$.

- (1) By Definition 4.4 and Definition 4.5, we have $0 \in A(\gamma a)$ and $0 \in A(\gamma a, \beta b)$.
- (2) Since $a\gamma a = 0$, we have $a \in A(\gamma a)$.
- (3) Let $x \in A(\gamma a)$. Then $x \in \{x \in X : x\gamma a = 0\}$. or $x \in \{0\}$.

Case 1: $x \in \{0\}$.

Since $x \in \{0\}$, we get x = 0. It is easy to see that $x = 0 \in A(\gamma a, \beta b)$.

Case 2:

Since $x \in \{x \in X : x\gamma a = 0\}$, it is easy to see that $x\gamma a = 0$. Then

$$(x\gamma a)\beta b = 0\beta b$$
$$= 0\alpha b$$
$$= 0.$$

Hence $A(\gamma a) \subseteq A(\gamma a, \beta b)$.

(4) Suppose that $0\alpha y \neq 0$. Let $x \in A(\gamma a) - \{0\}$. Then $x\gamma a = 0$ and $x \neq 0$. We have

$$(x\gamma a)\beta b = 0\beta b$$
$$= 0\alpha b$$
$$\neq 0.$$

Thus $x \notin A(\gamma a, \beta b)$ and hence $A(\gamma a) - \{0\} \subseteq X - A(\gamma a, \beta b)$.

(5) Since

$$A(\gamma a, \beta b) = \{0\} \cup \{x \in X : (x\gamma a)\beta b = 0\}$$
$$= \{0\} \cup \{x \in X : (x\gamma b)\beta a = 0\}$$
$$= A(\beta b, \gamma a)$$

we get $A(\gamma a, \beta b) = A(\beta b, \gamma a)$.

Theorem 4.7. Let X be a Γ -Q-algebra, $x, y, z \in X$ and $\gamma \in \Gamma$. If $x\gamma y = x\gamma z$, then $0\gamma y = 0\gamma z$.

Proof. By Definition 2.1, we get

$$(x\gamma y)\beta x = (x\gamma x)\beta y$$
$$= 0\beta y$$
$$= 0\gamma y$$

and

$$(x\gamma z)\beta x = (x\gamma x)\beta z$$
$$= 0\beta z$$
$$= 0\gamma z.$$

Since $(x\gamma y)\beta x = (x\gamma z)\beta x$, we have $0\gamma y = 0\gamma z$.

5. CONCLUSION

Many new classes of Γ -Q-algebras have been discovered recently. All these have attracted researchers of the field to investigate these newly discovered classes in detail. This article investigates we study medial Γ -Q-algebras.

ACKNOWLEDGEMENT

The authors are very grateful to the anonymous referee for stimulating comments and improving presentation of the paper.

REFERENCES

- [1] Ahn S. S., Kim H. S., "On Qs-algebras", J. Chungcheong Math. Soc., vol. 12, 1-7, 1999.
- [2] Borumand Saeid A., "CI-algebra is equivalent to dual Q-algebra", Journal of the Egyptian Mathematical Society, vol. 21, 1-2, 2013.
- [3] Hu Q. P., Li X., "On BCH-algebras", Math. Seminar Notes, vol. 11, 313-320, 1983.
- [4] Hu Q. P., Li X., On proper BCH-algebras", Math Japonicae, vol. 30, 659-661, 1985.
- [5] Iseki K., Tanaka S., "An introduction to theory of BCK-algebras, Math Japonicae", vol. 23, 1-20, 1978.
- [6] Iseki K., "On BCI-algebras", Math. Seminar Notes, vol. 8, 125-130, 1980.
- [7] Lee S. M., Kim K. H., "On right fixed maps of Q-algebras", International Mathematical Forum, vol. 6, no. 1, 31 37, 2011.
- [8] Neggers J., Ahn S. S., Kim H. S., "On Q-algebras", Int. J. Math. Sci., vol. 27, no. 12, 749-757, 2001.
- [9] Samy M. Mostafa, Mokhtar A. Abdel Naby and Osama R. Elgendy, "Fuzzy Q-ideals in Q-algebras", World Applied Programming, vol 2, no 2, 69-80, 2012.