Some Basic Properties of Weakly Completely Primary Ideals in Γ -Near Rings

Pairote Yiarayong¹ and Phakakorn Panpho²

Department of Mathematics, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanuloke 65000, Thailand E-mail: pairote0027@hotmail.com
Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanuloke 65000, Thailand E-mail: kpanpho@hotmail.com

ABSTRACT— In this paper, we study completely primary and weakly completely primary ideals in Γ -near-rings. Some characterizations of completely primary and weakly completely primary ideals are obtained. Moreover, we investigate relationships completely primary and weakly completely primary ideals in Γ -near rings. Finally, we obtain necessary and sufficient conditions of a weakly completely primary ideal to be a completely primary ideals in Γ -near rings.

 $\textbf{Keywords} \hspace{-0.5cm} \quad \Gamma \text{-near-ring, completely primary, weakly completely primary, quasi completely primary.}$

1. INTRODUCTION

Throughout this paper, by a Γ -near-ring N we always mean a zero-symmetric near-ring with identity 1. For basic definitions in near-rings one may refer [20]. In 1970 W. L. M. Holcombe was introducing the notions of (0, 1, 2)-prime ideals of a near ring. In 1977 G. Pilz, was introducing the notion of prime ideals of a near ring. In 1988 N.J.Groenewald was introducing the notions of completely (semi) prime ideals of a near ring. In 1991 N.J.Groenewald was introducing the notions of 3-(semi) prime ideals of a near ring . In 2003 D. D. Anderson and E. Smith defined weakly prime ideals in commutative rings, an ideal P of a ring R is weakly prime if $0 \neq ab \in P$ implies $a \in P$ or $b \in P$.

The concept of Γ -near ring, a generalization of both the concepts near-ring and Γ -ring was introduced by Satyanarayana [21]. Later, several authors such as Booth and Booth, Groenewald [4, 5, 6] studied the ideal theory of Γ -near rings. Groenewald [12] introduced semi uniformly strongly prime near-rings.

In this paper we study completely primary and weakly completely primary ideals in Γ -near-rings. Some characterizations of completely primary and weakly completely primary ideals are obtained. Moreover, we investigate relationships completely primary and weakly completely primary ideals in Γ -near rings. Finally, we obtain necessary and sufficient conditions of a weakly completely primary ideal to be a completely primary ideals in Γ -near rings.

2. BASIC RESULTS

In this section we refer to [24, 25] for some elementary aspects and quote few theorem and lemmas which are essential to step up this study. For more details we refer to the papers in the references.

Definition 2.1. [25] All near-rings considered in this paper are left distributive. A Γ-near-ring is a triple $(N, \Gamma, +)$, where

- (i) (N,+) is a group (not necessarily abelian);
- (ii) Γ is a non-empty set of binary operations on N such that for each $\gamma \in \Gamma$, $(N, +, \gamma)$ is a right near -ring and;
 - (iii) $(a\gamma b)\alpha c = a\gamma(b\alpha c)$, for all $a,b,c \in N$ and $\gamma,\alpha \in \Gamma$.

 Γ -near rings generalize near-rings in the sense that every near-ring N is a Γ -near ring, with $\Gamma = \{\cdot\}$, where \cdot is the multiplication defined on N.

Definition 2.2. [25] Let N be a Γ -near ring, then a normal subgroup A of $(N,\Gamma,+)$ is said to be

- (i) left ideal if $m\gamma(n+a)-m\gamma n\in A$, for all $a\in A, \gamma\in \Gamma$, and $m,n\in N$;
- (ii) right ideal if $a\gamma n \in A$, for all $a \in A, \gamma \in \Gamma$, and $n \in N$;
- (iii) ideal if it is both left and right ideal of N.

If A is an ideal of N, then it is denoted by $A \triangleleft N$. The ideal generated by $a \in N$, is denoted by $a \triangleleft N$.

Lemma 2.3. [25] Let A be a left ideal of a Γ -near ring N. Then $(A:n)_{\gamma}$ is a left ideal of N, where $(A:n)_{\gamma} = \{m \in N : m\gamma n \in A\}$.

Lemma 2.4. Let A be an ideal of $(N, +, \cdot)$. Then is a Γ -near-ring under the operations: For all $a, b \in N$ (a+A)+(b+N)=(a+b)+A and (a+A)(b+N)=(ab)+A.

Lemma 2.5. Let A and B be ideals of $(N, \Gamma, +)$. Then $(A+B)/A \approx B/(A \cap B)$. Furthermore, if $A \subseteq B$, then $(N/A)/(B/A) \approx N/B$.

Definition 2.6. Let $(N,\Gamma,+)$ be a Γ -near-ring and A be a subset of N. We write $\sqrt{A} = \left\{ a \in N : a^k \in A \text{ for some positive integer } k \right\}.$

Definition 2.7. A ideal P of a Γ -near-ring N is called a completely primary ideal if for $a,b \in N$ and $\gamma \in \Gamma$ such that $a\gamma b \in P$ implies that $a^n \in P$ or $b \in P$, for some positive integer n.

Definition 2.8. A ideal P of a Γ -near-ring N is called a weakly completely primary ideal if for $a,b \in N$ and $\gamma \in \Gamma$ such that $0 \neq a\gamma b \in P$ implies that $a^n \in P$ or $b \in P$, for some positive integer n.

Clearly every completely primary ideal is weakly completely primary and $\{0\}$ is always weakly completely primary ideal of N. The following example shows that a weakly completely primary ideal need not be a completely primary ideal in general.

Example 2.9. Let $N = \{0, a, b, c, d, 1, 2, 3\}$ and $\Gamma = \{0, 1\}$. Define addition and multiplication in N as follows:

+	0	1	2	3	а	b	С	d
0	0	1	2	3	а	b	С	d
1	1	2	3	0	d	С	а	b
2	2	3	0	1	b	а	d	С
3	3	0	1	2	С	d	b	а
а	а	d	b	С	2	0	1	3
b	b	С	а	d	0	2	3	1
С	С	а	d	b	1	3	0	2
d	d	b	С	а	3	1	2	0

	0	1	2	2			-	•
•	Ü	1	2	3	а	b	С	d
0	0	0	0	0	0	0	0	0
1	0	1	2	3	а	b	С	d
2	0	2	0	2	2	2	0	0
3	0	3	2	1	b	а	С	d
а	0	а	2	b	а	b	С	d
b	0	b	2	а	b	а	С	d
С	0	С	0	С	0	0	0	0
\overline{d}	0	\overline{d}	0	d	2	2	0	0

Then $(N, +, \cdot)$ is a Γ -near ring. Here $\{0, c\}$ is a weakly completely primary ideal, but not a completely primary, since $2 \cdot \gamma \cdot 2 = 0 \in \{0, c\}$.

3. MAIN RESULTS

We start with the following theorem that gives a relation between weakly completely primary and completely primary ideals in a Γ -near-ring. Our starting points is the following lemma:

Lemma 3.1. If N is a Γ -near-ring with identity, then $a\gamma b = a\alpha b$ for all $a, b \in N$ and $\gamma, \alpha \in \Gamma$.

Proof. Let N be a Γ -near-ring and e be the identity of N, and let $a,b \in N, \gamma, \alpha \in \Gamma$ therefore we have

$$a\gamma b = a\gamma(e\alpha b)$$

= $(a\gamma e)\alpha b$
= $a\alpha b$.

Hence $a\gamma b = a\alpha b$.

Lemma 3.2. Let N be a Γ -near-ring, and let A be a left ideal of N. Then $(A:\Gamma:B)$ is a left ideal in N, where $(A:\Gamma:B) = \{n \in N : n\Gamma B \subseteq A\}$.

Proof. Let N be a Γ -near-ring, and let A be a left ideal of N. Suppose that $n \in N$ and $m, n \in (A : \Gamma : B)$. Then $m\Gamma B \subseteq A$ and $n\Gamma B \subseteq A$ so that

$$(n-m)\Gamma B = n\Gamma B - m\Gamma B \subseteq A.$$

Therefore $n-m \in (A:\Gamma:B)$. For $a \in (A:\Gamma:B)$ and $n \in N$,

$$(n+a-n)\Gamma B = n\Gamma B + a\Gamma B - n\Gamma B$$

$$\subseteq n\Gamma B + A - n\Gamma B$$

$$\subset A$$

since A is a left ideal of N. Therefore, $n+a-n\in (A:\Gamma:B)$. Thus $(A:\Gamma:B)$ is a normal subgroup of N. Let $m,n\in N,a\in (A:\Gamma:B)$ and β $\gamma\in \Gamma$. Then

$$(m\gamma(n-a)-m\gamma n)\Gamma B = (m\gamma(n-a))\Gamma B - (m\gamma n)\Gamma B$$

$$= m\gamma((n-a)\Gamma B) - (m\gamma n)\Gamma B$$

$$= m\gamma(n\Gamma B - a\Gamma B) - (m\gamma n)\Gamma B$$

$$= m\gamma(n\Gamma B - a\Gamma B) - (m\gamma n)\Gamma B$$

$$\subseteq A.$$

Thus $m\gamma(n-a)-m\gamma n\in (A:\Gamma:B)$. Hence $(A:\Gamma:B)$ is a left ideal in N.

Theorem 3.3. Let N be a Γ -near-ring, and let A be an ideal of N. If A is a weakly quasi completely primary (quasi completely primary) ideal of N, then $(A:\Gamma:B)$ is a weakly quasi completely primary (quasi completely primary) ideal in N, where $B \not\subset A$.

Proof. Let N be a Γ -near-ring, and let A be a weakly completely quasi primary ideal of N. Suppose that $0 \neq m\gamma n \in (A:\Gamma:B)$ and $m^k \notin (A:\Gamma:B)$, for all positive integer k. Then

$$0 \neq m\gamma(n\Gamma B) = (m\gamma n)\Gamma B \subseteq A.$$

By Definition of weakly quasi completely primary ideal, we get $m^k \in A$ or $n\Gamma B \subseteq A$ for some positive integer k so that $n \in (A : \Gamma : B)$. Hence $(A : \Gamma : B)$ is a weakly quasi completely primary ideal in N.

Corollary 3.4. Let N be a Γ -near-ring, and let A be a weakly quasi completely primary (quasi completely primary) ideal of N. Then $(A:m)_{\gamma}$ is a weekly quasi completely primary (quasi completely primary) ideal in N, where $m \in N-A$.

Proof. This follows from Theorem 3.3.

Theorem 3.5. Let N be a Γ -near-ring, and let P be an ideal of N. If P is a weakly completely primary ideal that is not completely primary. Then $\sqrt{P} = \sqrt{0}$.

Proof. Let N be a Γ -near-ring with identity. First, we prove that $P^2 = 0$. Suppose that $P^2 \neq 0$ we show that P is weakly completely primary. Let $a\gamma b \in P$, where $a, b \in N, \gamma \in \Gamma$. If $a\gamma b \neq 0$, then either

$$a \in \sqrt{P}$$
 or $b \in P$

since P is weakly completely primary ideal. So suppose that $a\gamma b = 0$. If $P\gamma b \neq 0$, then there is an element p' of P such that $p'\gamma b \neq 0$, so that

$$0 \neq p'\gamma b = (p'+a)\gamma b \in P,$$

and hence P weakly completely primary ideal gives either $p'+a\in \sqrt{P}$ or $b\in P$. As $p'+a\in \sqrt{P}$ and $p'\in P\subseteq \sqrt{P}$ we have either $a\in \sqrt{P}$ or $b\in P$. So we can assume that $P\gamma b=0$. Similarly, we can assume that $P\gamma a=0$. Since $P^2\neq 0$, there exist $c,d\in P$ such that $c\gamma d\neq 0$. Then

$$(a + c)\gamma(b + d) \in P$$
,

so either $p+c\in P$ or $q+d\in \sqrt{P}$, and hence either $p\in P$ or $q\in \sqrt{P}$. Thus P is completely primary ideal. Clearly, $\sqrt{0}\subseteq \sqrt{P}$. As $P^2=0$, we get $\sqrt{P}\subseteq \sqrt{0}$, hence $\sqrt{P}=\sqrt{0}$, as required.

Corollary 3.6. Let N be a Γ -near-ring, and let P an ideal of N. If $\sqrt{P} \neq \sqrt{0}$, then P is completely primary if and only if P is weakly completely primary.

Proof. This follows from Theorem 3.5.

Lemma 3.7. Let N be a Γ -near-ring with identity, and let P be a proper ideal of N. If P is a weakly completely primary ideal of N, then $(P:\Gamma:N\Gamma a)=P\cup(0:\Gamma:N\Gamma a)$, where $a\in N-\sqrt{P}$.

Proof. Let N be a Γ -near-ring with identity, and let P be a weakly completely primary ideal of N. Clearly,

$$P \cup (0:\Gamma:N\Gamma a) \subseteq (P:\Gamma:N\Gamma a).$$

For the other inclusion, suppose that $m \in (P : \Gamma : N\Gamma a)$, so that

$$m\Gamma(N\Gamma a)\subseteq P$$
.

If $0 \neq m\Gamma(N\Gamma a)$, then $N\Gamma a \subseteq P$ since P is weakly completely primary. If $0 = m\Gamma(N\Gamma a)$, then $m \in (0:\Gamma:N\Gamma a)$ so we have the equality.

Corollary 3.8. Let N be a Γ -near-ring with identity, and let P be a proper ideal of N. If P is a weakly completely primary ideal of N, then $(P:\Gamma:a) = P \cup (0:\Gamma:a)$, where $a \in N - \sqrt{P}$.

Proof. This follows from Lemma 3.7.

Corollary 3.9. Let N be a Γ -near-ring with identity, and let P be a proper ideal of N. If $(P:\Gamma:N\Gamma a)=P\cup (0:\Gamma:N\Gamma a)$, then $(P:\Gamma:N\Gamma a)=P$ or $(P:\Gamma:N\Gamma a)=(0:\Gamma:N\Gamma a)$, where $a\in N-\sqrt{P}$.

Proof. This follows from Lemma 3.7.

Theorem 3.10. Let N be a Γ -near-ring with identity, and let P be a proper ideal of N. If $(P:\Gamma:n)=P$ or $(P:\Gamma:n)=(0:\Gamma:n)$, then P is a weakly completely primary ideal of N, where $n\in N-\sqrt{P}$.

Proof. Let N be a Γ -near-ring with identity, and let P be a proper ideal of N. Suppose that Let $0 \neq m\gamma n \in P$, where $m \in N - \sqrt{P}$, $\gamma \in \Gamma$. Then

$$m \in (P:\Gamma:n) = P \cup (0:\Gamma:n)$$

by Corollary 3.9 hence $m \in P$ since $m\gamma n \neq 0$, as required.

Lemma 3.11. Let $N = N_1 \times N_2$, where each N_i is a Γ -near-ring with identity. Then the following hold:

(i) If
$$A$$
 is an ideal of N_1 , then $\sqrt{A \times N_2} = \sqrt{A} \times N_2$.

(ii) If
$$A$$
 is an ideal of N_2 , then $\sqrt{N_1 \times A} = N_1 \times \sqrt{A}$.

Proof. The proof is straightforward.

Theorem 3.12. Let $N=N_1\times N_2$, where each N_i is a Γ -near-ring with identity. If P is a weakly completely primary (completely primary) ideal of N_1 , then $P\times N_2$ is a weakly completely primary (completely primary) ideal of N.

Proof. Suppose that $N=N_1\times N_2$, where each N_i is a Γ -near-ring with identity and P is a weakly completely primary ideal of N_1 . Let

$$0 \neq (a,b)\gamma(c,d) = (a\gamma c,b\gamma d) \in P \times N_2$$

where $(a,b),(c,d) \in N, \gamma \in \Gamma$ so either $a \in \sqrt{P}$ or $c \in P$ since P is weakly completely primary. It follows that either

$$(a,b) \in \sqrt{P} \times N_2 = \sqrt{P \times N_2}$$
 or $(c,d) \in P \times N_2$.

By Definition of weakly completely primary ideal, we have $P \times N_2$ is a weakly completely primary ideal of N.

Corollary 3.13. Let $N=N_1\times N_2$, where each N_i is a Γ -near-ring with identity. If P is a weakly completely primary (completely primary) ideal of N_2 , then $N_1\times P$ is a weakly completely primary (completely primary) ideal of N.

Proof. This follows from Lemma 3.12.

Corollary 3.14. Let $N = \prod_{i=1}^n N_i$, where each N_i is a Γ -near-ring with identity. If P is a weakly completely primary (completely primary) ideal of N_j , then $N_1 \times N_2 \times \ldots \times P_j \times N_{j+1} \times \ldots \times N_n$ is a weakly completely primary (completely primary) ideal of N.

Proof. This follows from Theorem 3.12 and Corollary 3.13.

Theorem 3.15. Let $N = N_1 \times N_2$, where each N_i is a Γ -near-ring with identity. If P is a weakly completely primary ideal of N, then either P = 0 or P is completely primary.

Proof. Let $N=N_1\times N_2$, where each N_i is a Γ -near-ring with identity and let $P=P_1\times N_2$ be a weakly completely primary ideal of N. We can assume that $P\neq 0$. So there is an element (a,b) of P with $(a,b)\neq (0,0)$. Then $(0,0)\neq (a,1)\gamma(1,b)\in P$,

wehere $\gamma \in \Gamma$, gives either

$$(a,1) \in \sqrt{P}$$
 or $(1,b) \in \sqrt{P} = \sqrt{P_1} \times N_2$.

If $(a,1) \in P$, then $P = P_1 \times N_2$. We show that P_1 is completely primary hence P is weakly completely primary by Theorem 3.12. Let $c\gamma d \in P_1$, where $c, d \in N_1$. Then

$$(0,0) \neq (c,1)\gamma(d,1) = (c\gamma d,1) \in P$$
,

so either $(c,1) \in P$ or $(d,1) \in \sqrt{P} = \sqrt{P_1} \times N_2$ and hence either $c \in P_1$ or $d \in P_1$. By a similar argument, $N_1 \times P_2$ is completely primary.

Proposition 3.16. Let $A \subseteq P$ be proper ideals of a Γ -near-ring N. Then the following hold:

- (i) If P is weakly completely primary (completely primary), then P/A is weakly completely primary (completely primary).
- (ii) If A and P/A are weakly completely primary (completely primary), then P is weakly completely primary).

Proof. (i) Let $0 \neq (a + A)\gamma(b + A) = a\gamma b + A \in P/A$, where $a, b \in N, \gamma \in \Gamma$ so $ab \in P$. If $a\gamma b = 0 \in A$, then $(a+A)\gamma(b+A) = 0$, a contradiction. So if P is weakly completely primary, then either $a \in P$ or $b \in \sqrt{P}$, hence either $a + A \in P/A$ or $b + A \in \sqrt{P/A}$, as required.

(ii) Let $0 \neq a\gamma b \in P$, where $a,b \in N$, so $(a+A)\gamma(b+A) \in P/A$. For $a\gamma b \in A$, if A is weakly completely primary, then either $a \in A \subseteq P$ or $b \in A \subseteq P \subseteq \sqrt{P}$. So we may assume that $a\gamma b \notin A$. Then either $a+A \in P/A$ or $b+A \in \sqrt{P/A}$. It follows that either $a \in P$ or $b \in \sqrt{P}$ as needed.

Theorem 3.17. Let P and Q be weakly completely primary ideals of a Γ -near-ring N that are not completely primary. Then P+Q is a weakly completely primary ideal of N.

Proof. Since $(P+Q)/Q \approx Q/(P \cap Q)$, we get that (P+Q)/Q is weakly completely primary by Proposition 3.16 (i). Now the assertion follows from Proposition 3.16 (ii).

ACKNOWLEDGEMENT

The authors are very grateful to the anonymous referee for stimulating comments and improving presentation of the paper.

REFERENCES

- [1] Abbass H.H., Ibrahem S.M., "On fuzzy completely semi prime ideal with respect to an element of a near ring", Msc thesis, 2011.
- [2] Asci M. " Γ - (σ, τ) -Derivation on Gamma near-rings", International Mathematical Forum, vol. 2, no. 3, pp. 97-102, 2007.
- [3] Anderson D.D., Smith E. "Weakly prime ideals", Houston J. Math., vol. 29, no. 4, pp. 831-840, 2003.
- [4] Booth G.L. "A note on Gamma near-rings", Stud. Sci.Math. Hungarica, vol. 23, pp. 471-475, 1988.
- [5] Booth G.L. "Radicals of Γ -near-rings", Publ. Math. Debrecen, vol. 39, pp. 223–230, 1990.
- [6] Booth G.L., Groenewald N.J. "On strongly prime near-rings", Indian J. Math., vol. 40, no. 2, pp. 113–121, 1998.
- [7] Booth G.L., Groenewald N.J. and Veldsman S. "A kurosh-amitsur prime radical for near-rings", Comm. Algebra, vol. 18, no. 9, pp. 3111-3122, 1990.
- [8] Cho Y.U. "Some results on gamma near-rings", Journal of the Chungcheong Mathatical socity, vol. 19, no. 3, pp. 225-229, 2006.
- [9] Dheena P., Elavarasan B. "Weakly prime ideals in near-rings", Tamsui Oxford Journal of Information and Mathematical Sciences, vol. 29, no. 1, pp. 55-59, 2013.
- [10] Gardner B.J., Wiegandt R. "Radical theory of rings", Marcel Dekker, New York Basel, 2004.
- [11] Groenewald N.J. "Different prime ideals in near-rings", Comm. Algebra, vol. 19, no. 10, pp. 2667-2675, 1991.
- [12] Groenewald N.J. "Semi-uniformly strongly prime near-rings", Indian J. Math., vol. 45, no. 3, pp. 241–250, 2003.
- [13] Groenewald N.J. "The completely prime radical in near rings", Acta Math. Hung., vol. 33, pp. 301-305.
- [14] Holcombe W.L.M. "Primitive near-rings", Doctoral Dissertation, University of Leeds. 1970.
- [15] Jun Y.B., Kim K.H., Cho Y.U. "On Gamma-derivations in Gamma-near-rings", Soochow Journal of Mathematics, vol. 29, no. 3, pp. 275-282, 2003.
- [16] Meldrum J.D.P. "Near-rings and their links with groups", Research notes in Math. Pitman London, 134. 1987.
- [17] Mustafa H.J., Husain Hassan A.M. "Near prime spectrum". Journal of Kufa for Mathematics and Computer, vol. 1, no. 8, pp. 58-70, 2013.
- [18] Palaniappan N., Veerappan P.S., Ezhilmaran D. "A note on characterization of intuitionistic fuzzy ideals in Γ near-rings", International Journal of Computational Science and Mathematics, vol. 3, no. 1, pp. 61-71, 2011.
- [19] Palaniappan N., Veerappan P.S., Ezhilmaran D. "On intuitionistic fuzzy ideals in Γ -near-rings", NIFS, vol. 17, no. 3, pp. 15-24, 2011.
- [20] Pilz G., "Near -ring", North Holland Mathematic studies, 23, 1977.
- [21] Satyanarayna Bhavanari "Contributions to near-rings, Doctoral Thesis, Nagarjuna University. 1984.
- [22] Selvaraj C. "On semi uniformly strongly prime Γ -near rings", Southeast Asian Bulletin of Mathematics, vol. 35, pp. 1015-1028, 2011.
- [23] Selvaral C., R. George R. "On strongly prime Γ -near -rings", Tamkang Journal of Mathematics, vol. 39, no. 1, pp. 33-43, 2008.
- [24] Selvaral C., R. George R., Booth G.L. "On strongly equiprime Γ -near-rings", Bulletin of the Institute of Mathematics Academia Sinica, vol. 4, no. 1, pp. 35-46, 2009.
- [25] Selvaraj C., Madhuchelvi L. "On strongly prime spectrum of Γ -near-rings", Bulletin of the Institute of Mathematics Academia, vol. 6, no. 3, 329-345, 2011.
- [26] Shang Y., "A study of derivations in prime near-rings", Mathematica Balkanica (New Series), vol. 25, no. 4, 413-418, 2011.
- [27] Shang Y., "On the ideals of commutative local rings", Kochi Journal of Mathematics, vol.8, 13-17, 2013.