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ABSTRACT--- Stability is one of the properties of solutions of any differential systems. A dynamical system in a state 
of equilibrium is said to be stable. In other words, a system has to be in a stable state before it can be asymptotically 
stable which means that stability does not necessarily imply asymptotic stability but asymptotic stability implies 
stability. For a system to be stable depends on the form and the space for which the system is formulated. Results are 
available for boundedness and periodicity of solutions of second order non-linear ordinary differential equation. 
However, the issue of stability, asymptotic stability, with boundedness and periodicity of solutions of Duffing’s 
equation is rare in literature. In this paper, our objective is to investigate the stability, asymptotic stability, 
boundedness and periodicity of solutions of Duffings equation. We employed the Lyapunov theorems with some 
peculiarities and some exploits on the first order equivalent systems of a scalar differential equation to achieve 
asymptotic stability and hence stability of Duffings equation and again using Yoshizawas theorem we proved 
boundedness and periodicity of solutions of a Duffings equation. Furthermore, we use fixed point technique and 
integrated equation as the mode to confirm apriori-bounds in achieving periodicity and boundedness of the solution. 
    The results obtained showed the consequences of the cyclic relationship between different properties of solutions 
because the asymptotic stability converges uniformly to a point and limit of the supremum of the absolute value of the 
difference between the distances existed and are unique and it is this uniqueness that implies the existence of stability. 
The space where this existed is the space which confirmed continuous closed and bounded nature of the solution and 
hence the existence of optimal solution and opened the window for application of abstract implicit function theorem 
in Banach’sSpace to guarantee uniqueness and asymptotic stability, ultimate boundedness and periodicity of solutions 
of Duffings equation. We concluded that the objectives for the paper were achieved based on our deductions. 
 
Keywords---Lyapunov theorems, Yoshizawa’s theorem, stability, asymptotic stability, boundedness, periodicity 
Duffing’s equation. 
________________________________________________________________________________________________ 
 

1. INTRODUCTION 

[19] Opined that the differential equation which describes a non-linear oscillator first introduced by Duffing with cubic 
stiffness constant has become a very common example of a non-linear oscillator. This equation permits the description of 
hand spring and remains of continuous interest for example: In a family of planar maps, depending on parameters, the 
onset of chaos typically occurs at the parameter values for the stable and unstable manifolds of a stable point come into 
contact tangentially. This method of creation of transversal homoclinic points and related issues can be established by the 
general form of which is 

𝑥̈𝑥(𝑡𝑡) + 𝛿𝛿𝑥̇𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡) + 𝛽𝛽𝑥𝑥3(𝑡𝑡) = 𝑓𝑓(𝑡𝑡)                                                            1.1 
Where f(t) is one of the following two functions 𝑓𝑓(𝑡𝑡) = 𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾; 𝑓𝑓(𝑡𝑡) = 𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾. This provides a model. 
 “The problem of existence as well as multiplicity of periodic solutions of the forced Duffing’s equation  

𝑥̈𝑥 + 𝑔𝑔(𝑥𝑥) + 𝑐𝑐𝑐𝑐 = 𝑓𝑓(𝑡𝑡)                                                                                         1.2 
has been object of many works in both undamped (𝐶𝐶 = 0) and damped case. Results are available for boundedness and 
periodicity of solutions for second order non-linear ordinary differential equations. However, the issue of stability and 
asymptotic of solutions with boundedness and periodicity of Duffing’s equation is rare in literature. 
The general approach to the stability of periodic solutions is related to the classical Lyaponov theorems based on linear 
approximations. This reduces the stability study of periodic solutions to the stability of system linearized at the periodic 
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motion. Since linearized systems contain periodic coefficients; the theory of parametric resonance can be applied. Such 
approach with the analysis of Floquet multipliers is used in Njoku and Omari [17]. 
The other traditional approach to the study of stability of periodic solutions is related to approximate average and 
multiple scales method which reduces original time dependent dynamical systems to autonomous system. In this case, 
stability study is reduced to analysis of fixed. The Existence and asymptotic stability of periodic solutions of a Duffing’s 
equation 𝑥̈𝑥 + 𝑐𝑐𝑥̇𝑥 + 𝑔𝑔(𝑡𝑡, 𝑥𝑥) = 0 taking advantage of a new maximum principle with 𝐿𝐿𝑝𝑝 -conditions combined with known 
relations between upper and lower solutions of  topological and stability were considered by Pedro, F. Tores [16]. The 
existence and uniqueness of solution of Duffings equation using Abstract implicit function theorem in Banach Spaces 
were considered by Eze, E. O ,Ugbene, I .J and Ogbu, H. M [4].  
Agarwal [1] held the views that by using inequalities on the Green function  and non-linearity alternatives, they obtained 
existence result of a conjugate or/and a focal boundary value problem (BVP) under smallness and sign assumption on f 
mainly if |𝑓𝑓(𝑡𝑡, 𝑥𝑥, 𝑥𝑥𝐼𝐼 , … , 𝑥𝑥𝑛𝑛−1| ≤ 𝛼𝛼(𝑡𝑡)𝜑𝜑|𝑥𝑥|, 𝑥𝑥(𝑡𝑡) is stable if and only if the zero solution of 𝑦̇𝑦(𝑡𝑡) = 𝐹𝐹(𝑡𝑡,𝑦𝑦) with 𝐹𝐹(𝑡𝑡, 0) =
0. Using techniques from the stability theory of differential equation [18], gave conditions on x(t) for E(t) to be upper 
bounded linearly or by a constant for t≥o. More concretely, these techniques give constant or have bounds on E (t) when 
x(t) is a trajectory of a dynamical system which falls into a stable, hyperbolic fixed point or into a stable, hyperbolic 
cycle or into a normally hyperbolic and contracting manifold with quasi- periodic flow on the manifold. 
In this paper, our objective is to investigate the stability, asymptotic stability, boundedness and periodicity of solutions of 
Duffing’s equation. This task will be achieved through the following:     

i. The use of Lyapunov functions 𝑉𝑉:ℝ2 → ℝ with some peculiar properties to achieve stability, asymptotic 
stability of  Duffing’s equation  

ii. Yoshizawa’s theorem was used to achieve boundedness and hence periodicity. 
iii. The use of fixed point technique and an integrated equation as the mode for estimating the apriori bound in 

achieving periodicity and boundedness of solutions of Duffing’s equation. 
Now consider the Duffings Equation of the form: 

𝑥̈𝑥 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑥𝑥2 + 2𝑥𝑥3 = 𝑝𝑝(𝑡𝑡)                                                                                1.3 
Where a, b, c are real constants and 𝑝𝑝: [0,2𝜋𝜋] → 𝐸𝐸𝐼𝐼 is continuous. The existence of 2𝜋𝜋-priodic solutions of (1.3) has been 
investigated, that is, the solutions defined on [0,2𝜋𝜋] such that     

𝑥𝑥(0) = 𝑥𝑥(2𝜋𝜋)                                                                                                           1.4 
  and  

𝑥̇𝑥(0) = 𝑥̇𝑥(2𝜋𝜋)                                                                                                       1.5 
Now equation (1.3) - (1.5) can be reduced to a more general form  
     
 𝑥̈𝑥 + 𝑎𝑎𝑥̇𝑥 + +ℎ(𝑥𝑥) = 𝑝𝑝(𝑡𝑡)                                                                                                                 1.6 
Subject to the boundary conditions:  
                         𝐷𝐷(𝑟𝑟)𝑥𝑥(0) = 𝐷𝐷(𝑟𝑟)𝑥𝑥(2𝜋𝜋);   𝑟𝑟 = 0,1,2,                                                                                1.7    
where 𝑎𝑎 > 0,  and h(x), p(t) are continuous functions depending on their argument. 
For constant coefficient equation        
    
 𝑥̈𝑥 + 𝑎𝑎𝑥̇𝑥 + 𝑏𝑏𝑏𝑏 = 𝑝𝑝(𝑡𝑡);   𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 > 0, 𝑏𝑏 > 0                                                                                  1.8                     
Ezeilo (1986) has shown that if the Ruth-Hurwitz’s conditions a>o,b>o hold, the roots of the ordinary equation 

𝜆𝜆2 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏 = 0                                                                                                   1.9 
have negative real parts, then asymptotically stable and ultimate boundedness of solution can be verified for (1.8) when 
𝑝𝑝(𝑡𝑡) = 0. The existence of periodic solutions can be verified for (1.6) when (1.8) holds. Ezeilo [5] Tejumola [14], [2], 
Ogbu [12] Ezeilo, Ogbu [8], and Eze, et al [4]. 
A close look at (1.6) and (1.8) gives some clue to the theorems stated below:  
 

2.  PRELIMINARIES 

Theorem 2.1: Suppose there exists a>0, b>0, and β>0 such that:. 
(𝑖𝑖) ℎ1(𝑥𝑥) < 𝑏𝑏,𝛽𝛽2 = 𝑏𝑏 

(𝑖𝑖𝑖𝑖) |ℎ(𝑥𝑥) − 𝑥𝑥| > 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥 
(𝑖𝑖𝑖𝑖𝑖𝑖) |ℎ(𝑥𝑥)| → ∞ 𝑎𝑎𝑎𝑎 |𝑥𝑥| → ∞ 

 (𝑖𝑖𝑖𝑖)𝑥𝑥2 + 𝑦𝑦2 → ∞ 𝑎𝑎𝑎𝑎 |𝑥𝑥| → ∞, |𝑦𝑦| → ∞ 
Then equation (1.6) through (1.8) has stable, bounded and periodic solutions when p(t)=0. 
 
Theorem 2.2: Suppose further in theorem (2.1) the conditions (i) replaced by 

(𝑖𝑖) ℎ1(𝑥𝑥) < 𝑏𝑏, 𝛽𝛽2 ≠ 𝑏𝑏, |𝑎𝑎𝑥̇𝑥 − 𝑝𝑝(𝑡𝑡)| > 0 
Then equation (1.6) and (1.8) has stable, bounded and periodic solutions when 𝑝𝑝(𝑡𝑡) ≠ 0.   Consider the scalar equation 

𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥), 𝑥𝑥 ∈ ℝ𝑛𝑛 , 𝑓𝑓(0) = 0                                                              2.1 
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 where f is sufficiently smooth.                       .        
 
Theorem 2.3: (Lyapunov) Assume that     

 
(𝑖𝑖) 𝑓𝑓 ∈ 𝐶𝐶1 
(𝑖𝑖𝑖𝑖) 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎 𝐶𝐶1 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑉𝑉: ℝ𝑛𝑛 → ℝ 𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑉𝑉(𝑥𝑥) > 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉(𝑥𝑥) = 0 𝑖𝑖𝑖𝑖 𝑥𝑥 = 0         
(𝑖𝑖𝑖𝑖𝑖𝑖) 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑠𝑠 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (2.1) 𝑉̇𝑉 ≤ 0. 
Then the solution 𝑥𝑥 = 0 of equation (2.1) is stable in the sense of Lyaponov. 
 
Theorem 2.4: (Lyapunov)            
(𝑖𝑖) 𝑓𝑓 ∈ 𝐶𝐶1   
(𝑖𝑖𝑖𝑖) 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎 𝐶𝐶1 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑉𝑉: ℝ𝑛𝑛 → ℝ                   
 𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑉𝑉(𝑥𝑥) > 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉(𝑥𝑥) = 0 𝑖𝑖𝑖𝑖 𝑥𝑥 = 0      
(𝑖𝑖𝑖𝑖𝑖𝑖) 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑠𝑠 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜 (2.1) 𝑉̇𝑉 < 0, 𝑖𝑖𝑖𝑖 𝑥𝑥 ≠ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉̇𝑉 = 0 𝑖𝑖. 𝑒𝑒 𝑉̇𝑉 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.            
Then the solution 𝑥𝑥 = 0 of equation (2.1) is asymptotically stable the sense of Lyapunov. 
 
Theorem 2.5: (Yoshizawa)  
Let us consider the system.          

 �
𝑥̇𝑥 = 𝑓𝑓(𝑡𝑡, 𝑥𝑥,𝑦𝑦),

 
𝑦̇𝑦 = 𝑔𝑔(𝑡𝑡, 𝑥𝑥,𝑦𝑦)

�                                                                                                              2.2       

where f, g satisfy conditions for existence of solutions for any given initial values.  
Suppose there exists a function 𝑉𝑉: ℝ 2 → ℝ with first  partial derivatives in its argument such that 𝑉𝑉(𝑥𝑥,𝑦𝑦) →
+∞ 𝑎𝑎𝑎𝑎 𝑥𝑥2 + 𝑦𝑦2 → ∞  and such that for any solution 𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡) of equation (2.2)  
𝑉̇𝑉 = 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑉𝑉(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡) ≤ −𝛿𝛿 < 0  𝐼𝐼𝐼𝐼 𝑥𝑥2(𝑡𝑡) + 𝑦𝑦2(𝑡𝑡) ≥ ℝ > 0, where δ and ℝ are finite constants.          

Then every solution 𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡) of equation (2.2) is uniformly ultimately bounded with bounding constants depending on 
ℝ and now  
𝑉𝑉 → +∞ 𝑎𝑎𝑎𝑎 𝑥𝑥2(𝑡𝑡) + 𝑦𝑦2(𝑡𝑡) → ∞                 
The conclusion here is that there exists a constant D, (0 < 𝐷𝐷 < ∞) 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 |𝑥𝑥(𝑡𝑡)| ≤ 𝐷𝐷, |𝑦𝑦(𝑡𝑡)| ≤ 𝐷𝐷  
 
Definition 2.6: A continuous function 𝑉𝑉(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 , 𝑡𝑡) is called positive definite if lim‖𝑥𝑥‖→0 𝑉𝑉(𝑥𝑥, 𝑡𝑡) = 0 and 
there exist 𝜑𝜑‖𝑥𝑥‖ such that𝑉𝑉(𝑥𝑥, 𝑡𝑡) ≥ 𝜑𝜑‖𝑥𝑥‖. The function 𝜑𝜑‖𝑥𝑥‖ must be monotonically increasing function in ‖𝑥𝑥‖and 
𝜑𝜑(0) = 0. 
 
Definition 2.7: The function 𝑉𝑉(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 , 𝑡𝑡) is called negative definite if there exists 𝜑𝜑‖𝑥𝑥‖ of the type 
described such that𝑉𝑉(𝑥𝑥, 𝑡𝑡) ≤ −𝜑𝜑‖𝑥𝑥‖.        

3. MAIN RESULT 

Here the proof of theorem (2.1) entails establishing stability, boundedness and periodicity for our equations (1.6 - 1.7) 
when p(t)=0 that is   
 𝑥̈𝑥 + 𝑎𝑎𝑥̇𝑥 + ℎ(𝑥𝑥) = 0                                                                                                          3.1 
or the equivalent system          

 � 𝑥̇𝑥 = 𝑦𝑦
𝑦̇𝑦 = −𝑎𝑎𝑎𝑎 − ℎ(𝑥𝑥)�                                                                                                              3.2             

Consider the function 𝑉𝑉: ℝ 2 → ℝ defined by         

𝑉𝑉 =
1
2
𝑦𝑦2 + 𝐻𝐻(𝑥𝑥)                                                                              3.3 

where 𝐻𝐻(𝑥𝑥) = ∫ ℎ(𝑠𝑠)𝑑𝑑𝑑𝑑𝑥𝑥
0                          

Clearly the V as defined above is positive semi-definite. The time derivative 𝑉̇𝑉 along the solution paths of (4.2) is  
             
𝑉̇𝑉 = 𝑦𝑦𝑦̇𝑦 + ℎ(𝑥𝑥)𝑥̇𝑥             
   = 𝑦𝑦�−𝑎𝑎𝑎𝑎 − ℎ(𝑥𝑥)� + ℎ(𝑥𝑥)𝑦𝑦                  
    = −𝑎𝑎𝑦𝑦2 − ℎ(𝑥𝑥)𝑦𝑦 + ℎ(𝑥𝑥)𝑦𝑦          
    = −𝑎𝑎𝑦𝑦2                  
This is negative definite. There by Lyapunov theorem the system (3.1) - (3.2) is asymptotically stable. Hence it is stable. 
Therefore the system (3.1) - (3.2) is stable in the sense of Lyapunov when p(t)=0. 
Now for the proof of boundedness in equation (3.1) and (3.2); let us consider the 𝐶𝐶1 function, here 𝑉𝑉: ℝ 2 → ℝ defined 
by             
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𝑉𝑉 =
1
2
𝑥𝑥2 +

1
2
𝑦𝑦2                                                                                                                    3.4 

The V defined in equation (4.4) is positive semi-definite. The time derivative V along the solution paths of (3.2) is  
             
𝑉̇𝑉 = 𝑥𝑥𝑥̇𝑥 + 𝑦𝑦𝑦𝑦 ̇                                                                                       
     = 𝑥𝑥𝑥𝑥 − 𝑎𝑎𝑦𝑦2 − 𝑦𝑦ℎ(𝑥𝑥)          
     = 𝑎𝑎𝑦𝑦2 − 𝑦𝑦(ℎ(𝑥𝑥) − 𝑥𝑥)       
   Since |ℎ(𝑥𝑥) − 𝑥𝑥| > 0 for all  𝑥𝑥 (condition (ii) in theorem (2.1) then    
  𝑉̇𝑉 = −𝑎𝑎𝑦𝑦2 − 𝑦𝑦|ℎ(𝑥𝑥) − 𝑥𝑥| < 0                                                                                        3.5  
 without loss of generality, V is such that 𝑉̇𝑉 = −1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥2 + 𝑦𝑦2 → ∞ 𝑎𝑎𝑎𝑎 |𝑥𝑥| → ∞, |𝑦𝑦| → ∞ 
By Yoshizawa’s theorem equation (3.1) has a bounded solution. Therefore equation (1.6) has bounded solutions when 
p(t)=0. 
Now the condition (i) in theorem (2.1) which is 𝛽𝛽2 = 𝑏𝑏 implies that 𝑖𝑖𝑖𝑖 is a root of the auxiliary equation. Therefore the 
solution to (4.1) is of the form 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡). This clearly shows that the solution is periodic. Therefore equation 
(4.1) is stable, bounded and periodic.      Here the proof of theorem 
(2.1). 
The proof of theorem (2.2) is as follows:         
 Consider equation (1.6) or its equivalent system       

 � 𝑥̇𝑥 = 𝑦𝑦
𝑦̇𝑦 = −𝑎𝑎𝑎𝑎 − ℎ(𝑥𝑥) + 𝑝𝑝(𝑡𝑡)�                                                                                                                    3.6    

 and the function 𝑉𝑉: ℝ 2 → ℝ defined by        
 𝑉𝑉 = 1

2
𝑦𝑦2 + 𝐻𝐻(𝑥𝑥)                  3.7 

 where 𝐻𝐻(𝑥𝑥) = ∫ ℎ(𝑠𝑠)𝑑𝑑𝑑𝑑𝑥𝑥
0                  

Clearly the V defined above in equation (3.7) is positive semi-definite. The time derivative 𝑉̇𝑉 along the solution paths of 
(4.6) is           
𝑉̇𝑉 = 𝑦𝑦𝑦̇𝑦 + ℎ(𝑥𝑥)𝑥̇𝑥                     
   = 𝑦𝑦(−𝑎𝑎𝑎𝑎 − ℎ(𝑥𝑥) + 𝑝𝑝(𝑡𝑡) + ℎ(𝑥𝑥)𝑦𝑦)              
 = −𝑎𝑎𝑦𝑦2 − 𝑦𝑦ℎ(𝑥𝑥) + 𝑦𝑦𝑦𝑦(𝑡𝑡) + ℎ(𝑥𝑥)𝑦𝑦               
 = −𝑎𝑎𝑦𝑦2 + 𝑦𝑦𝑦𝑦(𝑡𝑡)             
 = −𝑦𝑦(𝑎𝑎𝑎𝑎 − 𝑝𝑝(𝑡𝑡)                
 = −𝑦𝑦�𝑎𝑎𝑥̇𝑥 − 𝑝𝑝(𝑡𝑡)� < 0 𝑓𝑓𝑓𝑓𝑓𝑓 |𝑎𝑎𝑥̇𝑥 − 𝑝𝑝(𝑡𝑡)| > 0           
 This is a negative definite. 
Therefore by Lyapunov theorem, the system (3.6) is asymptotically stable in the sense of Lyapunov and hence stable. 
Next we proceed to establish boundedness and periodicity in equation (1.6) a parameter 𝜆𝜆, dependent equation. 
𝑥̈𝑥 + 𝑎𝑎𝑥̇𝑥 + ℎ𝜆𝜆(𝑥𝑥) = 𝜆𝜆𝜆𝜆(𝑡𝑡)                                                                                                     3.8      
 where  
ℎ𝜆𝜆(𝑥𝑥) = (1 − 𝜆𝜆)𝑏𝑏𝑏𝑏 + 𝜆𝜆ℎ(𝑥𝑥)                                                                                                            3.9  
where 𝜆𝜆 is in the range 0≤𝜆𝜆≤1 and b is a constant satisfying (1.6). The equation (4.8) is equivalent to     

  𝑥̇𝑥 = 𝑦𝑦                
𝑦̇𝑦 = −𝑎𝑎𝑎𝑎 − ℎ𝜆𝜆(𝑥𝑥) − 𝑝𝑝𝑝𝑝         3.10  
       
The system equation (4.10) can be represented in the vector for          

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝜆𝜆𝜆𝜆(𝑡𝑡, 𝑥𝑥)                                                                                                     
Where                
𝑋𝑋 = �

𝑥𝑥
𝑦𝑦� ,𝐴𝐴 = � 0 1

−𝑏𝑏 −𝑎𝑎�   𝐹𝐹 = |𝑝𝑝(𝑡𝑡) − ℎ(𝑡𝑡) + 𝑏𝑏𝑏𝑏|       
We remark that equation (4.8) reduces to a linear equation   

𝑥̈𝑥 + 𝑎𝑎𝑥̇𝑥 + 𝑏𝑏𝑏𝑏 = 0                                                                                                       3.11 
Where 𝜆𝜆=0 and to equation (1.6) when 𝜆𝜆=1 
If the roots of the auxiliary equation (4.11) has no roots of the form  

𝛽𝛽2 ≠ 𝑏𝑏,𝛽𝛽2 ≠ 0                                                                                                         3.12 
(𝛽𝛽 an integer), then equation (1.6) and (1.7) has at least one 2𝜋𝜋 periodic solution that is the matrix (𝑒𝑒−2𝜋𝜋 ,−1) where 1 is 
the identity 2x2 matrix is invertible. Therefore 𝑥𝑥 is a 2𝜋𝜋 periodic solution of equation (4.11) if and only if   
        
 𝑥𝑥 = 𝜆𝜆,𝑇𝑇𝑇𝑇,   0 ≤ 𝜆𝜆 ≤ 1                                                                                                     3.13 
 

𝑇𝑇𝑇𝑇(𝑡𝑡) = � (𝑒𝑒−2𝜋𝜋𝜋𝜋 − 1)𝑒𝑒(𝑡𝑡−𝑠𝑠)𝐴𝐴𝐹𝐹�𝑠𝑠,𝑋𝑋(𝑠𝑠)�𝑑𝑑𝑑𝑑
2𝜋𝜋

0
                                                 3.14 
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Let S be the space of all real valued continuous 2𝜋𝜋 vector function 𝑋𝑋(𝑡𝑡) = (𝑋𝑋�(𝑡𝑡),𝑌𝑌�(𝑡𝑡)) which are of period2𝜋𝜋. If the 
mapping T is completely continuous mapping of S into itself. Then existence of a 2𝜋𝜋-periodic solution (1.6) - (1.7) 
correspond to 𝑋𝑋 ∈ 𝑆𝑆 satisfying equation (4.13) for 𝜆𝜆=1. Finally using Lemma [13] established that   
|𝑥𝑥|∞ ≤ 𝐶𝐶6 𝑎𝑎𝑎𝑎𝑎𝑎 |𝑥̇𝑥|∞ ≤ 𝐶𝐶3 where the C’s are the apriori bounds.   

4. DISCUSSION 

I. The solutions of a differential equation need not converge to a point 𝑥̅𝑥 for 𝑥̅𝑥 to be stable but must remain sufficiently 
close to 𝑥̅𝑥 for all𝑡𝑡 ≥ 𝑡𝑡0. A steady state is asymptotically stable if it is stable and converges to the point 𝑥̅𝑥 as𝑡𝑡 → ∞. 
[15] 

II. We noted that stability does not necessarily imply asymptotic stability but that asymptotic stability implies stability. 
This is precisely because the limit of the supremum of the distances between the two points must exist and it is 
unique and uniqueness of the solution implies existence of the solution but the converse is not true. Again 
Boundedness being one of the properties of uniform convergence occurs because the asymptotic stability converges 
uniformly to a point and that point is the optimal point and it is unique, bounded and closed and a fixed point which 
coincides with the optimal solution. Again the sphere where the stability existed must exist for the asymptotic 
stability but must return to the origin. The distance of the diameter of the sphere must be finite and thus bounded. 
We stress that a solution must exist before we talk of asymptotic stability and hence stability. This optimal solution 
must occur in a closed and bounded interval. [Refer to Picard theorem] 

III. A Lyapunov function relative to a set G defined on a set E (closed) which under the conditions of the theorem 
contains (locates) all the positive limit sets of solutions which for positive remain in G  

IV. . If X(t) is a solution of our differential equation (1.2), in fact if X(t) is any continuous function in R to, nR then its 
positive limit set is closed and connected. If X(t) is bounded, then its positive limit set is compact. 

V. If V is a Lyapunov function on G for the periodic system, then each solution of the system that is bounded and 
remains in G for all t>0(t<0) approaches M as t→∞ (t→-∞) 

VI. There are also some special classes of non-autonomous systems where the limit sets of the solution have an 
invariance property. The simplest of these are periodic systems. 
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