On the Classical Primary Radical Formula and Classical Primary Subsemimodules

Authors

  • Pairote Yiarayong Department of Mathematics, Faculty of Science and Technology, Pibulsongkram Rajabhat University,Phitsanuloke 65000, Thailand
  • Phakakorn Panpho

Keywords:

classical primary subsemimodule, primary subsemimodule, classical primary radical, classical primary radical formula.

Abstract

In this paper, we characterize the classical primary radical of subsemimodules and classical primary subsemimodules of semimodules over a commutative semirings. Furthermore we prove that if  $N_{j}$ is a classical primary subsemimodule of  $M_{j}$ then $N_{j}$ is to satisfy the classical primary radical formula in $M_{j}$ if and only if $M{1}\times M_{2}\times\ldots \times M_{J-1} \times N_{j}\timesM_{j+1}\times\ldots\times M_{n}$  is to satisfy the classical primary radical formula in $M$.

References

Atani R. E., “Prime subsemimodules of semimodulesâ€, International Journal of Algebra, vol. 4, no. 26, pp. 1299- 1306, 2010.

Atani S. E. and Darani A. Y., “On quasi-primary submodulesâ€, Chiang Mai J. Sci., vol. 33, no. 3, pp. 249-254, 2006.

Baziar M. and Behboodi M., “Classical primary submodules and decomposition theory of modulesâ€, J. Algebra Appl., vol. 8, no. 3, pp. 351-362, 2009.

Behboodi M., Jahani-nezhad R. and Naderi M. H., “Classical quasi-primary submodulesâ€, Bulletin of the Iranian Mathematical Society, vol. 37, no. 4, pp. 51-71, 2011.

Dubey M. K. and Sarohe P. “On 2-absorbing semimodulesâ€, Quasigroups and Related Systems, vol. 21, pp. 175 - 184, 2013.

Ebrahimi Atani, R., “Prime subsemimodules of semimodulesâ€, Int. J.of Algebra, vol. 4, no. 26, pp. 1299 - 1306, 2010.

Ebrahimi Atani R. and Ebrahimi Atani S., “On subsemimodules of semimodulesâ€, Buletinul Academiei De Stiinte, vol. 2, no. 63, pp. 20 - 30, 2010.

. Ebrahimi Atani S. and Esmaeili Khalil Saraei F., “Modules which satisfy the radical formulaâ€, Int. J. Contemp. Math. Sci., vol. 2, no. 1, pp. 13 - 18, 2007.

Ebrahimi Atani S. and Shajari Kohan M., “A note on finitely generated multiplication semimodules over comutative semiringsâ€, International Journal of Algebra, vol. 4, no. 8, pp. 389-396, 2010.

Fuchs L., “On quasi-primary idealsâ€, Acta Univ. Szeged. Sect. Sci. Math., vol. 11, pp. 174-183, 1947.

McCasland R. L. and Moore M. E., “On radicals of submodulesâ€, Comm. Algebra, vol. 19, no. 5, pp. 1327–1341, 1991.

Pusat-Yilmaz D. and Smith P. F., “Modules which satisfy the radical formula, Acta Math. Hungar, vol. 95, no. (1- 2), pp. 155–167, 2002.

Saffar Ardabili J., Motmaen S. and Yousefian Darani A., “The spectrum of classical prime subsemimodulesâ€, Australian Journal of Basic and Applied Sciences, vol. 5, no. 11, pp. 1824-1830, 2011.

Sharif H., Sharifi Y.and Namazi S., “Rings satisfying the radical formulaâ€, Acta Math. Hungar, vol. 71, no. (1-2), pp. 103-108, 1996.

Srinivasa Reddy M., Amarendra Babu V. and Srinivasa Rao P. V., “Weakly primary subsemimodules of partial semimodulesâ€, International Journal of Mathematics and Computer Applications Research (IJMCAR), vol. 3, pp. 45-56, 2013.

Tavallaee H.A. and Zolfaghari M., “Some remarks on weakly prime and weakly semiprime submodulesâ€, Journal of Advanced Research in Pure Math., vol. 4, no. 1, pp. 19 - 30, 2012.

Tavallaee H.A. and Zolfaghari M., “On semiprime submodules and related resultsâ€, J. Indones. Math. Soc., vol. 19, no. 1, pp. 49-59, 2013.

Yesilot G., Oral K. H. and Tekir U., “On prime subsemimodules of semimodulesâ€, International Journal of Algebra., vol. 4, no. 1, pp. 53-60, 2010.

Downloads

Published

2014-10-15

How to Cite

On the Classical Primary Radical Formula and Classical Primary Subsemimodules. (2014). Asian Journal of Applied Sciences, 2(5). https://ajouronline.com/index.php/AJAS/article/view/1780

Similar Articles

21-30 of 62

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>