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ABSTRACT— In this paper, we characterize the classical primary radical of subsemimodules and classical
primary subsemimodules of semimodules over a commutative semirings. Furthermore we prove that if Nj is a

classical primary subsemimodule of M i then Nj is to satisfy the classical primary radical formula in Mj if and

only if M; xM,x...xM; xN;xM,; x...x M isto satisfy the classical primary radical formulain M.
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1. INTRODUCTION

Throughout this paper a semiring will be defined as follows: A semiring is a set R together with two binary

operations called addition "+ " and multiplication "-" such that (R,+) is a commutative semigroup and (R,-) is
semigroup; connecting the two algebraic structures are the distrubutive laws : a(b+c) =ab+ac and
(a+b)C:aC+bC forall @, b, c e R. A semimodule M over a semiring R is a commutative monoid M with
additive identity 0, together with a function RxM — M, defined by (r, m) > rm such that:

1L r(m+n)=rm+r

2. (r+s)m=rm+sm

3. (rs)m=r(sm)

4. r0=0=0m

5.1m=m
for all m,neM and r,seR. Clearly every ring is a semiring and hence every module over a ring R is a left

semimodule over a semiring R. A nonempty subset N of a R -semimodule M is called subsemimodule of M if N

is closed under addition and closed under scalar multiplication.
J. Saffar Ardabili S. Motmaen and A. Yousefian Darani in (2011) defined a different class of subsemimodules

and called it classical prime. A proper subsemimodule N of M is said to be classical prime when for a,b € R and

me M,abme N impliesthat ame N or bme N.
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A proper subsemimodule N of M is said to be classical primary when for a,b € R and me M,abme N
implies that ame N or b"m e N, for some positive integer N. A classical primary radical of N in M, denoted by
C.pradM (N), is defined to be the intersection of all classical primary subsemimodules containing N. Should there
be no classical primary subsemimodule of M containing N, then we put C.prad,, (N ) = M. In this note, we shall

need the notion of the envelope of a submodule introduced by R. L. McCasland and M. E. Moore in [11]. For a
submodule N of an R-module M, the envelope of N in M, denoted by E,, (N) is defined to be the subset

{rm : reR and meM suchthat r‘me N for some k € Z'} of M. Note that, in general, E,, (N) is not an
R -module. With the help of envelopes, the notion of the radical formula is defined as follows: a submodule N of an

R -module M is said to satisfy the radical formulain M, if <EM (N)> = rad,, (N). Also, an R -module M is

said to satisfy the radical formula, if every submodule of M satisfies the radical formula in M. The radical formula has
been studied extensively by various authors (see [8], [13] and [14]).
In this paper we introduce the concept of the radical formula and study some basic properties of this class of

subsemimodules. Moreover, we prove that if Nj is a classical primary subsemimodule of M i then Nj is to satisfy
the classical primary radical formulain M if and only if M;xM,x...xM;;xN;xM,  x...xM, is to satisfy

the classical primary radical formula in M.

2. PRELIMINARIES

n n
Let R =HRi, where each R, is a commutative semiring with identity. Then an ideal | :H I, of P is
i-1 i=1

primary if and only if |, is equal to the corresponding semiring R, and the other is primary. Moreover, any R -

n
semimodule M can be uniquely decomposed into a direct product of semimodules, i.e. M :HMi, where
i=1
M, = (0,0,0,...,O,l,O,...O)M
is an R, -semimodule with action (r, I,,...,F,)(M,m,,....m )=(rm, r,m,,....,rm ), where I, €R and

m e M,.

Proposition 2.1. Let N =N, x N, be a subsemimodule of M. Then <EM (N)> =< EMl (N1)> X <EM2 (N2)>.

K
Proof. Let XzZ(I‘i,S.)(m. n.)e<EM (N)> where (I’i,si)ki (m;,n;)eN, for some k; € Z" if and only if

i ir i
i=1

k
u=Y"rm e(E, (N,)), with £m N,
i=1
and
Kk
vV=)ysn e< Ey, (N2)>, with $n, € N,.
i=1

Then X =(u,V) e <EM (N)> ifand only U e< Ev, (N1)> and Vv e< Ey, (N2)> as required.
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n

Corollary 2.2. Let N :HNi be a subsemimodule of M. Then <EM (N )> = H(Emi (N; )>
i=1 i-1

Proof. This follows from Proposition 2.1

Proposition 2.3. If N is a classical prime subsemimodule of M, then <EM (N )> = N.
k

Proof. Clearly, N g(EM (N)> To show that <EM (N)>g N. Let X=Z:rimi e< E,, (N)>, where
i=1

rm eN for some ki e€Z*. Since N is a classical prime subsemimodule of M,we have rm. e N. Then

x:zk:rimi e N sothat (E,, (N))< N. Hence (E,, (N)) = N.
i=1

3. CLASSICAL PRIMARY SUBSEMIMODULES

In this section, we give some characterizations for classical primary subsemimodules of R -semimodule M.

Lemma 3.1. Let M =M, xM,, where M; isan R,-semimodule. A subsemimodule N, x M, is a classical primary
subsemimodule of M if and only if N1 is a classical primary subsemimodule of Ml.
Proof. Suppose that N, x M, is a classical primary subsemimodule of R -semimodule M. We will show that N, is
a classical primary subsemimodule of M,. Clearly, N, is a proper subsemimodule of R,-semimodule M. To show
that classical primary subsemimodule properties of N, hold, m € M, and &,b € R, such that abm e N,. Then
(a,1)(b,1)(m,n)=(abm,n)e N, xM,.
Since N; x M, is a classical primary subsemimodule of R -semimodule M, it follows that
(am,n)=(a,1)(m,n)e N, xM,
or
(b“m, n) =(b,1)" (m,n)e N, xM,,
for some positive integer N. That is, am N1 or b"me Nl. Therefore Nl is a classical primary subsemimodule of
R, -semimodule M,. Conversely, suppose that N, is a classical primary subsemimodule of R, -semimodule M,. We
will show that N, x M, is a classical primary subsemimodule of R -semimodule M. Clearly, N, xM, is a proper
subsemimodule of R -semimodule M. To show that classical primary subsemimodule properties of le M2 hold, let
(mn)eM and (a,a,),(b,b,)eR suchthat
(abm,a,b,n)=(a,,a,)(b,b,)(m,n)eN,xM,.
Since N, is a classical primary subsemimodule of R -semimodule M, and abme N,, we have ame N, or
b'n e N,, for some positive integer N. Therefore

(a.a,)(m,n)=(am,a,n)eN,xM,

(b,b,)" (m,n)=(b'm,bjn)e N, xM,.

Hence N, x M, is a classical primary subsemimodule of R -semimodule M.
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Corollary 3.2. Let M =M,;xM,, where M, is an R, -semimodule. A subsemimodule M, x N, is a classical
primary subsemimodule of R -semimodule M if and only if N2 is a classical primary subsemimodule of Rz—

semimodule M,.
Proof. This follows from Lemma 3.1.

n
Corollary 3.3. Let M :HMi, where M isan R;-semimodule. A subsemimodule
i=1

Mlxsz...xMHx Nj ><MJ.+1><..,>< M,
is a classical primary subsemimodule of R -semimodule M if and only if Nj is a classical primary subsemimodule of

Rj -semimodule Mj.

Proof. This follows from Lemma 3.1 and Corollary 3.2.

Lemma 3.4. Let M =M, xM,, where M, is an R;-semimodule. If le{n} is a classical primary subsemimodule
of M, then N, is a classical primary subsemimodule of M.
Proof. Suppose that le{n} is a classical primary subsemimodule of R -semimodule M. We will show that N1 is
a classical primary subsemimodule of M,. Clearly, N, is a proper subsemimodule of R,-semimodule M;. To show
that classical primary subsemimodule properties of N, hold, let m € M, and &,b € R, such that abm e N,. Then
(a,1)(b,1)(m,n)=(abm,n)e N, x{n}.

Since N, xM, is a classical primary subsemimodule of R -semimodule M, it follows that

(am,n)=(a,1)(m,n)e N, x{n}.

or

(b"m,n)=(b,1)" (m,n) e N, x{n}.

for some positive integer N. That is, ame N, or b"m e N,. Therefore N, is a classical primary subsemimodule of

R, -semimodule M.

Corollary 35. Let M =M;xM,, where M, is an R -semimodule. If {n}xN, is a classical primary

subsemimodule of R -semimodule M, then N, is a classical primary subsemimodule of R, -semimodule M.

Proof. This follows from Lemma 3.4.

n
Corollary 36. Let M =] [M;, where M, is an R, -senimodule. If {m}x{m,}x...xN;x...x{m} is a

i=1

classical primary subsemimodule of R -semimodule M, then Nj is a classical primary subsemimodule of Rj—

semimodule M i

Proof. This follows from Lemma 3.4 and Corollary 3.5.
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4. RADICAL OF CLASSICAL PRIMARY SUBSEMIMODULES

A subsemimodule N of an R -semimodule M is said to satisfy the classical primary radical formula in M,

if (E,, (N)) = c.prad,, (N).

Lemma4.1. Let M =M, xM,, where M, isan R,-semimodule. If W is a classical primary subsemimodule of R -
semimodule M and P={xeM, :(X,y) €W}, then P=M, or P is a classical primary subsemimodule of R, -
semimodule M.

Proof. Suppose that P # M,. We will show that P is a classical primary subsemimodule of R, -semimodule M. It
is clear that, P is a proper subsemimodule of Rl-semimodule Ml. To show that classical primary subsemimodule
properties of P, let 8,b€R, and me M, such that abme P. Then (a,1)(b,1)(m, y) =(abm,y) eW. Since
W is a classical primary subsemimodule of M, we have

(am,1) =(a,1)(m,y) eW
or
(0", y) = (b,1)" (m,y) €W,

for some positive integer N. It follows that am e P or b"m e P. Therefore P is a classical primary subsemimodule
of M,.

Corollary 4.2. Let M =M, xM,, where M, isan R, -semimodule. If W is a classical primary subsemimodule of
R -semimodule M and P={xe M, :(0,xX) €W}, then P=M, or P is a classical primary subsemimodule of

R, -semimodule M,.
Proof. This follows from Lemma 4.1.

n
Corollary 4.3. Let M :HMi, where M, isan R;-semimodule. If W is a classical primary subsemimodule of R -
i=1

semimodule M and P={x e Mj s(m,m,,...,x,m ., M.)eW}, then P= Mj or P is a classical primary

VL
subsemimodule of Rj -semimodule I\/Ij.

Proof. This follows from Lemma 4.1 and Corollary 4.2.

Lemma 4.4. Let M =M, xM,, where M, isan R, -semimodule and let N be a subsemimodule of R, -semimodule
M,. Then mec.prad,, (N) ifand only if (m,y)ec.prad,, (Nx{y}).
Proof. Suppose that M =M, xM,, where M, is an R,-semimodule. Let N be a subsemimodule of R,-
semimodule M, and let mec.prad,, (N).

If there is no classical primary subsemimodule of M containing N x{y}, then c.prad,, (N x{y}) =M.

Therefore (m, y) ec.prad,, (N x{y}).
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If there is classical primary subsemimodule of M containing N x{y}, then there exists a classical primary
subsemimodule W with N x{y} cW. ByLemmad.land P={XeM, :(X,y) eW}, wehave P=M, or P is
a classical primary subsemimodule of R, -semimodule M,.
Case 1: P=M,. Since mec.prad,, (N), we have meP. Then (m,y)eW. Therefore if W is a
classical primary subsemimodule of M containing N x{y}, then (m, y) eW.
Case 2: P # M,. Since P M,, we have P is a classical primary subsemimodule of R, -semimodule M.
Let X € N. Then (X, y) eN x{y} so that X € P. It follows that N < P. We have
crad, (N) < crad, (P)
= P
so that m € P. Therefore if W is a classical primary subsemimodule of M containing N x{y}, then (m, y) eW

and hence (M, y) e c.prad,, (N x{y}).

Corollary 4.5. Let M =M;xM,, where M, is an R, -semimodule and let N be a subsemimodule of R, -

semimodule M,. Then m e c.prad,, (N) ifand only if (x,m) €c.prad,, ({x}xN).

Proof. This follows from Lemma 4.4.

n
Corollary 4.6 Let M =HMi, where M, is an R -semimodule and let N be a subsemimodule of R; -semimodule
i=1

M. Then mec.prade(N) if and only if

(Xpree oM, X, X)) €Cprad,, ({3 {x, } x...xN x{xj+1}><...><{xn}).
Proof. This follows from Lemma 4.4 and Corollary 4.5.

Lemma 4.7. Let M =M, xM,, where M, is an R,-semimodule. If N; be a subsemimodule of R;-semimodule
M, then c.prad,, (N,)xc.prad,, (N,)cc.prad,, (N,xN,).
Proof. Suppose that M =M, xM,, where M, is an R -semimodule. Let N, be a subsemimodule of R,-
semimodule M. We will show that ¢.prad,, (N,)x.cprad,, (N,) cc.prad,, (N, xN,). Let

(x,y) ec.prad,, (N,)xc.prad,, (M,).
Then X e c.prad,, (N,) and y ec.prad,, (N,). By Lemma 4.1 and Lemma 4.4, we have

(x,0) ec.prad,, (N, x{0}) cc.prad,, (N, xN,)
and
(0,y) ec.prad,, {0}xN,) cc.prad,, (N, xN,).

Then (X, y) =(X,0)+(0, y) ec.prad,, (N, xN,) and hence
c.prady, (N,)xc.prad,, (N,)<c.prad,, (N;xN,).
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n
Corollary 4.8. Let M =HMi, where M, isan R, -semimodule. If N, be a subsemimodule of R;-semimodule M,
i-1

then [ Jc.prad,, (N;) < c.prad,, (] [N)).

Proofi_l This follows from Lemma 4.7. -
Theorem 4.9. Let M =M, xM,, where M, is an R, -semimodule. If N is a subsemimodule of R, -semimodule
M, then c.prad,, (N,)xc.prad,, (M,)=c.prad,, (N,xM,).
Proof. Suppose that M =M, xM,, where M, is an R, -semimodule. Let N be a subsemimodule of R -
semimodule M,. By Lemma 4.7, we have C.prad,, (N)xc.prad,, (M,)cc.prad,,(NxM,). We will show
that c.prad,, (N, xM,) c c.prad,, (N,)xc.prad,, (M,). If there is no classical primary subsemimodule of M
containing N, then c.prad,, (N)=M,. Then

c.prady, (N, xM,) cc.prad,, (N;)xc.prady, (M,).
If there is classical primary subsemimodule of M containing N, then there exists W is a classical primary
subsemimodule of M, containing N. Then W xM, is a classical primary subsemimodule of M, containing
N xM,. Let P be aclassical primary subsemimodule of M containing N xM,. Then

NxM, c c.prad, (N)xM,
= c.prad,, (N)xc.prad,, (M,).

Therefore C.prad, (N, xM,) < c.prad,, (N,)xc.prad,, (M,) and hence

c.prady, (N, xM,) =c.prad,, (N,)xc.prad,, (M,).

Corollary 4.10. Let M =M, xM,, where M, is an R, -semimodule. If N is a subsemimodule of R, -semimodule

M,, then c.prad,, (M, xN)=c.prad,, (M,)xc.prad,, (N).

Proof. This follows from Lemma 4.9.

n
Corollary 4.11. Let M :HMi, where M, is an R;-semimodule. If N; be a subsemimodule of R,;-semimodule
i=1

M;, then | Jc.prad,, (N;)=c.prad,, (] [N,
i=1 i=1

Proof. This follows from Lemma 4.9 and Corollary 4.10.

Theorem 4.12. Let M =M, xM,,, where M, is an R;-semimodule. If N, is a classical primary subsemimodule of
I\/Il, then N1 is to satisfy the classical primary radical formula in M1 if and only if N1 X M2 is to satisfy the classical

primary radical formula in M.

Proof. Suppose that N, is a classical primary subsemimodule of M, and N, is to satisfy the classical primary radical
formula in M,. We will show that N, x M, is to satisfy the classical primary radical formula in M. Since N, is a

classical primary subsemimodule of Ml, it follows that
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c.prad,, (N, xM,) = c.prady, (N;)xc.prad, (M,)
= <EM1(N1)>XM2
- <EM(N1><M2)>.

Therefore Nl>< M2 is to satisfy the classical primary radical formula in M. Conversely, suppose that N1 is a classical

primary subsemimodule of M, and N, x M, is to satisfy the classical primary radical formula in M. We will show

that N1 is to satisfy the classical primary radical formula in Ml. Since Nl>< M2 is a classical primary subsemimodule

of M, it follows that

<EM1(N1)>XM2 <EM(N1XM2)>

c.prad,, (N,)xc.prad,, (M,).

Then c.prad,, (N,) :<EM1 (N1)> and hence N, is to satisfy the classical primary radical formula in M.

n
Corollary 4.13. Let M :HMi, where M; is an R;-semimodule. If N is a classical primary subsemimodule of

i=1

M, then N is to satisfy the classical primary radical formulain M ; if and only if

M;xM,x..xM; ; xN;xM; x...xM_

is to satisfy the classical primary radical formulain M.

Proof.

This follows from Theorem 4.12.
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