On the Classical Primary Radical Formula and Classical Primary Subsemimodules

Pairote Yiarayong¹ and and Phakakorn Panpho²

 Department of Mathematics, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanuloke 65000, Thailand E-mail: pairote0027@hotmail.com
 Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanuloke 65000, Thailand E-mail: kpanpho@hotmail.com

ABSTRACT—In this paper, we characterize the classical primary radical of subsemimodules and classical primary subsemimodules of semimodules over a commutative semirings. Furthermore we prove that if N_j is a classical primary subsemimodule of M_j , then N_j is to satisfy the classical primary radical formula in M_j if and only if $M_1 \times M_2 \times ... \times M_{j-1} \times N_j \times M_{j+1} \times ... \times M_n$ is to satisfy the classical primary radical formula in M.

Keywords— classical primary subsemimodule, primary subsemimodule, classical primary radical, classical primary radical formula.

1. INTRODUCTION

Throughout this paper a semiring will be defined as follows: A semiring is a set R together with two binary operations called addition "+" and multiplication "·" such that (R,+) is a commutative semigroup and (R,\cdot) is semigroup; connecting the two algebraic structures are the distributive laws: a(b+c) = ab+ac and (a+b)c = ac+bc for all $a, b, c \in R$. A semimodule M over a semiring R is a commutative monoid M with additive identity 0, together with a function $R \times M \to M$, defined by $(r,m) \mapsto rm$ such that:

$$1. r(m+n) = rm + rn$$

2.
$$(r+s)m = rm + sm$$

3.
$$(rs)m = r(sm)$$

4.
$$r0 = 0 = 0m$$

5.
$$1m = m$$

for all $m, n \in M$ and $r, s \in R$. Clearly every ring is a semiring and hence every module over a ring R is a left semimodule over a semiring R. A nonempty subset N of a R-semimodule M is called subsemimodule of M if N is closed under addition and closed under scalar multiplication.

J. Saffar Ardabili S. Motmaen and A. Yousefian Darani in (2011) defined a different class of subsemimodules and called it classical prime. A proper subsemimodule N of M is said to be classical prime when for $a,b \in R$ and $m \in M$, $abm \in N$ implies that $am \in N$ or $bm \in N$.

A proper subsemimodule N of M is said to be classical primary when for $a,b \in R$ and $m \in M$, $abm \in N$ implies that $am \in N$ or $b^n m \in N$, for some positive integer n. A classical primary radical of N in M, denoted by $c.prad_M(N)$, is defined to be the intersection of all classical primary subsemimodules containing N. Should there be no classical primary subsemimodule of M containing N, then we put $c.prad_M(N) = M$. In this note, we shall need the notion of the envelope of a submodule introduced by R. L. McCasland and M. E. Moore in [11]. For a submodule N of an R-module M, the envelope of N in M, denoted by $E_M(N)$, is defined to be the subset $\{rm: r \in R \text{ and } m \in M \text{ such that } r^k m \in N \text{ for some } k \in \mathbb{Z}^+\}$ of M. Note that, in general, $E_M(N)$ is not an R-module. With the help of envelopes, the notion of the radical formula is defined as follows: a submodule N of an R-module M is said to satisfy the radical formula in M, if $\langle E_M(N) \rangle = rad_M(N)$. Also, an R-module M is said to satisfy the radical formula, if every submodule of M satisfies the radical formula in M. The radical formula has been studied extensively by various authors (see [8], [13] and [14]).

In this paper we introduce the concept of the radical formula and study some basic properties of this class of subsemimodules. Moreover, we prove that if N_j is a classical primary subsemimodule of M_j , then N_j is to satisfy the classical primary radical formula in M_j if and only if $M_1 \times M_2 \times ... \times M_{j-1} \times N_j \times M_{j+1} \times ... \times M_n$ is to satisfy the classical primary radical formula in M.

2. PRELIMINARIES

Let $R = \prod_{i=1}^{n} R_i$, where each R_i is a commutative semiring with identity. Then an ideal $I = \prod_{i=1}^{n} I_i$ of P is primary if and only if I_i is equal to the corresponding semiring R_i and the other is primary. Moreover, any R-semimodule M can be uniquely decomposed into a direct product of semimodules, i.e. $M = \prod_{i=1}^{n} M_i$, where

$$M_i = (0,0,0,...,0,1,0,...0)M$$

is an R_i -semimodule with action $(r_1, r_2, ..., r_n)(m_1, m_2, ..., m_n) = (r_1 m_1, r_2 m_2, ..., r_n m_n)$, where $r_i \in R_i$ and $m_i \in M_i$.

Proposition 2.1. Let $N = N_1 \times N_2$ be a subsemimodule of M. Then $\left\langle E_M(N) \right\rangle = \left\langle E_{M_1}(N_1) \right\rangle \times \left\langle E_{M_2}(N_2) \right\rangle$.

Proof. Let $x = \sum_{i=1}^{k} (r_i, s_i)(m_i, n_i) \in \langle E_M(N) \rangle$ where $(r_i, s_i)^{k_i}(m_i, n_i) \in N$, for some $k_i \in \mathbb{Z}^+$ if and only if

$$u = \sum_{i=1}^{k} r_i m_i \in \langle E_{M_1}(N_1) \rangle$$
, with $r_i^{k_i} m_i \in N_1$

and

$$v = \sum_{i=1}^{k} s_i n_i \in \left\langle E_{M_2} \left(N_2 \right) \right\rangle, \text{ with } s_i^{k_i} n_i \in N_2.$$

Then $x = (u, v) \in \langle E_M(N) \rangle$ if and only $u \in \langle E_{M_1}(N_1) \rangle$ and $v \in \langle E_{M_2}(N_2) \rangle$ as required.

Corollary 2.2. Let $N = \prod_{i=1}^{n} N_i$ be a subsemimodule of M. Then $\langle E_M(N) \rangle = \prod_{i=1}^{n} \langle E_{M_i}(N_i) \rangle$.

Proof. This follows from Proposition 2.1

Proposition 2.3. If N is a classical prime subsemimodule of M, then $\left\langle E_{M}\left(N\right)\right\rangle \ =\ N$.

Proof. Clearly, $N \subseteq \langle E_M(N) \rangle$. To show that $\langle E_M(N) \rangle \subseteq N$. Let $x = \sum_{i=1}^k r_i m_i \in \langle E_M(N) \rangle$, where $r_i^{k_i} m_i \in N$ for some $k_i \in \mathbb{Z}^+$. Since N is a classical prime subsemimodule of M, we have $r_i m_i \in N$. Then $x = \sum_{i=1}^k r_i m_i \in N$ so that $\langle E_M(N) \rangle \subseteq N$. Hence $\langle E_M(N) \rangle = N$.

3. CLASSICAL PRIMARY SUBSEMIMODULES

In this section, we give some characterizations for classical primary subsemimodules of R-semimodule M.

Lemma 3.1. Let $M = M_1 \times M_2$, where M_i is an R_i -semimodule. A subsemimodule $N_1 \times M_2$ is a classical primary subsemimodule of M if and only if N_1 is a classical primary subsemimodule of M_1 .

Proof. Suppose that $N_1 \times M_2$ is a classical primary subsemimodule of R-semimodule M. We will show that N_1 is a classical primary subsemimodule of M_1 . Clearly, N_1 is a proper subsemimodule of R_1 -semimodule M_1 . To show that classical primary subsemimodule properties of N_1 hold, $m \in M_1$ and $a,b \in R_1$ such that $abm \in N_1$. Then

$$(a,1)(b,1)(m,n) = (abm,n) \in N_1 \times M_2.$$

Since $N_1 \times M_2$ is a classical primary subsemimodule of R -semimodule M, it follows that

$$(am,n) = (a,1)(m,n) \in N_1 \times M_2$$
or
$$(b^n m,n) = (b,1)^n (m,n) \in N_1 \times M_2,$$

for some positive integer n. That is, $am \in N_1$ or $b^n m \in N_1$. Therefore N_1 is a classical primary subsemimodule of R_1 -semimodule M_1 . Conversely, suppose that N_1 is a classical primary subsemimodule of R_1 -semimodule M_1 . We will show that $N_1 \times M_2$ is a classical primary subsemimodule of R-semimodule M. Clearly, $N_1 \times M_2$ is a proper subsemimodule of R-semimodule of R-s

$$(a_1b_1m, a_2b_2n) = (a_1, a_2)(b_1, b_2)(m, n) \in N_1 \times M_2.$$

Since N_1 is a classical primary subsemimodule of R_1 -semimodule M_1 and $a_1b_1m \in N_1$, we have $a_1m \in N_1$ or $b_1^nn \in N_1$, for some positive integer n. Therefore

$$(a_1, a_2)(m, n) = (a_1 m, a_2 n) \in N_1 \times M_2$$

or
 $(b_1, b_2)^n (m, n) = (b_1^n m, b_2^n n) \in N_1 \times M_2.$

Hence $N_1 \times M_2$ is a classical primary subsemimodule of R-semimodule M.

Corollary 3.2. Let $M = M_1 \times M_2$, where M_i is an R_i -semimodule. A subsemimodule $M_1 \times N_2$ is a classical primary subsemimodule of R-semimodule M if and only if N_2 is a classical primary subsemimodule of R_2 -semimodule M_2 .

Proof. This follows from Lemma 3.1.

Corollary 3.3. Let $M = \prod_{i=1}^{n} M_i$, where M_i is an R_i -semimodule. A subsemimodule

$$M_1 \times M_2 \times ... \times M_{j-1} \times N_j \times M_{j+1} \times ... \times M_n$$

is a classical primary subsemimodule of R-semimodule M if and only if N_j is a classical primary subsemimodule of R_j -semimodule M_j .

Proof. This follows from Lemma 3.1 and Corollary 3.2.

Lemma 3.4. Let $M = M_1 \times M_2$, where M_i is an R_i -semimodule. If $N_1 \times \{n\}$ is a classical primary subsemimodule of M, then N_1 is a classical primary subsemimodule of M_1 .

Proof. Suppose that $N_1 \times \{n\}$ is a classical primary subsemimodule of R-semimodule M. We will show that N_1 is a classical primary subsemimodule of M_1 . Clearly, N_1 is a proper subsemimodule of R_1 -semimodule M_1 . To show that classical primary subsemimodule properties of N_1 hold, let $m \in M_1$ and $a,b \in R_1$ such that $abm \in N_1$. Then

$$(a,1)(b,1)(m,n) = (abm,n) \in N_1 \times \{n\}.$$

Since $N_1 \times M_2$ is a classical primary subsemimodule of R -semimodule M, it follows that

$$(am, n) = (a, 1)(m, n) \in N_1 \times \{n\}.$$
or
 $(b^n m, n) = (b, 1)^n (m, n) \in N_1 \times \{n\}.$

for some positive integer n. That is, $am \in N_1$ or $b^n m \in N_1$. Therefore N_1 is a classical primary subsemimodule of R_1 -semimodule M_1 .

Corollary 3.5. Let $M = M_1 \times M_2$, where M_i is an R_i -semimodule. If $\{n\} \times N_2$ is a classical primary subsemimodule of R-semimodule M, then N_2 is a classical primary subsemimodule of R_2 -semimodule M_2 . **Proof.** This follows from Lemma 3.4.

Corollary 3.6. Let $M = \prod_{i=1}^{n} M_i$, where M_i is an R_i -senimodule. If $\{m_1\} \times \{m_2\} \times \ldots \times N_j \times \ldots \times \{m_n\}$ is a classical primary subsemimodule of R-semimodule M, then N_j is a classical primary subsemimodule of R_j -semimodule M_j .

Proof. This follows from Lemma 3.4 and Corollary 3.5.

4. RADICAL OF CLASSICAL PRIMARY SUBSEMIMODULES

A subsemimodule N of an R-semimodule M is said to satisfy the classical primary radical formula in M, if $\langle E_M(N) \rangle = \text{c.prad}_M(N)$.

Lemma 4.1. Let $M=M_1\times M_2$, where M_i is an R_i -semimodule. If W is a classical primary subsemimodule of R-semimodule M and $P=\{x\in M_1:(x,y)\in W\}$, then $P=M_1$ or P is a classical primary subsemimodule of R_1 -semimodule M_1 .

Proof. Suppose that $P \neq M_1$. We will show that P is a classical primary subsemimodule of R_1 -semimodule M_1 . It is clear that, P is a proper subsemimodule of R_1 -semimodule M_1 . To show that classical primary subsemimodule properties of P, let $a,b \in R_1$ and $m \in M_1$ such that $abm \in P$. Then $(a,1)(b,1)(m,y) = (abm,y) \in W$. Since W is a classical primary subsemimodule of M, we have

$$(am, 1) = (a, 1)(m, y) \in W$$

or
 $(b^n m, y) = (b, 1)^n (m, y) \in W$,

for some positive integer n. It follows that $am \in P$ or $b^n m \in P$. Therefore P is a classical primary subsemimodule of M_1 .

Corollary 4.2. Let $M = M_1 \times M_2$, where M_i is an R_i -semimodule. If W is a classical primary subsemimodule of R-semimodule M and $P = \{x \in M_2 : (0, x) \in W\}$, then $P = M_2$ or P is a classical primary subsemimodule of R_2 -semimodule M_2 .

Proof. This follows from Lemma 4.1.

Corollary 4.3. Let $M = \prod_{i=1}^n M_i$, where M_i is an R_i -semimodule. If W is a classical primary subsemimodule of R-semimodule M and $P = \{x \in M_j : (m_1, m_2, ..., x, m_{j+1}, ..., m_n) \in W\}$, then $P = M_j$ or P is a classical primary subsemimodule of R_j -semimodule M_j .

Proof. This follows from Lemma 4.1 and Corollary 4.2.

Lemma 4.4. Let $M = M_1 \times M_2$, where M_i is an R_i -semimodule and let N be a subsemimodule of R_1 -semimodule M_1 . Then $m \in c.prad_{M_1}(N)$ if and only if $(m, y) \in c.prad_{M_1}(N \times \{y\})$.

Proof. Suppose that $M = M_1 \times M_2$, where M_i is an R_i -semimodule. Let N be a subsemimodule of R_1 -semimodule M_1 and let $m \in c.prad_{M_1}(N)$.

If there is no classical primary subsemimodule of M containing $N \times \{y\}$, then $c.prad_{M}(N \times \{y\}) = M$. Therefore $(m, y) \in c.prad_{M}(N \times \{y\})$.

If there is classical primary subsemimodule of M containing $N \times \{y\}$, then there exists a classical primary subsemimodule W with $N \times \{y\} \subseteq W$. By Lemma 4.1 and $P = \{x \in M_1 : (x,y) \in W\}$, we have $P = M_1$ or P is a classical primary subsemimodule of R_1 -semimodule M_1 .

Case 1: $P = M_1$. Since $m \in c.prad_{M_1}(N)$, we have $m \in P$. Then $(m, y) \in W$. Therefore if W is a classical primary subsemimodule of M containing $N \times \{y\}$, then $(m, y) \in W$.

Case 2: $P \neq M_1$. Since $P \neq M_1$, we have P is a classical primary subsemimodule of R_1 -semimodule M_1 . Let $x \in N$. Then $(x, y) \in N \times \{y\}$ so that $x \in P$. It follows that $N \subseteq P$. We have

$$c.rad_{M_1}(N) \subseteq c.rad_{M_1}(P)$$

= P

so that $m \in P$. Therefore if W is a classical primary subsemimodule of M containing $N \times \{y\}$, then $(m, y) \in W$ and hence $(m, y) \in c.prad_{M_1}(N \times \{y\})$.

Corollary 4.5. Let $M = M_1 \times M_2$, where M_i is an R_i -semimodule and let N be a subsemimodule of R_2 -semimodule M_2 . Then $m \in c.prad_{M_2}(N)$ if and only if $(x,m) \in c.prad_{M}(\{x\} \times N)$.

Proof. This follows from Lemma 4.4.

Corollary 4.6 Let $M = \prod_{i=1}^{n} M_i$, where M_i is an R_i -semimodule and let N be a subsemimodule of R_j -semimodule M_i . Then $m \in c.prad_{M_i}(N)$ if and only if

$$(x_1,...,m,x_{j+1},...,x_n) \in c.prad_M(\{x_1\} \times \{x_2\} \times ... \times N \times \{x_{j+1}\} \times ... \times \{x_n\}).$$

Proof. This follows from Lemma 4.4 and Corollary 4.5.

Lemma 4.7. Let $M = M_1 \times M_2$, where M_i is an R_i -semimodule. If N_i be a subsemimodule of R_i -semimodule M_i , then $c.prad_{M_1}(N_1) \times c.prad_{M_2}(N_2) \subseteq c.prad_{M_1}(N_1 \times N_2)$.

Proof. Suppose that $M = M_1 \times M_2$, where M_i is an R_i -semimodule. Let N_1 be a subsemimodule of R_1 -semimodule M_1 . We will show that $c.prad_{M_1}(N_1) \times .cprad_{M_2}(N_2) \subseteq c.prad_{M_1}(N_1 \times N_2)$. Let

$$(x, y) \in c.prad_{M_1}(N_1) \times c.prad_{M_2}(M_2).$$

Then $x \in c.prad_{M_1}(N_1)$ and $y \in c.prad_{M_2}(N_1)$. By Lemma 4.1 and Lemma 4.4, we have

$$(x,0) \in c.prad_{\scriptscriptstyle M}(N_1 \times \{0\}) \subseteq c.prad_{\scriptscriptstyle M}(N_1 \times N_2)$$

and

$$(0, y) \in c.prad_{M}(\{0\} \times N_{2}) \subseteq c.prad_{M}(N_{1} \times N_{2}).$$

Then $(x, y) = (x, 0) + (0, y) \in c.prad_{M}(N_{1} \times N_{2})$ and hence

$$c.prad_{\mathit{M}_{1}}(N_{1}) \times c.prad_{\mathit{M}_{2}}(N_{2}) \subseteq c.prad_{\mathit{M}}(N_{1} \times N_{2}).$$

Corollary 4.8. Let $M = \prod_{i=1}^{n} M_i$, where M_i is an R_i -semimodule. If N_i be a subsemimodule of R_i -semimodule M_i ,

then
$$\prod_{i=1}^{n} c.prad_{M_i}(N_i) \subseteq c.prad_{M_i}(\prod_{i=1}^{n} N_i)$$
.

Proof. This follows from Lemma 4.7

Theorem 4.9. Let $M = M_1 \times M_2$, where M_i is an R_i -semimodule. If N is a subsemimodule of R_1 -semimodule M_1 , then $c.prad_{M_1}(N_1) \times c.prad_{M_2}(M_2) = c.prad_{M_1}(N_1 \times M_2)$.

Proof. Suppose that $M = M_1 \times M_2$, where M_i is an R_i -semimodule. Let N be a subsemimodule of R_1 -semimodule M_1 . By Lemma 4.7, we have $c.prad_{M_1}(N) \times c.prad_{M_2}(M_2) \subseteq c.prad_{M_1}(N \times M_2)$. We will show that $c.prad_{M_1}(N_1 \times M_2) \subseteq c.prad_{M_1}(N_1) \times c.prad_{M_2}(M_2)$. If there is no classical primary subsemimodule of M containing N, then $c.prad_{M_1}(N) = M_1$. Then

$$c.prad_{M}(N_1 \times M_2) \subseteq c.prad_{M_1}(N_1) \times c.prad_{M_2}(M_2).$$

If there is classical primary subsemimodule of M containing N, then there exists W is a classical primary subsemimodule of M_1 containing N. Then $W \times M_2$ is a classical primary subsemimodule of M, containing $N \times M_2$. Let P be a classical primary subsemimodule of M containing $N \times M_2$. Then

$$N \times M_2$$
 $\subseteq c.prad_{M_1}(N) \times M_2$
= $c.prad_{M_1}(N) \times c.prad_{M_2}(M_2)$.

Therefore $c.prad_{M}(N_{1}\times M_{2})\subseteq c.prad_{M_{1}}(N_{1})\times c.prad_{M_{2}}(M_{2})$ and hence

$$c.prad_{M}(N_{1}\times M_{2}) = c.prad_{M_{1}}(N_{1})\times c.prad_{M_{2}}(M_{2}).$$

Corollary 4.10. Let $M = M_1 \times M_2$, where M_i is an R_i -semimodule. If N is a subsemimodule of R_2 -semimodule M_2 , then $c.prad_M(M_2 \times N) = c.prad_M(M_2) \times c.prad_{M_2}(N)$.

Proof. This follows from Lemma 4.9.

Corollary 4.11. Let $M = \prod_{i=1}^{n} M_i$, where M_i is an R_i -semimodule. If N_i be a subsemimodule of R_i -semimodule

$$M_i$$
, then $\prod_{i=1}^n c.prad_{M_i}(N_i) = c.prad_{M_i}(\prod_{i=1}^n N_i)$.

Proof. This follows from Lemma 4.9 and Corollary 4.10

Theorem 4.12. Let $M = M_1 \times M_2$, where M_i is an R_i -semimodule. If N_1 is a classical primary subsemimodule of M_1 , then N_1 is to satisfy the classical primary radical formula in M_1 if and only if $N_1 \times M_2$ is to satisfy the classical primary radical formula in M.

Proof. Suppose that N_1 is a classical primary subsemimodule of M_1 and N_1 is to satisfy the classical primary radical formula in M_1 . We will show that $N_1 \times M_2$ is to satisfy the classical primary radical formula in M. Since N_1 is a classical primary subsemimodule of M_1 , it follows that

$$c.prad_{M}(N_{1} \times M_{2}) = c.prad_{M_{1}}(N_{1}) \times c.prad_{M_{2}}(M_{2})$$
$$= \langle E_{M_{1}}(N_{1}) \rangle \times M_{2}$$
$$= \langle E_{M}(N_{1} \times M_{2}) \rangle.$$

Therefore $N_1 \times M_2$ is to satisfy the classical primary radical formula in M. Conversely, suppose that N_1 is a classical primary subsemimodule of M_1 and $N_1 \times M_2$ is to satisfy the classical primary radical formula in M. We will show that N_1 is to satisfy the classical primary radical formula in M_1 . Since $N_1 \times M_2$ is a classical primary subsemimodule of M, it follows that

$$\langle E_{M_1}(N_1) \rangle \times M_2 = \langle E_M(N_1 \times M_2) \rangle$$

= $c.prad_{M_1}(N_1) \times c.prad_{M_2}(M_2).$

Then $c.prad_{M_1}(N_1) = \langle E_{M_1}(N_1) \rangle$ and hence N_1 is to satisfy the classical primary radical formula in M_1 .

Corollary 4.13. Let $M = \prod_{i=1}^{n} M_i$, where M_i is an R_i -semimodule. If N_j is a classical primary subsemimodule of

 M_i , then N_i is to satisfy the classical primary radical formula in M_i if and only if

$$M_1 \times M_2 \times ... \times M_{i-1} \times N_i \times M_{i+1} \times ... \times M_n$$

is to satisfy the classical primary radical formula in M.

Proof. This follows from Theorem 4.12.

ACKNOWLEDGEMENT

The authors are very grateful to the anonymous referee for stimulating comments and improving presentation of the paper.

REFERENCES

- [1] Atani R. E., "Prime subsemimodules of semimodules", International Journal of Algebra, vol. 4, no. 26, pp. 1299-1306, 2010.
- [2] Atani S. E. and Darani A. Y., "On quasi-primary submodules", Chiang Mai J. Sci., vol. 33, no. 3, pp. 249-254, 2006.
- [3] Baziar M. and Behboodi M., "Classical primary submodules and decomposition theory of modules", J. Algebra Appl., vol. 8, no. 3, pp. 351-362, 2009.
- [4] Behboodi M., Jahani-nezhad R. and Naderi M. H., "Classical quasi-primary submodules", Bulletin of the Iranian Mathematical Society, vol. 37, no. 4, pp. 51-71, 2011.
- [5] Dubey M. K. and Sarohe P. "On 2-absorbing semimodules", Quasigroups and Related Systems, vol. 21, pp. 175 184, 2013.
- [6] Ebrahimi Atani, R., "Prime subsemimodules of semimodules", Int. J.of Algebra, vol. 4, no. 26, pp. 1299 1306, 2010.
- [7] Ebrahimi Atani R. and Ebrahimi Atani S., "On subsemimodules of semimodules", Buletinul Academiei De Stiinte, vol. 2, no. 63, pp. 20 30, 2010.
- [8]. Ebrahimi Atani S. and Esmaeili Khalil Saraei F., "Modules which satisfy the radical formula", Int. J. Contemp. Math. Sci., vol. 2, no. 1, pp. 13 18, 2007.
- [9] Ebrahimi Atani S. and Shajari Kohan M., "A note on finitely generated multiplication semimodules over comutative semirings", International Journal of Algebra, vol. 4, no. 8, pp. 389-396, 2010.
- [10] Fuchs L., "On quasi-primary ideals", Acta Univ. Szeged. Sect. Sci. Math., vol. 11, pp. 174-183, 1947.

- [11] McCasland R. L. and Moore M. E., "On radicals of submodules", Comm. Algebra, vol. 19, no. 5, pp. 1327–1341, 1991.
- [12] Pusat-Yilmaz D. and Smith P. F., "Modules which satisfy the radical formula, Acta Math. Hungar, vol. 95, no. (1-2), pp. 155–167, 2002.
- [13] Saffar Ardabili J., Motmaen S. and Yousefian Darani A., "The spectrum of classical prime subsemimodules", Australian Journal of Basic and Applied Sciences, vol. 5, no. 11, pp. 1824-1830, 2011.
- [14] Sharif H., Sharifi Y.and Namazi S., "Rings satisfying the radical formula", Acta Math. Hungar, vol. 71, no. (1-2), pp. 103-108, 1996.
- [15] Srinivasa Reddy M., Amarendra Babu V. and Srinivasa Rao P. V., "Weakly primary subsemimodules of partial semimodules", International Journal of Mathematics and Computer Applications Research (IJMCAR), vol. 3, pp. 45-56, 2013.
- [16] Tavallaee H.A. and Zolfaghari M., "Some remarks on weakly prime and weakly semiprime submodules", Journal of Advanced Research in Pure Math., vol. 4, no. 1, pp. 19 30, 2012.
- [17] Tavallaee H.A. and Zolfaghari M., "On semiprime submodules and related results", J. Indones. Math. Soc., vol. 19, no. 1, pp. 49-59, 2013.
- [18] Yesilot G., Oral K. H. and Tekir U., "On prime subsemimodules of semimodules", International Journal of Algebra., vol. 4, no. 1, pp. 53-60, 2010.