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_________________________________________________________________________________ 

ABSTRACT— In this paper, we present A new variant of the Differential Evolution algorithm. Our proposed 

algorithm called Based cost Differential Evolution (Bc-DE), generated the mutant vector by adding a weighted 

difference of two cost function multiplied by a vector selected randomly to the best individual vector. The performance 

of the Bc-DE algorithm is broadly evaluated on several bound-constrained nonlinear and non-differentiable 

continuous numerical optimization problems and compares with the conventional DE and several others DE variants. 

It is demonstrated that the new method converges faster and with more certainty than many other acclaimed global 

optimization methods.  
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1. INTRODUCTION 

    Inspired from genetic algorithms, Differential Evolution algorithm (DE) is a powerful set of global search techniques, 

evolves a population of potential solutions (individuals) in order to increase the convergence to optimal solutions and 

employs heuristics to allow escaping from local minima in order to produce good results on a wide class of problems in 

reasonable time [1,2]. DE successfully applied for solving numerical benchmark and complex engineering optimization 

problems [3-6]. Indeed, these problems usually appear with objective functions being non-convex, non-linear, multi-

dimensional or including many hard constraints.  

DE proposed by Storn and Price [7], it has successfully been applied to many real and artificial optimization problems 

such as nonlinear system identification, aerodynamic optimization [8], automatic image pixel clustering [5], and many 

others problems. A DE based neural network-training algorithm was first introduced in [9].In addition, DE is an 

algorithm population based which use crossover operators, mutation and selection that similar genetic algorithm. In 

establishing best solutions, the major difference is that the genetic algorithms exploit enormously the crossover operator 

for the exploitation phase while DE algorithm exploits the mutation concept via the differential operator.  

    The DE algorithm works as follows: A population of solutions (vectors) is dynamically controlled by addition, 

subtraction, and component swapping, until the population converges to the optimum solution. Many researchers have 

recommended many empirical rule for choosing trial vector generation strategies and their associated control parameters. 

Storn and Price [10] proposed that a practical value for should be between 5D  and10D , and an excellent initial choice 

of F was 0.5. The successful range of values was recommended between 0.4 and 1.  The pre-specified crossover rate 

CR  has a role important in the speed of convergence .The first reasonable attempt of choosing CR value can be 0.1. 

However, if the problem is near unimodal or fast convergence is desired, the value of 0.9 for CR  may also be an 

excellent initial choice. The values of F  or NP can be increased, if the population converges too early. Price suggested 

in [11] to apply the trial vector generation strategy DE/current-to-rand/1 and parameter 

setting 20NP D , 0.5CR  , 0.8F  .For DE converges prematurely, the value of NP and F must be increased or the 

value of CR  should be reduced. If we increase the value of F or NP  or CR  is chosen randomly in the interval  0 1 , the 

population stagnated. The DE/rand/1/bin strategy along with a small CR  value is also applied. Gämperle et al. [12] 

proposed different parameter settings for DE on Rastrigin, Sphere and Rosenbrock functions. Based on their 

experimental results, they interpreted that the convergence speed and the searching capability are very sensitive to the 

choice of control parameters ,  NP F and CR . They suggested that the population size NP  be between 3D  and 8D , the 

crossover rate CR  be between  0.3, 0.9  and the scaling factor F  equal 0.6. 
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Moreover, There are several conflicting interpretations in the DE literature, which were established with regard to the 

rules for manually selecting the strategy and control settings to solve scientific and engineering problems. Indeed, 

researchers and engineers are not well justified there interpretations, therefore their validity is possibly restricted to the 

problems, strategies, and parameter values considered in the studies. 

Many researchers have proposed several techniques to avoid manual choosing of the strategy and control settings 

such as fuzzy conventional DE [14] , adaptive differential evolution (FADE) [15] ,  adaptation for DE (ADE) [16], self-

adapted DE for multi-objective optimization problems [17], differential evolution with self adapting populations 

(DESAP) [18],  self-adapted DE (SDE)[17], (jDE) [19],  Self-adaptative DE (SaDE) [20] …etc. The fuzzy adaptive 

differential evolution (FADE) algorithm was introduced by Liu and Lampinen using fuzzy logic controllers whose inputs 

integrate the relative function values and individuals of successive generations to adapt the parameters for the mutation 

and crossover operations [14]. So, there experimental results applied on test functions showed that the FADE algorithm 

more efficient than the conventional DE on superior dimensional problems. Zaharie and Petcu considered an adaptive 

Pareto DE algorithm for multi-objective optimization and analysed its parallel implementation [21]. In [17], Abbass 

implemented DE for multi-objective optimization problems by self-adapting the crossover rate. In recent times, the self-

adaptive neighbourhood search DE algorithm was adopted into a novel cooperative co-evolution gateway [26]. In 

addition, researchers enhanced the performance of DE; they implemented local search [27] or opposition-based learning 

[28]. Likewise, several researchers concentrated on the adaptation of the control parameters F and CR . 

In this work, we developed a novel approach namely Based Cost Differential Evolution Bc-DE for solving 

optimization problems taking in consideration the Based cost Differential Evolution (DE) Algorithm and the multi-

objective optimisation problem. 

The main concept of Bc-DE is to generate trial parameter vectors by adding the best individual vector a weighted 

difference of the two relative performances objectives functions of two vectors and multiplied by a randomly selected 

vector. 

This article is organized as follows: The multi-objective optimization is developed in section 2.  In section3, we present a 

set of test functions used to solve multi-objective optimization problems in various difficult situations. The proposed 

algorithm is developed in section 4. In section5, the effectiveness of our approach is tested on a set of test functions and a 

comparative study with the Multi-objective Evolutionary Algorithms based on Pareto elitist existing namely NSGA-II 

and SPEA2 is presented. Finally, some conclusions are given in section 6. 

 

2. THE DIFFERENTIAL EVOLUTION CONCEPT  

Differential Evolution DE is a simple stochastic optimization algorithm and evolves a population of potential solutions 

(individuals) in order to increase the convergence to optimal solutions. DE is a global search algorithm employ heuristics 

to allow escaping from local minima. The main concept of DE is generating trial parameter vectors by adding a weighted 

difference of two parameters to a third one. This process is the appropriate genetic mutation operator of evolutionary 

algorithms. Output vectors are combined with another vector (called the target vector). This operation is called crossover. 

The result of crossover is a new vector, called the trial vector. The trial vector is accepted as an individual in the new 

generation if its fitness function value is less than the target vector fitness function value. It evolves generation by 

generation until the termination conditions would be met [42]. The main difference between genetic algorithm and DE 

algorithm is the mutation and recombination phase. In the Genetic Algorithms and Evolutionary Strategies the 

perturbation of the population occurs in accordance with a random quantity. Alternatively, the Differential Evolution 

algorithm uses the weighted differences between solution vectors to perturb the population. 

Several variants of DE algorithm and the convention used for the description is DE/α/β/[43]. Where: 

-α: represents the vector to be perturbed (Rand: random vector, Best: Best vector), 

-β: represents the number of difference vectors considered for perturbation, 

-: represents the type of recombination operator (exp: exponential; bin: binomial). 

Table I summarizes the most commonly used schemes for differential evolutionary algorithms. 

TABLE 1 .DIFFERENTIAL EVOLUTION (DE) STRATEGIES 

Variant Name DE recombination operator  

DE/Rand/1/Bin  
t t t t

i r3 r1 r2v x F(x - x )   

DE/Best/1/Bin  t t t t

i Best r1 r2v x F(x x )    

DE/Rand/2/Bin  
t t t t t t

i r5 r1 r2 r3 r4v x F(x x x x )    

 

DE/Best/2/Bin  
t t t t t t

i Best r1 r2 r3 r4v x F(x x x x )    

 

DE/RandToBest/1/Bin  
t t t t t t

i r3 Best r3 r1 r2v x F(x x x x )    
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1 2 3 4,  , ,r r r r  and 5r are mutually distinct integers and also different from the running index, i, randomly selected with 

uniform distribution from the set  1,2,3, , 1, 1,i i NP  and NP  represents the population size. 

In the conventional DE algorithm, three control parameters NP , CR and F are fixed during the optimization process. In 

effect, there is a darkness of how to find reasonable differential operator reflecting rational values for given differential 

values between the sources of the mutation vectors. Another important design decision of the DE algorithm is the choice 

criterion of the selection strategies which is efficient and fast. 

In our case we propose a new variant of Differential Evolution Algorithm named Based Cost Differential Evolution 

Algorithm. 

There are four processes in the Based cost Differential Evolution algorithme (Bc-DE) which are: 

- initialization 
All parameter vectors in a population are randomly initialized and evaluated using the fitness function. The initial 

-NP D dimensional vectors are chosen randomly and should cover the entire parameter space 0
ix ; where   1,  2...  i NP  

and  NP  is size of population vectors,  D  is the number of decision variables. 

- Mutation operator 

DE generates new vectors by adding the difference between two vectors to a third one. The mutant vector is generated 

according to: 

           
, 1 , , , ,.( ).new G Best G Best G r G r GV X F P P X                           

              Where:   ,

, ,

,

( )

( ) ( )

Best G

Best G r G

Best G

f X
P

f X f X




             
,

, ,

,

( )

( ) ( )

r G

Best G r G

r G

f X
P

f X f X




   

                      
,( )Best Gf X : objective function of ,Best GX  

                    
,( )r Gf X : objective function of ,r GX           

Where v
t
i  is a mutant vector; ,r GX  vector different to ,Best GX  ,  F is a real and constant factor which controls the 

amplification of the perturbation  vector ,r GX  (practically; 0 2F  ).  

- Crossover operator 

Considering the each best vector 
t

xBest  in the current population, a trial vector t
iu  is generated by crossing the best 

vector with the corresponding mutant vector v
t
i  under a pre-specified crossover rate  [0 1]CR  . The mutated vector’s 

elements are then mixed with the elements of the predetermined Best vector to yield the so-called trial vector.  Moreover, 

choosing a set of crossover points, like crossover operator in genetic algorithms or evolution strategies, the crossover is 

introduced to increase the diversity of the perturbed parameter vectors. 

    The trial vector is formulated by:    

 if (Jrand(j) CR) or j=Rnbr(i)

Otherwise

 1, 2,...,

        

     

       

t
it

i t
Best

j D

v
u

x






 


               (2)     

Where Jrand(j) is the j
th

 evaluation of a uniform random number generator with outcome  0,1 , CR  is the crossover 

constant  0,1 , Rnbr(i) is randomly chosen index from1 to D , where D represents the number of dimension.  

- DE selection 

If the trial vector t
iu  has equal or better fitness function value than that of its corresponding best vector

t
xBest , it replaces 

the Best vector. Otherwise, the Best vector remains in the next iteration. 

- The Differential Evolution algorithm 

3. PROBLEMS TESTS 

To validate a multi-objective optimization algorithm, it should be applied on a set of test functions. These functions 

are chosen to implement efficient methods studied in various difficult situations. These testing functions must be chosen 

such that: 
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1. They represent a particular threat to the convergence or for diversity; 

2. The arrangement and shape of the Pareto surface are known and the values of variables corresponding decisions 

are easy to find. 

We will use the test functions of Deb [11]. Each function has M objectives with M ≥ 2 and x is the vector of 

decision variables. 

                            1 2 = ,  , ,  .Mx x x x                          (4) 

We partition the vector of decision variables into M groups. 

Whether
Mf  a constructed function of a positive function g  and a function h  to M variables 

.                      1 1 1 1   ,  . . . ,  ,  M M M M Mf x g x h f x f x g x  �             (5) 

Where  m

mx R  for   1, ,    1m M  . 

Therefore, the optimization problem is defined by:                                          

                     1,..., 1 ( ) ,  m m m M Mminimize f x f x 
                  (6) 

When the function g  reaches its minimum, the optimal surface corresponds to these solutions is given as 

            
1 1 .  ( ,  . . . ,  ,  )M Mf g h f f g                           (7)          

From the function h that depends on M variables, we can define the shape of the surface of Pareto, this means that 

when the function h  is multimodal then the optimal surface will be discontinuous when the function h  is non-convex, 

and then the optimal surface is non-convex. 

Hence, the function h has a very important role on the diversity of solutions. Thus the function g is used to 

construct the search space and is used to prevent convergence. If the function mf for  1, ,  -1m M  , is non-linear, a 

variable density solutions will be found. 

In what follows, we present five bi-objective tests that we use to validate our proposed approach. Our choice was 

fixed on these tests because they served as a common basis for the comparison of existing Evolutionary Algorithms for 

Multi-objective and the evaluation of new techniques. They are based on a generic form: 

            1 1

2 1

( , , )

( , , ) ( , )

M

M N

min f f x x

min f g x x h f g





              (8)                      

They allow for all kinds of difficulty: 

- Convex Surface 

- non-convex surface 

- discontinuous surface 

- non-uniform distribution 

 

4. MO-Bc-DE  ALGORITHM 

Basically, Differential Evolution algorithm has been applied successfully to a wide range of single optimization problems 

[33]. Hence, several researchers have tried to extend it to handle MOPs. In single-objective optimization, the decision is 

easy and  the candidate replaces the old vector solution only when the candidate is better than the new trial vector. In the 

case of multi-objectives programmation, the decision is not so straightforward due to the variety of optimal solutions, and 

the selection procedure has to be modified in order to search a cmpromises between several objective values. Our goal for 

the application of MO-Bc-DE will meet the following objectives: 

  1) Find solutions as close as possible to Pareto-optimal solutions, converging as possible to the front Pareto. 

  2) Accelerating and improving the population towards the Pareto Front. 

  3) Make the algorithm to find better solutions. 

The computational procedure of MO-Bc-DE algorithm can be summarized as follows: 

 

STEP 1 
- Initialization of parameters: F amplification factor, the number of the population, the probability of crossover CR, the 

maximum number of Gmax generation. 

- Initialization of the population. The initial population may be generated using a uniform distribution of random 

numbers.
       

                  
 1, , , ,      G G NP GPop X X    

max 0  G G
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 , 1 , ,  , ,    

T

l G l G Dl GX x x   1 .   l NP
 

- Initialization of all Pareto to an empty set. 

STEP 2 
- Calculate separately the values of the objective functions 

STEP 3 
Classify populations using Pareto ranking criteria. The first non-dominant front is usually assigned a rank equal to 1. 

Similarly, the second non-dominant edge has a rank equal to 2 and so on. Solutions with a lower rank are the best 

candidates to be selected for the next generation. 

 

STEP 4.Select a random number (1,.., )r NP  and select ,r GX  

• Mutation: Generate mutant vector 

                , 1 , ,  , ,    l G l G Dl GV v v   for each vector 
,l GX  

           
, 1 , , , ,.( ).new G Best G Best G r G r GV X F P P X                           

              Where:   ,

, ,

,

( )

( ) ( )

Best G

Best G r G

Best G

f X
P

f X f X




             
,

, ,

,

( )

( ) ( )

r G

Best G r G

r G

f X
P

f X f X




   

                      
,( )Best Gf X : objective function of ,Best GX  

                    
,( )r Gf X : objective function of ,r GX  

STEP5. Crossover: Generate the test vector 
, 1 1 , 1 2 , 1 , 1( , , , )l G l G l G Dl GT t t t    for each vector

,l GX  

                   


, 1

, 1

,

    if  [0,1)
; 1, , }

      if  [0,1)

kl G k

kl G

kl G k

v rand CR
t k D

x rand CR






 



 

STEP 6. The selection operation allows individuals to choose to keep the new generation (G+1). 

The function f must be minimized;   the vector with the lowest value of f earns a place in the population of the next 

generation. 

 

Replace the vector of the old population by the best vector of the total population. The solutions in the lower edges are 

initially selected row to replace the initial population. 

STEP7. 

- Update the archive with Pareto non-dominated. 

- Reduce the size of the archive if necessary. 

- Evaluate the solutions obtained for the different objectives. 

STEP8. 

- View the optimal parameter values 

- These steps are repeated until the stopping criteria are met (If the maximum number of generations is 

reached (G = Gmax). 

 

5.  EXPERIMENTAL RESULTS 
 

In this section, we validate our contribution by the application of certain test functions used in the literature and 

were used for the evaluation of new techniques. To prove the efficiency of the Mo-Bc-DE algorithm , we performed a 

comparative study with the Multi-objective Evolutionary Algorithms based on Pareto elitist existing namely NSGA-II 

[10] and SPEA2 [7]. 

Our goal for the application of Mo-Bc-DE will meet the following objectives: 

 1) Find solutions as close as possible to Pareto-optimal solutions, converging as possible to the front Pareto. 

 2) Accelerating and improving the population towards the Pareto Front. 

 3) Make the algorithm to find better solutions. 

We will use in what follows, the test functions of Deb [11]. Each function has M objectives, with M ≥ 2 and is x 

the vector of the decision variables 
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ZDT1 

The first of this set of tests is the simplest corresponding Pareto front is continuous, convex and uniform 

distribution of solutions along the front. 

 

1 1

2

2

1

( )

9
1 ( ) 1

1

( ) 1 /

N

i

i

f x x

ZDT g x x
N

h x f g



 



  


  

         (9) 

Where 0,1ix     and for all   1, ,i N  ,  N = 30.  

ZDT2 

The difficulty of this problem is present in the non-convex Pareto front 

1 1

2

2

2

1

( )

9
2 : ( ) 1

1

( ) 1 ( / )

N

i

i

f x x

ZDT g x x
N

h x f g



 



 


  

              (10) 

ZDT3 

The difficulty of this problem is that Pareto front is discontinuous. 

1 1

2 1

2

1 1 1

( )

9
( ) 1

1

( ) 1 / ( / )sin(10 )

3:
N

i

f x x

g x x
N

h x f g f g f

ZDT





 



 


   

              (11) 

ZDT4 

This test models the convergence difficulty to the global Pareto front in the presence of several local fronts due to 

the fact that the function g is multimodal. 

 

     

 

1 1

2

2

2

1

)

 

4 :   1  10 -1  ( 10 cos 4  

  1 /

N

i i

i

f x x

ZDT g x N x x

h x f g















  

 


   (12) 

ZDT6 

The particularity of this problem is that the best solutions are not uniformly distributed along 

the Pareto Front. This effect is due to non-linearity of the function 1
f  

   

   

 

6

1 1 1

1/4

2

2

2

1

)

  1  exp 4  sin (4 )

6 :   1  9( / N  1

  1  ( / )

N

i

i

f x x x

ZDT g x x

h x f g













  

  

 


      (13) 

In our algorithm Mo-Bc-DE, we use the following parameter values : 

- Population size = 100. 

- Number of generations = 1000 for ZDT1and ZDT4, 500 for ZDT2, ZTD5 and ZDT6. 

- The maximum number of iterations = 20. 

- Rate crossover = 0.9. 

- Mutation rate = 0.1. 

Configuration settings NSGA -II and SPEA2 is: 

- Population size = 100. 

- Chromosome: Binary encoding , 50 bits for each 
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variable 

- Operation Crossing: uniform crossover 

- Rate crossover = 0.9. 

- Mutation rate = 2/L, where L is the length of chromosome. 

The following tables summarize the results of the simulation respecting the two following performance indicators: 

 Generational distance (GD)[12] is defined as follows:                                                                        

                              

2

1

n

i

i

d

GD
n





                    (14) 

Where n is the number of non-dominated vectors found by the algorithm and 
i

d is the Euclidean distance between 

each of them and the nearest edge of the true Pareto member. 

 Spacing (SP): working on the surface of compromise [13] 

1 - The total length of the surface is measured compromise 

2 - Calculate the ideal spacing between two points 

3 - The sum of the differences between the ideal spacing and spacing between two points is calculated  

 

                    

2

1

1

1

1

,

( )

min

n

i

i

K
k k

i i j i i j

k

SP d d
n

d f f







 


 
  

 





                     (15) 

Where n is the number of vectors in the front Pareto found by the algorithm being evaluated, K is the number of 

objectives, d  is the average of all i
d .  

A value of  0SP  indicates that all non-dominated solutions founded are equidistant 

From these two tables, we see that the values of measurement Generational Distance (GD) and the values of spacing 

(SP) calculated for the different test functions using our new contribution Mo-Bc-DE are much lower relative to those 

calculated by NSGA-II and SPAE2. 

                                     Table.2 Measurement of the generational distance (GD) 

Algorithm  ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

SPAE2 1.95.10-3 2.23.10-3 2.39.10-3 0.779 0.0108 

NSGA-II 1.95.10-6 7.44.10-4 2.27.10-3 0.766 7.5.10-3 

Mo-Bc-DE 0.93.10-6 6.95.10-5 1.06.10-3 0.53 4.2.10-3 

                                                Table.2 Measurement of Spacing (SP) 

 Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

SPAE2 0.571 0.586 0.658 0.638 0.838 

NSGA-II 0.433 0.308 0.4844 0.481 0.618 

Mo-Bc-DE 0.295 0.158 0.456 0.506 0.701 

The Pareto fronts found by Mo-Bc-DE and NSGA-II SPAE2 for different test functions are shown in Figures1-5. 

Figure1 clearly shows that the algorithms Mo-Bc-DE and NSGA-II have a better convergence to the Pareto optimal 

front as SPAE2 for ZDT1. From Figure 4.15 it is clear that the solutions of Mo-Bc-DE have better distribution that 

NSGA-II and SPEA2 through the Pareto optimal front for problem ZDT2 which has a front non-convex Pareto 

optimal. The latter is due to the non-linearity of the function
1

f . 

Finally, the algorithm Mo-Bc-DE maintains a good distribution of solutions on the Pareto frontier for different 

problems and is able to converge better in all problems except ZDT4 where NSGA-II found a better convergence. 

Figure1 presents Pareto fronts founded by Mo-Bc-DE NSGA-II and SPAE2 for ZDT1. 
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Figure1 Pareto fronts                                                                      Figure 2 Pareto fronts  
 found by Mo-Bc-DE, NSGA-II and SPAE2 for ZDT1                   found by Mo-Bc-DE, NSGA-II and SPAE2 for ZDT2 
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Figure 3 Pareto fronts                                                                                 Figure 4 Pareto fronts found 

 found by Mo-Bc-DE, NSGA-II and SPAE2 for ZDT3                                by Mo-Bc-DE, NSGA-II and SPAE2 for ZDT4 
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                                                                  Figure5 Pareto fronts found by Mo-Bc-DE, NSGA-II and SPAE2 for ZDT6 

Experimental results based on well-known test functions show that our new approach Mo-Bc-DE is easy to 

implement and can produce better than the solutions founded by the two well-known NSGA-II and SPEA2 methods 

solutions. Our proposed approach generates a Pareto front that is closer to true Pareto front, this approach also 

produces non-dominated solutions are uniformly distributed. For ZDT6, which is a very difficult problem he gave 

solutions not uniformly distributed along the Pareto front. 
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6.  CONCLUSION 

In this paper, we present a novel algorithm namely Multi-objective Based Cost Differential Evolution Mo-Bc-DE 

for solving a  multi-objective optimization problem taking in consideration the Differential Evolution (DE) Algorithm. 

The main concept of our algorithm is to generate a new trial parameter vectors by adding the best individual vector a 

weighted difference of the two relatives performances objectives functions of two vectors and multiplied by a 

randomly selected vector. We validated our contribution by the application of certain test functions used in the 

literature and were used for the evaluation of new techniques. To prove the efficiency of the Mo-Bc-DE algorithm, we 

performed a comparative study with the Multi-objective Evolutionary Algorithms based on Pareto elitist existing 

namely NSGA-II and SPEA2. Experimental results show that our new approach Mo-Bc-DE is able to find solutions as 

close as possible to Pareto-optimal solutions, converging as possible to the front Pareto. 

  

. 
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