On Left Primary and Weakly Left Primary Ideals in LA-Rings

Pairote Yiarayong¹

¹Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanuloke 65000, Thailand *E-mail: pairote0027 {at} hotmail.com*

ABSTRACT— In this paper, we study left ideals, left primary and weakly left primary ideals in LA-rings. Some characterizations of left primary and weakly left primary ideals are obtained. Moreover, we investigate relationships left primary and weakly left primary ideals in LA-rings. Finally, we obtain necessary and sufficient conditions of a weakly left primary ideal to be a left primary ideals in LA-rings.

Keywords— LA-ring, left primary ideal, weakly left primary ideal, left (right) ideal.

1. INTRODUCTION

A groupoid S is called an Abel-Grassmann's groupoid, abbreviated as an AG-groupoid, if its elements satisfy the left invertive law [1, 2], that is: for all Several examples and interesting properties of AG-groupoids can be found in [3, 4, 5] and [6]. It has been shown in [3] that if an AG-groupoid contains a left identity then it is unique. It has been proved also that an AG-groupoid with right identity is a commutative monoid, that is, a semigroup with identity element. It is also known [2] that in an AG-groupoid, the medial law, that is,

$$(ab)(cd) = (ac)(bd)$$

for all $a,b,bc,d \in S$ holds. Now we define the concepts that we will used. Let S be an AG-groupoid. By an AG-subgroupoid of [8], we means a non-empty subset A of S such that $A^2 \subseteq A$. A non-empty subset A of an AG-groupoid S is called a left (right) ideal of [7] if $SA \subseteq A(AS \subseteq A)$. By two-sided ideal or simply ideal, we mean a non-empty subset of an AG-groupoid S which is both a left and a right ideal of S.

S.M. Yusuf in [20] introduces the concept of a left almost ring (LA-ring). That is, a non-empty set R with two binary operations "+" and "·" is called a left almost ring, if (R,+) is a LA-group, (R,\cdot) is a LA-semigroup and distributive laws of "·" over "+" holds. Further in [12] T. Shah and I. Rehman generalize the notions of commutative semigroup rings into LA-semigroup LA-rings. However T. Shah and Fazal ur Rehman in [12] generalize the notion of a LA-ring into a nLA-ring. A near left almost ring (nLA-ring) N is a LA-group under "+", a LA-semigroup under "·" and left distributive property of "·" over "+" holds.

T. Shah, Fazal ur Rehman and M. Raees asserted that a commutative ring $(R,+,\cdot)$, we can always obtain a LA-ring (R,\oplus,\cdot) by defining, for $a,b,c\in R,a\oplus b=b-a$ and $a\cdot b$ is same as in the ring. Furthermore, in this paper we characterize the left primary and weakly left primary ideals in LA-rings. Moreover, we investigate relationships left primary and weakly left primary ideals in LA-rings. Finally, we obtain necessary and sufficient conditions of a weakly left primary ideal to be a left primary ideals in LA-rings.

2. IDEALS IN LA-RINGS

The results of the following lemmas seem play an important role to study LA-ring; these facts will be used so frequently that normally we shall make no reference to this lemma.

Definition 2.1. [11] A non empty set R with two binary operations "+" and " \cdot " is called a left almost ring if and only if

- 1. (R, +) is a LA-group.
- 2. (R,\cdot) is a LA-semigroup.
- 3. Left distributive property of "+" and "·" holds.

Lemma 2.2. [14] Let $(R, +, \cdot)$ be a LA-ring, then for all $a, b, c \in R$

1.
$$0 \cdot a = 0 = a \cdot 0$$
.

$$2. a(-b) = -ab = (-a)b.$$

$$3. -(-a) = a.$$

$$4. \left(-a\right)\left(-b\right) = ab.$$

Lemma 2.3. Let R be a LA-ring with left identity e. Then RR = R and R = eR = Re.

Proof. Let R be a LA-ring with left identity e and let $r \in R$ then $r = er \in RR$, for all so that $R \subseteq RR$. Since R is a LA-ring, we have $RR \subseteq R$. Thus RR = R. Now as e is a left identity in R, ea = a, for all $a \in R$. Then R = eR. Since (ab)c = (cb)a, for all $a,b,c \in R$, we have (RR)e = (eR)R. Now,

$$Re = (RR)e = (eR)R = RR = R.$$

Hence R = eR = Re.

Definition 2.4. [11] A nonempty subset I of a LA-ring R is a subring of R if under the binary operations in R, form a LA-ring.

Definition 2.5. [11] A subring I of R is called a left (right) ideal of R if $RI \subseteq I(IR \subseteq I)$ and is called ideal if it is left as well as right ideal.

Lemma 2.6. If R is a LA-ring with left identity, then every right ideal is a left ideal.

Proof. Let R be a LA-ring with left identity and let A be a right ideal of R. Then for $a \in A, r \in R$ consider

$$ra = (er)a$$

$$= (ar)e$$

$$\in (AR)R$$

$$\subseteq AR$$

$$\subset A,$$

where e is a left identity, that is $ra \in A$. Therefore A is left ideal of R.

Lemma 2.7. If I is a left ideal of a LA-ring R with left identity, and if for any $a \in R$, then aI is a left ideal of R.

Proof. Let I be a left ideal of R, consider

$$s(ai) = (es)(ai)$$

$$= (ea)(si)$$

$$= a(si)$$

$$\in a(RI)$$

$$\subset aI$$

and $(ai) + (aj) = a(i + j) \in aI$. Hence aI is a left ideal of R.

Lemma 2.8. Let R be a LA-ring with left identity, and $a \in R$. Then Ra is a left ideal of R.

Proof. Let R be a LA-ring with left identity, and $a \in R$. Then

$$R(Ra) = (RR)(Ra)$$

$$= (aR)(RR)$$

$$= (aR)R$$

$$= (RR)a$$

$$= Ra$$

and $(ra) + (sa) = (r + s)a \in Ra$. Hence Ra is a left ideal of R.

Lemma 2.9. If I is an ideal of a LA-ring R with left identity, and if for any $a \in R$, then a^2I is an ideal of R.

Proof. By Lemma 2.7, we have a^2I is a left ideal of R. Now consider

$$(a^{2}r)s = ((aa)r)s$$

$$= ((ra)a)s$$

$$= [e((ra)a)]s$$

$$= [s((ra)a)]e$$

$$= [(ra)(sa)]e$$

$$= [((aa)s)r]e$$

$$= [((aa)s)r]e$$

$$= [(rs)(aa)]e$$

$$= [e(aa)](rs)$$

$$= (aa)(rs)$$

$$= a^{2}(rs) \in a^{2}I.$$

Hence a^2I is an ideal of R.

Lemma 2.10. Let R be a LA-ring with left identity, and $a \in R$. Then Ra^2 is an ideal of R.

Proof. Let R be a LA-ring with left identity, and $a \in R$. Now consider

$$Ra^{2} = (RR)a^{2}$$
$$= a^{2}(RR)$$
$$= a^{2}R.$$

By Lemma 2.9, we have Ra^2 is an ideal of R.

Lemma 2.11. Let R be a LA-ring with left identity, and let A, B be left ideals of R. Then (A:B) is a left ideal in R, where $(A:B) = \{r \in R : Br \subseteq A\}$.

Proof. Suppose that R is a LA-ring. Let $s \in R$ and let $a,b \in (A:B)$. Then $Ba \subseteq A$ and $Bb \subseteq A$ so that

$$B(a+b) = (Ba) + (Bb)$$

$$\subseteq A+A$$

$$= A$$

and

$$B(sa) = s(Ba)$$

$$= sA$$

$$= A.$$

Therefore $a+b \in (A:B)$ and $sa \in (A:B)$ so that $R(A:B) \subseteq (A:B)$. Hence (A:B) is a left ideal in R.

Corollary 2.12. Let R be a LA-ring with left identity, and let A be left ideals of R. Then (A:b) is a left ideal in R, where $(A:b) = \{r \in R : br \in A\}$.

Proof. This follows from Lemma 2.11.

Remark.1. Let R be a LA-ring and let A be a left ideal of R. It is easy to verify that $A \subseteq (A:r)$.

- 2. Let R be a LA-ring with left identity e, and let A be a proper left (right) ideal of R. By Corollary 2.12, we have $e \notin (A:r)$, where $r \in R-A$.
- 2. Let R be a LA-ring and let A,B,C be left ideals of R. It is easy to verify that $(A:C) \subseteq (A:B)$, where $B \subseteq C$.

3. LEFT PRIMARY AND WEAKLY LEFT PRIMARY IDEAL IN LA-RINGS

We start with the following theorem that gives a relation between left primary and weakly left primary ideal in Γ -LA-ring. Our starting points is the following definition:

Definition 3.1. A left ideal P is called left primary if $AB \subseteq P$ implies that $((AA)...A)A = A^n \subseteq P$ or $B \subseteq P$ for some positive integer n, where A, B is a left ideals of R.

Definition 3.2. A left ideal P is called weakly left primary if $0 \neq AB \subseteq P$ implies that $((AA)...A)A = A^n \subseteq P$ or $B \subseteq P$ for some positive integer n, where A, B is a left ideals of R.

Remark. It is easy to see that every left primary ideal is weakly left primary.

Lemma 3.3. If R is a LA-ring with left identity, then a left ideal P of R is left primary if and only if $ab \in P$ implies that $a^n \in P$ or $b \in P$ for some positive integer n, where $a, b \in R$.

Proof. Let P be a left ideal of LA-ring R with left identity. Now suppose that $ab \in P$. Then by Definition of left ideal, we get

$$(Ra)(Rb) = (RR)(ab)$$

$$= R(ab)$$

$$\subseteq RP$$

$$\subset P.$$

Then $a^n \in P$ or $b \in P$ for some positive integer n. Conversely, the proof is easy.

Corollary 3.4. If R is a LA-ring with left identity, then a left ideal P of R is weakly left primary if and only if $0 \neq ab \in P$ implies that $a^n \in P$ or $b \in P$ for some positive integer n, where $a, b \in R$. **Proof.** This follows from Lemma 3.3.

Let
$$R$$
 be a LA-ring and A be a subset of N . We write
$$\sqrt{A} = \left\{ a \in N : a^k \in A \text{ for some positive integer } k \right\}.$$

Theorem 3.5. Let R be a LA-ring, and let P be an ideal of R. If P is a weakly left primary ideal that is not let primary. Then $\sqrt{P} = \sqrt{0}$.

Proof. Let R be a LA-ring with identity. First, we prove that $P^2 = 0$. Suppose that $P^2 \neq 0$ we show that P is weakly left primary. Let $ab \in P$, where $a,b \in R$. If $ab \neq 0$, then either

$$a \in \sqrt{P}$$
 or $b \in P$

since P is weakly left primary ideal. So suppose that ab = 0. If $Pb \neq 0$, then there is an element p' of P such that $p'b \neq 0$, so that

$$0 \neq p'b = (p'+a)b \in P,$$

and hence P weakly left primary ideal gives either $p'+a\in \sqrt{P}$ or $b\in P$. As $p'+a\in \sqrt{P}$ and $p'\in P\subseteq \sqrt{P}$ we have either $a\in \sqrt{P}$ or $b\in P$. So we can assume that Pb=0. Similarly, we can assume that Pa=0. Since $P^2\neq 0$, there exist $c,d\in P$ such that $cd\neq 0$. Then

$$0 \neq (a + c)(b + d) \in P,$$

so either $a+c\in \sqrt{P}$ or $b+d\in P$, and hence either $a\in \sqrt{P}$ or $b\in P$. Thus P is left primary ideal. Clearly, $\sqrt{0}\subseteq \sqrt{P}$. As $P^2=0$, we get $\sqrt{P}\subseteq \sqrt{0}$, hence $\sqrt{P}=\sqrt{0}$, as required.

Corollary 3.6. Let R be a Γ -LA-ring, and let P an ideal of R. If $\sqrt{P} \neq \sqrt{0}$, then P is left primary if and only if P is weakly left primary.

Proof. This follows from Theorem 3.5.

Lemma 3.7. Let R be a LA-ring with identity, and let P be a proper ideal of R. If P is a weakly left primary ideal of R, then $(P:Ra) = P \cup (0:Ra)$, where $a \in R - \sqrt{P}$.

Proof. Let R be a LA-ring with identity, and let P be a weakly left primary ideal of R. Clearly,

$$P \cup (0:Ra) \subseteq (P:Ra).$$

For the other inclusion, suppose that $m \in (P:Ra)$, so that

$$(Ra)(Rm) = (mR)(aR)$$

$$= (ma)(RR)$$

$$= (ma)R$$

$$= (Ra)m$$

$$\subseteq P.$$

If $0 \neq (Ra)m$, then $m = em \in Rm \subseteq P$ since P is weakly left primary. If 0 = (Ra)m, then $m \in (0:Ra)$ so we have the equality.

Corollary 3.8. Let R be a LA-ring with identity, and let P be a proper ideal of R. If P is a weakly left primary ideal of R, then $(P:a) = P \cup (0:a)$, where $a \in R - \sqrt{P}$.

Proof. This follows from Lemma 3.7.

Corollary 3.9. Let R be a LA-ring with identity, and let P be a proper ideal of R. If $(P:Ra) = P \cup (0:Ra)$, then (P:Ra) = P or (P:Ra) = (0:Ra), where $a \in R - \sqrt{P}$. **Proof.** This follows from Lemma 3.7.

Theorem 3.10. Let R be a LA-ring with identity, and let P be a proper ideal of R. If (P:n) = P or (P:n) = (0:n), then P is a weakly left primary ideal of R, where $n \in R - \sqrt{P}$.

Proof. Let R be a LA-ring with identity, and let P be a proper ideal of R. Suppose that Let $0 \neq mn \in P$, where $m \in R - \sqrt{P}$. Then

$$m \in (P:n) = P \cup (0:n)$$

by Corollary 3.9 hence $m \in P$ since $mn \neq 0$, as required.

Lemma 3.11. Let $R = R_1 \times R_2$, where each R_i is a LA-ring with identity. Then the following hold:

(i) If A is a left ideal of
$$R_1$$
, then $\sqrt{A \times R_2} = \sqrt{A} \times R_2$.

(ii) If A is a left ideal of
$$R_2$$
, then $\sqrt{R_1 \times A} = R_1 \times \sqrt{A}$.

Proof. The proof is straightforward.

Theorem 3.12. Let $R = R_1 \times R_2$, where each R_i is a LA-ring with identity. If P is a weakly left primary (left primary) ideal of R_1 , then $P \times R_2$ is a weakly left primary (left primary) ideal of R.

Proof. Suppose that $R = R_1 \times R_2$, where each R_i is a LA-ring with identity and P is a weakly left primary ideal of R_1 . Let

$$0 \neq (a,b)(c,d) = (ac,bd) \in P \times R_2$$

where $(a,b),(c,d) \in R$ so either $a \in \sqrt{P}$ or $c \in P$ since P is weakly left primary. It follows that either

$$(a,b) \in \sqrt{P} \times R_2 = \sqrt{P \times R_2} \text{ or } (c,d) \in P \times R_2.$$

By Definition of weakly left primary ideal, we have $P \times R_2$ is a weakly left primary ideal of R.

Corollary 3.13. Let $R = R_1 \times R_2$, where each R_i is a LA-ring with identity. If P is a weakly left primary (left primary) ideal of R_2 , then $R_1 \times P$ is a weakly left primary (left primary) ideal of R.

Proof. This follows from Theorem 3.12.

Corollary 3.14. Let $R = \prod_{i=1}^n R_i$, where each R_i is a LA-ring with identity. If P is a weakly left primary (left primary) ideal of R_j , then $R_1 \times R_2 \times \ldots \times P_j \times R_{j+1} \times \ldots \times R_n$ is a weakly left primary (left primary) ideal

of *R*. **Proof.** This follows from Theorem 3.12 and Corollary 3.13.

Theorem 3.15. Let $R = R_1 \times R_2$, where each R_i is a LA-ring with identity. If P is a weakly left primary ideal of R, then either P = 0 or P is left primary.

Proof. Let $R = R_1 \times R_2$, where each R_i is a LA-ring with identity and let $P = R_1 \times P_2$ be a weakly left primary ideal of R. We can assume that $P \neq 0$. So there is an element (a,b) of P with $(a,b) \neq (0,0)$. Then

$$(0,0) \neq (a,e)(e,b) \in P$$
,

gives either

$$(a, e) \in \sqrt{P} = \sqrt{P_1} \times R_2 \text{ or } (e, b) \in P$$

If $(e, b) \in P$, then $P = R_1 \times P_2$. We show that P_2 is left primary hence P is weakly left primary by Corollary 3.13. Let $cd \in P_2$, where $c, d \in R_2$. Then

$$(0,0) \neq (e,c)(e,d) = (e,cd) \in P,$$

so either $(e,c) \in \sqrt{P} = \sqrt{R_1 \times P_2} = R_1 \times \sqrt{P_2}$ or $(e,d) \in P$ and hence either $c \in \sqrt{P_2}$ or $d \in P_2$. By a similar argument, $P = R_1 \times P_2$ is left primary.

Proposition 3.16. Let $A \subseteq P$ be proper ideals of a LA-ring R. Then the following hold:

- (i) If P is weakly left primary (left primary), then P/A is weakly left primary (left primary).
- (ii) If A and P/A are weakly left primary (left primary), then P is weakly left primary (left primary).

Proof. (i) Let $0 \neq (a + A)(b + A) = ab + A \in P/A$, where $a, b \in R$ so $ab \in P$. If $ab = 0 \in A$, then

$$(a+A)(b+A)=0,$$

a contradiction. So if P is weakly left primary, then either $a \in \sqrt{P}$ or $b \in P$, hence either $a + A \in \sqrt{P/A}$ or $b + A \in P/A$, as required.

(ii) Let $0 \neq ab \in P$, where $a, b \in R$, so $(a+A)(b+A) \in P/A$. For $ab \in A$, if A is weakly left primary, then either

$$a \in A \subset \sqrt{P}$$
 or $b \in A \subset P$.

So we may assume that $ab \notin A$. Then either $a + A \in \sqrt{P/A}$ or $b + A \in P/A$. It follows that either $a \in \sqrt{P}$ or $b \in P$ as needed.

Theorem 3.17. Let P and Q be weakly left primary ideals of a LA -ring R that are not left primary. Then P+Q is a weakly left primary ideal of R.

Proof. Since $(P+Q)/Q \approx Q/(P \cap Q)$, we get that (P+Q)/Q is weakly left primary by Proposition 3.16 (i). Now the assertion follows from Proposition 3.16 (ii).

ACKNOWLEDGEMENT

The authors are very grateful to the anonymous referee for stimulating comments and improving presentation of the paper.

REFERENCES

- [1] Holgate P., "Groupoids satisfying a simple invertive law", Math. Stud., vol. 61, pp. 101–106, 1992.
- [2] Kazim M.K., Naseeruddin M., "On almost semigroups", The Alig. Bull. Math., vol. 2, pp. 1-7, 1972.
- [3] Khan M., Ahmad N., "Characterizations of left almost semigroups by their ideals", Journal of Advanced Research in Pure Mathematics, vol. 2, no. 3, pp. 61-733, 2010.
- [4] Mushtaq Q., "Abelian groups defined by LA-semigroups", Studia Scient. Math. Hungar, vol. 18, pp. 427–428, 1983.
- [5] Mushtaq Q., Iqbal Q., "Decomposition of a locally associative LA-semigroup", Semigroup Forum, vol. 41, pp. 154–164, 1990.
- [6] Mushtaq Q., Iqbal M., "On representation theorem for inverse LA-semigroups". Proc. Pakistan Acad. Sci., vol. 30, pp. 247–253, 1993.
- [7] Mushtaq Q., Khan M., "A note on an Abel-Grassmann's 3-band", Quasigroups and Related Systems, vol. 15, pp. 295-301, 2007.
- [8] Mushtaq Q., Khan M., "Ideals in left almost semigroup", arXiv:0904.1635v1 [math.GR], 2009.
- [9] Rehman I., Shah M., Shah T., Razzaque A., "On existence of nonassociative LA-ring", Analele Stiintfice ale Universitatii Ovidius Constanta, vol. 21, no. 3, pp. 223-228, 2013.
- [10] Shah M., Ahmad I., Ali G., "Discovery of new classes of AG-groupoids", Research Journal of Recent Sciences, vol. 1, no. 11, pp. 47-49, 2012.
- [11] Shah T., Ali G., Fazal ur Rehman, "Direct sum of ideals in a generalized LA-ring", International Mathematical Forum, vol. 6, no. 22, 1095 -1101, 2011.
- [12] Shah T., Fazal ur Rehman, Raees M. "On near left almost rings", (to appear).
- [13] Shah T., Kausar N., Rehman I. "Fuzzy normal subrings over a nonassociative ring", Analele Stiintfice ale Universitatii Ovidius Constanta, vol. 20, no.1, pp. 369–386, 2012.
- [14] Shah T., Raees M., Ali G., "On LA-modules", Int. J. Contemp. Math. Sciences, vol. 6, no. 21, pp. 999-1006, 2011.
- [15] Shah T., Rehman I., Chinram R., "On M-systems in ordered AG-groupoids", Far East J. Math. Sci., vol. 47, no. 1, pp. 13-21, 2010.
- [16] Shah T., Rehman T., Razzaque A., "Soft ordered Abel-Grassman's groupoid (AG-groupoid)", International Journal of the Physical Sciences, vol. 6, no.25, pp. 6118-6126, 2010.
- [17] Shah T., Rehman I., "On LA-rings of finitely nonzero functions", Int. J. Contemp. Math. Sciences, vol.5, no.5, pp. 209 -222, 2010.
- [18] Shah M., Shah T., "Some basic properties of LA-ring", International Mathematical Forum, vol. 6, no.44, pp. 2195 2199. 2011.
- [19] Shah T., Yousaf K., "Topological LA-groups and LA-rings", Quasigroups and Related Systems, vol. 18, pp. 95-104, 2010.
- [20] Yusuf S.M., "On left almost ring", Proc. of 7th International Pure Math.Conference.