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ABSTRACT— In this paper, we study left ideals, left primary and weakly left primary ideals in LA-rings. Some 

characterizations of left primary and weakly left primary ideals are obtained. Moreover, we investigate relationships 

left primary and weakly left primary ideals in LA-rings. Finally, we obtain necessary and sufficient conditions of a 

weakly left primary ideal to be a left primary ideals in LA- rings. 
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1. INTRODUCTION 

A groupoid S  is called an Abel-Grassmann's groupoid, abbreviated as an AG-groupoid, if its elements satisfy the left 

invertive law [1, 2], that is: for all Several examples and interesting properties of AG-groupoids can be found in [3, 4, 5] 

and [6]. It has been shown in [3] that if an AG-groupoid contains a left identity then it is unique. It has been proved also 

that an AG-groupoid with right identity is a commutative monoid, that is, a semigroup with identity element. It is also 

known [2] that in an AG-groupoid, the medial law, that is, 

( )( ) ( )( )ab cd ac bd  

for all , , ,a b bc d S  holds. Now we define the concepts that we will used. Let S  be an AG-groupoid. By an AG-

subgroupoid of [8], we means a non-empty subset A  of S  such that 
2 .A A  A non-empty subset A  of an AG-

groupoid S  is called a left (right) ideal of [7] if ( ).SA A AS A   By two-sided ideal or simply ideal, we mean a 

non-empty subset of an AG-groupoid S  which is both a left and a right ideal of .S  

S.M. Yusuf in [20] introduces the concept of a left almost ring (LA-ring). That is, a non-empty set R  with two 

binary operations “+” and “  ” is called a left almost ring, if ( , )R   is a LA-group, ( ,·)R is a LA-semigroup and 

distributive laws of “  ” over “+” holds. Further in [12] T. Shah and I. Rehman generalize the notions of commutative 

semigroup rings into LA-semigroup LA-rings. However T. Shah and Fazal ur Rehman in [12] generalize the notion of a 

LA-ring into a nLA-ring. A near left almost ring (nLA-ring) N  is a LA-group under “+”, a LA-semigroup under “  ” 

and left distributive property of “  ” over “+” holds.  

 T. Shah, Fazal ur Rehman and M. Raees asserted that a commutative ring ( , ,·),R   we can always obtain a 

LA-ring ( , ,·)R   by defining, for , , ,a b c R a b b a     and ·a b  is same as in the ring. Furthermore, in this 

paper we characterize the left primary and weakly left primary ideals in LA-rings. Moreover, we investigate relationships 

left primary and weakly left primary ideals in LA-rings. Finally, we obtain necessary and sufficient conditions of a 

weakly left primary ideal to be a left primary ideals in LA-rings. 

 

2. IDEALS IN LA-RINGS 

The results of the following lemmas seem play an important role to study LA-ring; these facts will be used so 

frequently that normally we shall make no reference to this lemma. 
 

Definition 2.1. [11] A non empty set R  with two binary operations “+” and “  ” is called a left almost ring if and only if 

 1. ( , )R  is a LA-group. 

 2. ( ,·)R is a LA-semigroup. 

 3. Left distributive property of “+” and “  ” holds. 
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Lemma 2.2. [14] Let ( , ,·)R   be a LA-ring, then for all , ,a b c R  

 1. 0· 0 ·0.a a   

 2.        .a b ab a b      

 3.     .a a    

 4.      .a b ab    

   

Lemma 2.3. Let R  be a LA-ring with left identity .e  Then RR R  and .R eR Re   

Proof. Let R  be a LA-ring with left identity e  and let r R  then ,r er RR   for all so that .R RR  Since R  

is a LA-ring, we have .RR R  Thus .RR R  Now as e  is a left identity in , ,R ea a  for all .a R  Then 

.R eR  Since ( ) ( ) ,ab c cb a  for all , , ,a b c R  we have ( ) ( ) .RR e eR R  Now, 

( ) ( ) .Re RR e eR R RR R     

Hence .R eR Re    

 

Definition 2.4. [11] A nonempty subset I  of a LA-ring R  is a subring of R  if under the binary operations in ,R  form 

a LA-ring. 

 

Definition 2.5. [11] A subring I  of R  is called a left (right) ideal of R  if ( )RI I IR I   and is called ideal if it is 

left as well as right ideal. 

 

Lemma 2.6. If R  is a LA-ring with left identity, then every right ideal is a left ideal. 

Proof. Let R  be a LA-ring with left identity and let A  be a right ideal of .R  Then for ,a A r R   consider 

  ra  ( )er a   

   ( )ar e   

   ( )AR R  

   AR   

   ,A  

where e  is a left identity, that is .ra A  Therefore A  is left ideal of .R  

 

Lemma 2.7. If I  is a left ideal of a LA-ring R  with left identity, and if for any ,a R  then aI  is a left ideal of .R  

Proof.  Let I  be a left ideal of ,R  consider 

     ( )s ai  ( )( )es ai  

    ( )( )ea si  

    ( )a si  

     a RI  

    aI  

and ( ) ( ) ( ) .ai aj a i j aI     Hence aI  is a left ideal of .R  

  

Lemma 2.8. Let R  be a LA-ring with left identity, and .a R  Then Ra  is a left ideal of .R  

Proof.  Let R  be a LA-ring with left identity, and .a R  Then 

            ( )R Ra  ( )( )RR Ra         

    ( )( )aR RR    

    ( )aR R         

    ( )RR a         

    Ra  

and ( ) ( ) ( ) .ra sa r s a Ra     Hence Ra  is a left ideal of .R  
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Lemma 2.9. If I  is an ideal of a LA-ring R  with left identity, and if for any ,a R  then 
2a I  is an ideal of .R  

Proof.  By Lemma 2.7, we have 
2a I  is a left ideal of .R  Now consider 

             
2( )a r s      (( ) )aa r s  

     (( ) )ra a s  

     [ (( ) )]e ra a s  

     [ (( ) )]s ra a e  

     [( )( )]ra sa e       

  [(( ) ) ]sa a r e  

     [(( ) ) ]aa s r e  

     [( )( )]rs aa e  

     [ ( )]( )e aa rs  

     ( )( )aa rs  

     
2 2( ) .a rs a I   

Hence 
2a I  is an ideal of .R  

 

Lemma 2.10. Let R  be a LA-ring with left identity, and .a R  Then 
2Ra is an ideal of .R  

Proof. Let R  be a LA-ring with left identity, and .a R  Now consider 

    
2Ra  

2( )RR a        

     
2( )a RR        

     
2 .a R   

By Lemma 2.9, we have 
2Ra  is an ideal of .R  

  

Lemma 2.11. Let R  be a LA-ring with left identity, and let ,A B  be left ideals of .R  Then ( : )A B  is a left ideal in 

,R  where  ( : ) : .A B r R Br A    

Proof. Suppose that R  is a LA-ring. Let s R  and let , ( : ).a b A B  Then Ba A  and Bb A  so that 

  ( )B a b  ( ) ( )Ba Bb   

    A A   

     A  

and 

  ( )B sa   ( )s Ba  

    sA   

     A.  

Therefore ( : )a b A B   and ( : )sa A B  so that ( : ) ( : ).R A B A B  Hence ( : )A B  is a left ideal in .R  

  

Corollary 2.12. Let R  be a LA-ring with left identity, and let A  be left ideals of R  Then ( : )A b  is a left ideal in 

,R where  ( : ) : .A b r R br A    

Proof. This follows from Lemma 2.11. 

  

Remark.1. Let R  be a LA-ring and let A  be a left ideal of .R  It is easy to verify that ( : ).A A r  

 2. Let R  be a LA-ring with left identity ,e  and let A  be a proper left (right) ideal of .R  By Corollary 2.12 , 

we have ( : ),e A r  where .r R A   

 2. Let R  be a LA-ring and let , ,A B C  be left ideals of .R  It is easy to verify that ( : ) ( : ),A C A B where 

.B C  
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3. LEFT PRIMARY AND WEAKLY LEFT PRIMARY IDEAL IN LA-RINGS 

We start with the following theorem that gives a relation between left primary and weakly left primary ideal in  -

LA-ring. Our starting points is the following definition: 
 

Definition 3.1. A left ideal P  is called left primary if AB P  implies that    nAA A A A P   or B P  

for some positive integer ,n  where ,A B  is a left ideals of .R  

 

Definition 3.2. A left ideal P  is called weakly left primary if 0 AB P   implies that    nAA A A A P   

or B P  for some positive integer ,n  where ,A B  is a left ideals of .R  

 

Remark. It is easy to see that every left primary ideal is weakly left primary. 

 

Lemma 3.3. If R  is a LA-ring with left identity, then a left ideal P  of R  is left primary if and only if ab P  implies 

that 
na P  or b P  for some positive integer ,n  where , .a b R  

Proof. Let P  be a left ideal of LA-ring R  with left identity. Now suppose that .ab P  Then by Definition of left 

ideal, we get 

  ( )( )Ra Rb   ( )( )RR ab   

     ( )R ab   

     RP     

     .P   

Then 
na P  or b P  for some positive integer .n Conversely, the proof is easy. 

 

Corollary 3.4. If R  is a LA-ring with left identity, then a left ideal P  of R  is weakly left primary if and only if 

0 ab P   implies that 
na P  or b P  for some positive integer ,n  where , .a b R  

Proof. This follows from Lemma 3.3. 

 
 

 Let R  be a LA-ring and A  be a subset of N . We write  

 : kA a N a A    for some positive integer .k  

 

Theorem 3.5. Let R  be a LA-ring, and let P  be an ideal of .R  If P  is a weakly left primary ideal that is not let 

primary. Then 0.P   

Proof. Let R  be a LA-ring with identity. First, we prove that 
2 0.P   Suppose that 

2 0P   we show that P  is 

weakly left primary. Let ab P , where , .a b R  If 0,ab   then either  

a P  or b P  

since P  is weakly left primary ideal. So suppose that 0.ab   If 0,Pb   then there is an element p  of P  such that 

0,p b   so that  

 0    ,p b p a b P      

and hence P  weakly left primary ideal gives either p a P    or .b P  As p a P    and p P P   

we have either a P  or .b P  So we can assume that 0.Pb   Similarly, we can assume that 0.Pa   Since 
2 0,P   there exist ,c d P  such that   0.cd  Then  

  0     ,a c b d P     

so either   a c P   or   ,b d P   and hence either a P  or .b P  Thus P  is left primary ideal. 

Clearly, 0 .P  As 
2 0,P   we get 0,P   hence 0,P   as required.    
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Corollary 3.6. Let R  be a  -LA-ring, and let P  an ideal of .R  If 0,P   then P  is left primary if and only if 

P  is weakly left primary. 

Proof. This follows from Theorem 3.5.       

 

Lemma 3.7. Let R  be a LA-ring with identity, and let P  be a proper ideal of .R  If P  is a weakly left primary ideal of 

,R  then    :   0 : ,P Ra P Ra   where .a R P    

Proof. Let R  be a LA-ring with identity, and let P  be a weakly left primary ideal of .R  Clearly,  

   0: : .P Ra P Ra   

For the other inclusion, suppose that  : ,m P Ra  so that  

  
  Ra Rm

 
  mR aR  

      ma RR  

     ma R  

     Ra m  

    .P  

If  0 ,Ra m  then m em Rm P    since P  is weakly left primary. If  0 ,Ra m  then  0 :m Ra  so we 

have the equality.    
 

Corollary 3.8. Let R  be a LA-ring with identity, and let P  be a proper ideal of .R  If P  is a weakly left primary ideal 

of ,R  then    :   0 : ,P a P a   where .a R P     

Proof. This follows from Lemma 3.7.       

 

Corollary 3.9. Let R  be a LA-ring with identity, and let P  be a proper ideal of .R  If    :   0 : ,P Ra P Ra   

then ( : ) P Ra P  or ( : )  (0 : ),P Ra Ra  where .a R P   
 

Proof. This follows from Lemma 3.7.       

 

Theorem 3.10. Let R  be a LA-ring with identity, and let P  be a proper ideal of .R  If ( : ) P n P  or 

( : )  (0 : ),P n n  then P  is a weakly left primary ideal of ,R  where .n R P     

Proof. Let R  be a LA-ring with identity, and let P  be a proper ideal of .R  Suppose that Let 0 ,mn P   where 

.m R P   Then  

   :   0 :m P n P n    

by Corollary 3.9 hence m P  since 0,mn   as required.     

 

Lemma 3.11. Let 1 2  ,R R R   where each iR  is a LA-ring with identity. Then the following hold: 

 (i) If A  is a left ideal of 1,R  then 2 2.A R A R    

 (ii) If A  is a left ideal of 2 ,R  then 1 1 .R A R A    

Proof. The proof is straightforward.  

 

Theorem 3.12. Let 1 2  ,R R R   where each iR  is a LA-ring with identity. If P  is a weakly left primary (left 

primary) ideal of 1,R  then 2P R  is a weakly left primary (left primary) ideal of .R  

Proof. Suppose that 1 2  ,R R R   where each iR  is a LA-ring with identity and P  is a weakly left primary ideal of 

1.R  Let 
 



Asian Journal of Applied Sciences (ISSN: 2321 – 0893) 

Volume 02 – Issue 04, August 2014 
  

Asian Online Journals (www.ajouronline.com)  462 

 

     20 , ,   , ,a b c d ac bd P R     

where    , , ,a b c d R  so either a P  or c P  since P  is weakly left primary. It follows that either 

  2 2,a b P R P R     or   2, .c d P R   

By Definition of weakly left primary ideal, we have 
2P R  is a weakly left primary ideal of .R   

   

 

Corollary 3.13. Let 1 2  ,R R R   where each 
iR
 
is a LA-ring with identity. If P  is a weakly left primary 

(left primary) ideal of 2 ,R  then 
1R P  is a weakly left primary (left primary) ideal of .R  

Proof. This follows from Theorem 3.12.      

 

Corollary 3.14. Let 

1

  ,
n

i

i

R R


  where each iR  is a LA-ring with identity. If P  is a weakly left primary 

(left primary) ideal of ,jR  then 1 2 1j j nR R P R R       is a weakly left primary (left primary) ideal 

of .R  

Proof. This follows from Theorem 3.12 and Corollary 3.13.   

 

Theorem 3.15. Let 1 2  ,R R R   where each iR  is a LA-ring with identity. If P  is a weakly left primary 

ideal of ,R  then either   0P   or P  is left primary. 

Proof. Let 1 2  ,R R R   where each iR  is a LA-ring with identity and let 1 2P R P   be a weakly left 

primary ideal of .R  We can assume that 0.P   So there is an element  ,a b  of P  with 

   , 0,0 .a b  Then  

    0,0 , ,   ,a e e b P   

gives either  

  1 2,   a e P P R    or  ,   e b P  

If  ,   ,e b P  then 1 2.P R P   We show that 2P  is left primary hence P  is weakly left primary by 

Corollary 3.13. Let 2 ,cd P  where 2, .c d R  Then  

      0,0 , ,   ,e c e d e cd P   , 

so either   1 2 1 2,e c P R P R P      or  ,e d P  and hence either 2c P  or 2.d P  By a 

similar argument, 1 2P R P   is left primary.    

  

Proposition 3.16. Let A P  be proper ideals of a LA-ring .R  Then the following hold: 

 (i) If P  is weakly left primary (left primary), then /P A  is weakly left primary (left primary). 

 (ii) If A  and /P A  are weakly left primary (left primary), then P  is weakly left primary (left 

primary). 

Proof. (i) Let   0       / ,a A b A ab A P A       where ,a b R  so .ab P  If   0 ,ab A   

then  

   0,a A b A    

a contradiction. So if P  is weakly left primary, then either a P  or ,b P  hence either 

 /a A P A  or  / ,b A P A   as required. 

(ii) Let 0 ,ab P   where ,a b R , so    / .a A b A P A    For ,ab A  if A  is weakly left 

primary, then either  



Asian Journal of Applied Sciences (ISSN: 2321 – 0893) 

Volume 02 – Issue 04, August 2014 
  

Asian Online Journals (www.ajouronline.com)  463 

 

a A P   or .b A P   

So we may assume that .ab A  Then either /a A P A   or / .b A P A   It follows that either 

a P  or b P  as needed.      

 

Theorem 3.17. Let P  and Q  be weakly left primary ideals of a LA -ring R  that are not left primary. Then 

P Q  is a weakly left primary ideal of .R  

Proof.  Since    /  / ,P Q Q Q P Q    we get that ( ) /P Q Q  is weakly left primary by Proposition 

3.16 (i). Now the assertion follows from Proposition 3.16 (ii).   
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