Effect of the Amount and Timing of Ammonium Sulfate Single Top-dressing Application on Growth and Yield of Akitakomachi Rice (Oryza sativa L.)
DOI:
https://doi.org/10.24203/ajafs.v9i6.6825Keywords:
Nitrogen Amount, Nitrogen Timing, Growth, Yield Components, Oryza sativaAbstract
The effect of the amount and the timing of single top-dressing application of Ammonium sulfate fertilizer on the growth and yield of Akitakomachi rice (Oryza sativa L.) was investigated in this study. Two amounts (20kg.ha-1 and 50kg.ha-1) of Ammonium sulfate ((NH4)2SO4) fertilizer were applied at three timings;14 days after transplanting, panicle initiation, and flowering respectively, giving six treatments (14DAT:20, 14DAT:50, PI:20, PI:50, FL:20 & FL:50). A Randomized Complete Block Design (RCBD) with three replications was used. Growth data were collected on plant length, number of tillers and leaf color, and calculated yield and yield components were determined. Plant length was significantly higher in 14DAT:50 and PI:50, and lowest in FL:20 and FL:50. Tiller number was higher in 14DAT:50 compared to the other treatments. 14DAT:50 and PI:50 produced the highest number of panicles per m2. PI:20 and PI:50 had the highest number of spikelets per panicle. The 1000 grains weight was highest in PI:50 and lowest in 14DAT:50. The highest yields were obtained in 14DAT:50 and PI:50, while FL:20 and FL:50 produced the lowest yields. The results showed that for nitrogen (N) single top-dressing application, high amounts increase both the plant growth and the grain yield if the application is done at vegetative stage or at panicle initiation stage. However, if the nitrogen (N) amount is too high, there exist the risk that the plants may lodge.
References
Ågren, G. I. (1985). Theory for growth of plants derived from the nitrogen productivity concept. Physiologia plantarum, 64(1), 17-28. https://doi.org/10.1111/j.1399-3054.1985.tb01207.x
Alcantara, J. M., Cassman, K. G., Consuelo, M. P., Bienvenido, O. J., & Samuel, P. L. (1996). Effects of late nitrogen fertilizer application on head rice yield, protein content, and grain quality of rice. Cereal Chem, 73(5), 556-560. https://agris.fao.org/agris-search/search.do?recordID=US9703984
Baral, B. R., Pande, K. R., Gaihre, Y. K., Baral, K. R., Sah, S. K., Thapa, Y. B., & Singh, U. (2020). Increasing nitrogen use efficiency in rice through fertilizer application method under rainfed drought conditions in Nepal. Nutrient Cycling in Agroecosystems, 118(1), 103-114. https://doi.org/10.1007/s10705-020-10086-6
Brinkhoff, J., Dunn, B. W., Robson, A. J., Dunn, T. S., & Dehaan, R. L. (2019). Modeling mid-season rice nitrogen uptake using multispectral satellite data. Remote Sensing, 11(15), 1837. https://doi.org/10.3390/rs11151837
Cassman, K. G., Dobermann, A., & Walters, D. T. (2002). Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO: A Journal of the Human Environment, 31(2), 132-140. https://doi.org./10.1579/0044-7447-31.2.132 Cassman, K. G., Kropff, M. J., & Yan, Z. D. (1994). A conceptual framework for nitrogen management of irrigated rice in high-yield environments. Hybrid rice technology: New developments and future prospects, 81-96. https://ci.nii.ac.jp/naid/10017994242/
Cassman, K. G., Kropff, M. J., Gaunt, J., & Peng, S. (1993). Nitrogen use efficiency of rice reconsidered: What are the key constraints?. In Plant nutrition—from genetic engineering to field practice (pp. 471-474). Springer, Dordrecht. www.jstor.org/stable/42939335. Accessed 25 Apr. 2021.
De Datta, S. K., & Buresh, R. J. (1989). Integrated nitrogen management in irrigated rice. In Advances in soil science (pp. 143-169). Springer, New York, NY. https://link.springer.com/chapter/10.1007/978-1-4613-8847-0_4
Deng, R., Jiang, Y., Tao, M., Huang, X., Bangura, K., Liu, C., ... & Qi, L. (2020). Deep learning-based automatic detection of productive tillers in rice. Computers and Electronics in Agriculture, 177, 105703. https://doi.org/10.1016/j.compag.2020.105703
Ding, Y., & Maruyama, S. (2004). Proteins and Carbohydrates in Developing Rice Panicles with Different Numbers of Spikelets:Cultivar difference and the effect of nitrogen topdressing—. Plant production science, 7(1), 16-21. https://doi.org/10.1626/pps.7.16
Ding, Y., Wang, Q., Li, G., Liu, Z., & Wang, S. (2009). Effect of high day-time temperature on rice quality under different panicle nitrogen treatments. Plant Nutrition and Fertilizer Science, 15(2), 276-282. https://www.cabdirect.org/cabdirect/abstract/20093165852
Duan, H., Fu, L., Ju, C., Liu, L., & Yang, J. (2013). Effects of application of nitrogen as panicle-promoting fertilizer on seed setting and grain quality of rice under high temperature stress. Chinese Journal of Rice Science, 27(6), 591-602. https://doi.org/10.3969/j.issn.1001-7216.2013.06.005
Fageria, N. K., & Baligar, V. C. (1999). Yield and yield components of lowland rice as influenced by timing of nitrogen fertilization. Journal of Plant Nutrition, 22(1), 23-32. https://doi.org/10.1080/01904169909365603
FAOSTAT, (2008). FAO statistical databases. Available online at htt://faostat.fao.org/site/342/ default. aspx. Accessed January 2013.
Gasim, S. H. (2001). Effect of nitrogen, phosphorus and seed rate on growth, yield and quality of forage maize (Zea mays L.). Unpublished master thesis), University of Khartoum, Sudan.
Gong, P., Liang, L., & Zhang, Q. (2011). China must reduce fertilizer use too. Nature, 473(7347), 284-285. https://doi.org/10.1038/473284e
Gregersen, P. L., Holm, P. B., & Krupinska, K. (2008). Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biology, 10, 37-49. https://doi.org/10.1111/j.1438-8677.2008.00114.x
Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., ... & Zhang, F. S. (2010). Significant acidification in major Chinese croplands. science, 327(5968), 1008-1010. https://doi.org/10.1126/science.1182570
Hou, W., Tränkner, M., Lu, J., Yan, J., Huang, S., Ren, T., ... & Li, X. (2020). Diagnosis of nitrogen nutrition in rice leaves influenced by potassium levels. Frontiers in plant science, 11. https://doi.org/10.3389/fpls.2020.00165
Huang, J. B., Fan, X. H., Zhang, S. L., Ge, G. F., Sun, Y. H., & Feng, X. (2007). Investigation on the economically-ecologically appropriate amount of nitrogen fertilizer applied in rice production in Fe-leaching-Stagnic Anthrosols of the Taihu Lake region. Acta Ecologica Sinica, 27(2), 588-595. (in Chinese with English abstract)
Islam, M. S., Peng, S., Visperas, R. M., Bhuiya, M. S. U., Hossain, S. A., & Julfiquar, A. W. (2010). Comparative study on yield and yield attributes of hybrid, inbred, and NPT rice genotypes in a tropical irrigated ecosystem. Bangladesh Journal of Agricultural Research, 35(2), 343-353. DOI: https://doi.org/10.3329/bjar.v35i2.5897
Ju, C., Buresh, R. J., Wang, Z., Zhang, H., Liu, L., Yang, J., & Zhang, J. (2015). Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Research, 175, 47-55. https://doi.org/10.1016/j.fcr.2015.02.007
Ju, X. T., Xing, G. X., Chen, X. P., Zhang, S. L., Zhang, L. J., Liu, X. J., ... & Zhang, F. S. (2009). Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences, 106(9), 3041-3046. https://doi.org/10.1073/pnas.0813417106
Juan, Y., Chaohu, A. C., Qirong, S., Bin, Y., & Xinjun, W. (2009). Fertilizer-n uptake and distribution in rice plants using {sup 15} N tracer technique. Acta Agriculturae Nucleatae Sinica, 23. https://www.osti.gov/etdeweb/biblio/21480754
Kamiji, Y., Yoshida, H., Palta, J. A., Sakuratani, T., & Shiraiwa, T. (2011). N applications that increase plant N during panicle development are highly effective in increasing spikelet number in rice. Field Crops Research, 122(3), 242-247. https://doi.org/10.1016/j.fcr.2011.03.016
Kant, S. (2018, February). Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency. In Seminars in Cell & Developmental Biology (Vol. 74, pp. 89-96). Academic Press. https://doi.org/10.1016/j.semcdb.2017.08.034
Lacroix, A., Beaudoin, N., & Makowski, D. (2005). Agricultural water nonpoint pollution control under uncertainty and climate variability. Ecological Economics, 53(1), 115-127. https://doi.org/10.1016/j.ecolecon.2004.11.001
Ladha, J. K., & Reddy, P. M. (2003). Nitrogen fixation in rice systems: state of knowledge and prospects. Plant and soil, 252(1), 151-167. https://doi.org/10.1023/A:1024175307238
Lee, Y. J., Yang, C. M., Chang, K. W., & Shen, Y. (2008). A simple spectral index using reflectance of 735 nm to assess nitrogen status of rice canopy. Agronomy Journal, 100(1), 205-212. https://doi.org/10.2134/agronj2007.0018
Li, G. H., Zhong, X. H., Tian, K., Huang, N. R., Pan, J. F., & He, T. H. (2013). Effect of nitrogen application on stem lodging resistance of rice and its morphological and mechanical mechanisms. Scientia Agricultura Sinica, 46(7), 1323-1334. https://en.cnki.com.cn/Article_en/CJFDTotal-ZNYK201307004.htm
Li, X., Hu, C., Delgado, J. A., Zhang, Y., & Ouyang, Z. (2007). Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north china plain. Agricultural Water Management, 89(1-2), 137-147. https://doi.org/10.1016/j.agwat.2006.12.012
Liang, T. A. N. G., XU, Z. J., & CHEN, W. F. (2017). Advances and prospects of super rice breeding in China. Journal of integrative agriculture, 16(5), 984-991. https://doi.org/10.1016/S2095-3119(16)61604-0
Liang, W. H., Shang, F., Lin, Q. T., Lou, C., & Zhang, J. (2014). Tillering and panicle branching genes in rice. Gene, 537(1), 1-5. https://doi.org/10.1016/j.gene.2013.11.058
Liao, Z., Yu, H., Duan, J., Yuan, K., Yu, C., Meng, X., ... & Li, J. (2019). SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nature communications, 10(1), 1-9. https://doi.org/10.1038/s41467-019-10667-2.
Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., ... & Zhang, F. (2013). Enhanced nitrogen deposition over China. Nature, 494(7438), 459-462. https://doi.org/10.1038/nature11917
Mae, T. (1997). Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis, and yield potential. Plant and soil, 196(2), 201-210. https://doi.org/10.1023/A:1004293706242
Muñoz-Huerta, R. F., Guevara-Gonzalez, R. G., Contreras-Medina, L. M., Torres-Pacheco, I., Prado-Olivarez, J., & Ocampo-Velazquez, R. V. (2013). A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. sensors, 13(8), 10823-10843. https://doi.org/10.3390/s130810823
Muthayya, S., Sugimoto, J. D., Montgomery, S., & Maberly, G. F. (2014). An overview of global rice production, supply, trade, and consumption. Annals of the new york Academy of Sciences, 1324(1), 7-14. https://doi.org/10.1111/nyas.12540
Normile, D. (2008). Reinventing rice to feed the world. Science, 321(5887), 330-333. https://doi.org/10.1126/science.321.5887.330
Patrick, R. M., Hoskins, F. H., Wilson, E., & Peterson, F. J. (1974). Protein and amino acid content of rice as affected by application of nitrogen fertilizer. Cereal chemistry. https://agris.fao.org/agris-search/search.do?recordID=US201303128106
Peng, S., & Cassman, K. G. (1998). Upper threshholds of nitrogen uptake rates and associated nitrogen fertilizer efficiencies in irrigated rice. Agronomy Journal, 90(2), 178-185. https://doi.org/10.2134/agronj1998.00021962009000020010x
Peng, S., Buresh, R. J., Huang, J., Yang, J., Zou, Y., Zhong, X., ... & Zhang, F. (2006). Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Research, 96(1), 37-47. https://doi.org/10.1016/j.fcr.2005.05.004
Salvagiotti, F., & Miralles, D. J. (2008). Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilization in wheat. European Journal of Agronomy, 28(3), 282-290. https://doi.org/10.1016/j.eja.2007.08.002
Samonte, S. O. P., Wilson, L. T., Medley, J. C., Pinson, S. R., McClung, A. M., & Lales, J. S. (2006). Nitrogen utilization efficiency: relationships with grain yield, grain protein, and yield‐related traits in rice. Agronomy journal, 98(1), 168-176. https://doi.org/10.2134/agronj2005.0180
Stevens, C. J., Dise, N. B., & Gowing, D. J. (2009). Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates. Environmental pollution, 157(1), 313-319. https://doi.org/10.1016/j.envpol.2008.06.033
Sugimoto, T., Sueyoshi, K., & Oji, Y. (1997). Increase of PEPC activity in developing rice seeds with nitrogen application at flowering stage. In Plant Nutrition for Sustainable Food Production and Environment (pp. 811-812). Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0047-9
Sui, B., Feng, X., Tian, G., Hu, X., Shen, Q., & Guo, S. (2013). Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors. Field Crops Research, 150, 99-107. https://doi.org/10.1016/j.fcr.2013.06.012
Tan, Q., Huang, G. H., & Cai, Y. P. (2011). Radial interval chance-constrained programming for agricultural non-point source water pollution control under uncertainty. Agricultural Water Management, 98(10), 1595-1606. https://doi.org/10.1016/j.agwat.2011.05.013
Tao, M., Ma, X., Huang, X., Liu, C., Deng, R., Liang, K., & Qi, L. (2020). Smartphone-based detection of leaf color levels in rice plants. Computers and Electronics in Agriculture, 173, 105431. https://doi.org/10.1016/j.compag.2020.105431
Tayefe, M., Gerayzade, A., Amiri, E., & Zade, A. N. (2014). Effect of nitrogen on rice yield, yield components and quality parameters. African Journal of Biotechnology, 13(1), 91-105. https://doi.org/10.5897/AJB11.2298
Tian, Z., Li, Y., Liang, Z., Guo, H., Cai, J., Jiang, D., ... & Dai, T. (2016). Genetic improvement of nitrogen uptake and utilization of winter wheat in the Yangtze River Basin of China. Field Crops Research, 196, 251-260. https://doi.org/10.1016/j.fcr.2016.07.007
ÜNAN, R., Sezer, I., ŞAHİN, M., & Mur, L. A. (2013). Control of lodging and reduction in plant length in rice (Oryza sativa L.) with the treatment of trinexapac-ethyl and sowing density. Turkish Journal of Agriculture and Forestry, 37(3), 257-264. https://doi.org/10.3906/tar-1207-72
Vlek, P. L., & Byrnes, B. H. (1986). The efficacy and loss of fertilizer N in lowland rice. In Nitrogen economy of flooded rice soils (pp. 131-147). Springer, Dordrecht. https://doi.org/10.1007/BF01048699
Wang, F., Cheng, F., & Zhang, G. (2006). The relationship between grain filling and hormone content as affected by genotype and source–sink relation. Plant growth regulation, 49(1), 1-8. https://doi.org/10.1007/s10725-006-0017-3
Wang, Y., Ren, T., Lu, J., Ming, R., Li, P., Hussain, S., ... & Li, X. (2016). Heterogeneity in rice tillers yield associated with tillers formation and nitrogen fertilizer. Agronomy Journal, 108(4), 1717-1725. https://doi.org/10.2134/agronj2015.0587
Xiong, Q., Tang, G., Zhong, L., He, H., & Chen, X. (2018). Response to nitrogen deficiency and compensation on physiological characteristics, yield formation, and nitrogen utilization of rice. Frontiers in plant science, 9, 1075. https://doi.org/10.3389/fpls.2018.01075
Xu, H., Zhong, G., Lin, J., Ding, Y., Li, G., Wang, S., ... & Ding, C. (2015). Effect of nitrogen management during the panicle stage in rice on the nitrogen utilization of rice and succeeding wheat crops. European Journal of Agronomy, 70, 41-47. https://doi.org/10.1016/j.eja.2015.06.008
Xue, H., Tian, X., Zhang, K., Li, W., Qi, Z., Fang, Y., ... & Ning, H. (2019). Mapping developmental QTL for plant height in soybean [Glycine max (L.) Merr.] using a four-way recombinant inbred line population. PloS one, 14(11), e0224897. https://doi.org/10.1371/journal.pone.0224897
Xun, W., Zhao, J., Xue, C., Zhang, G., Ran, W., Wang, B., ... & Zhang, R. (2016). Significant alteration of soil bacterial communities and organic carbon decomposition by different long‐term fertilization management conditions of extremely low‐productivity arable soil in S outh C hina. Environmental microbiology, 18(6), 1907-1917. https://doi.org/10.1111/1462-2920.13098
Yang, J., Chen, X., Zhu, C., Peng, X., He, X., Fu, J., ... & He, H. (2014). Effects of nitrogen level and high temperature at late booting stage on yield and physiological characteristics of two early rice cultivars. Chinese Journal of Rice Science, 28(5), 523-533. https://doi.org/10.3969/j.issn.1001-7216.2014.05.010
Yang, J., Peng, S., Zhang, Z., Wang, Z., Visperas, R. M., & Zhu, Q. (2002). Grain and dry matter yields and partitioning of assimilates in japonica/indica hybrid rice. Crop Science, 42(3), 766-772. https://doi.org/10.2135/cropsci2002.7660
Yang, L., Huang, J., Yang, H., Dong, G., Liu, H., Liu, G., ... & Wang, Y. (2007). Seasonal changes in the effects of free-air CO2 enrichment (FACE) on nitrogen (N) uptake and utilization of rice at three levels of N fertilization. Field Crops Research, 100(2-3), 189-199. https://doi.org/10.1016/j.fcr.2006.07.003
Ye, C., Huang, X., Chu, G., Chen, S., Xu, C., Zhang, X., & Wang, D. (2019). Effects of Postponing Topdressing-N on the Yield of Different Types of japonica Rice and Its Relationship with Soil Fertility. Agronomy, 9(12), 868. https://doi.org/10.3390/agronomy9120868
Yosef Tabar, S. (2012). Effect of nitrogen and phosphorus fertilizer on growth and yield rice (Oryza sativa L). International journal of agronomy and Plant Production, 3(12), 579-584. http://www.ijappjournal.com/wp-conten.
Yoshida, S. (1978). Tropical climate and its influence on rice. http://eprints.icrisat.ac.in/id/eprint/8613
Zeng, X., Han, B., Xu, F., Huang, J., Cai, H., & Shi, L. (2012). Effects of modified fertilization technology on the grain yield and nitrogen use efficiency of midseason rice. Field Crops Research, 137, 203-212. https://doi.org/10.1016/j.fcr.2012.08.012
Zhang, X., Dong, W., Dai, X., Schaeffer, S., Yang, F., Radosevich, M., ... & Sun, X. (2015). Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer. Science of the Total Environment, 536, 59-67. https://doi.org/10.1016/j.scitotenv.2015.07.043
Zhang, Z., Chu, G., Liu, L., Wang, Z., Wang, X., Zhang, H., ... & Zhang, J. (2013). Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Research, 150, 9-18. https://doi.org/10.1016/j.fcr.2013.06.002
Zheng, S., Cao, H., Huang, Q., Liu, M., Lin, X., & Li, Z. (2016). Long-term fertilization of P coupled with N greatly improved microbial activities in a paddy soil ecosystem derived from infertile land. European Journal of Soil Biology, 72, 14-20. https://doi.org/10.1016/j.ejsobi.2015.12.006
Zhong, X. H., Huang, N. R., & Zheng, H. B. (2007). Some principles for the “three controls” nutrient management technology for irrigated rice. Guangdong Agric. Sci, 5, 19-22. https://en.cnki.com.cn/Article_en/CJFDTotal-GDNY200705005.htm
Zhou, W., Lv, T., Yang, Z., Wang, T., Fu, Y., Chen, Y., ... & Ren, W. (2017). Morphophysiological mechanism of rice yield increase in response to optimized nitrogen management. Scientific reports, 7(1), 1-10. https://doi.org/10.1038/s41598-017-17491-y
ZHU, D. W., ZHANG, H. C., GUO, B. W., Ke, X. U., DAI, Q. G., WEI, H. Y., ... & HUO, Z. Y. (2017). Effects of nitrogen level on yield and quality of japonica soft super rice. Journal of integrative agriculture, 16(5), 1018-1027. https://doi.org/10.1016/S2095-3119(16)61577-0
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Claurence Nkumbe Ndille, Edward Munyonyela Lena, Isaac Mupeta, Njukeng Jetro Nkengafac
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
- Papers must be submitted on the understanding that they have not been published elsewhere (except in the form of an abstract or as part of a published lecture, review, or thesis) and are not currently under consideration by another journal published by any other publisher.
- It is also the authors responsibility to ensure that the articles emanating from a particular source are submitted with the necessary approval.
- The authors warrant that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required.
- The authors ensure that all the references carefully and they are accurate in the text as well as in the list of references (and vice versa).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author.