Effect of the Amount and Timing of Ammonium Sulfate Single Top-dressing Application on Growth and Yield of Akitakomachi Rice (<em>Oryza sativa L.</em>)

Authors

  • Claurence Nkumbe Ndille Institute of Agricultural Research for Development, Cameroon
  • Edward Munyonyela Lena Kilimanjaro Agricultural Training Centre (KATC), Tanzania
  • Isaac Mupeta Crops Section, Ministry of Agriculture, Zambia
  • Njukeng Jetro Nkengafac Institute of Agricultural Research for Development, Cameroon

DOI:

https://doi.org/10.24203/ajafs.v9i6.6825

Keywords:

Nitrogen Amount, Nitrogen Timing, Growth, Yield Components, Oryza sativa

Abstract

The effect of the amount and the timing of single top-dressing application of Ammonium sulfate fertilizer on the growth and yield of Akitakomachi rice (Oryza sativa L.) was investigated in this study. Two amounts (20kg.ha-1 and 50kg.ha-1) of Ammonium sulfate ((NH4)2SO4) fertilizer were applied at three timings;14 days after transplanting, panicle initiation, and flowering respectively, giving six treatments (14DAT:20, 14DAT:50, PI:20, PI:50, FL:20 & FL:50). A Randomized Complete Block Design (RCBD) with three replications was used. Growth data were collected on plant length, number of tillers and leaf color, and calculated yield and yield components were determined. Plant length was significantly higher in 14DAT:50 and PI:50, and lowest in FL:20 and FL:50. Tiller number was higher in 14DAT:50 compared to the other treatments. 14DAT:50 and PI:50 produced the highest number of panicles per m2. PI:20 and PI:50 had the highest number of spikelets per panicle. The 1000 grains weight was highest in PI:50 and lowest  in 14DAT:50. The highest yields were obtained in 14DAT:50 and PI:50, while FL:20 and FL:50 produced the lowest yields. The results showed that for nitrogen (N) single top-dressing application, high amounts increase both the plant growth and the grain yield if the application is done at vegetative stage or at panicle initiation stage. However, if the nitrogen (N) amount is too high, there exist the risk that the plants may lodge.

References

Ågren, G. I. (1985). Theory for growth of plants derived from the nitrogen productivity concept. Physiologia plantarum, 64(1), 17-28. https://doi.org/10.1111/j.1399-3054.1985.tb01207.x

Alcantara, J. M., Cassman, K. G., Consuelo, M. P., Bienvenido, O. J., & Samuel, P. L. (1996). Effects of late nitrogen fertilizer application on head rice yield, protein content, and grain quality of rice. Cereal Chem, 73(5), 556-560. https://agris.fao.org/agris-search/search.do?recordID=US9703984

Baral, B. R., Pande, K. R., Gaihre, Y. K., Baral, K. R., Sah, S. K., Thapa, Y. B., & Singh, U. (2020). Increasing nitrogen use efficiency in rice through fertilizer application method under rainfed drought conditions in Nepal. Nutrient Cycling in Agroecosystems, 118(1), 103-114. https://doi.org/10.1007/s10705-020-10086-6

Brinkhoff, J., Dunn, B. W., Robson, A. J., Dunn, T. S., & Dehaan, R. L. (2019). Modeling mid-season rice nitrogen uptake using multispectral satellite data. Remote Sensing, 11(15), 1837. https://doi.org/10.3390/rs11151837

Cassman, K. G., Dobermann, A., & Walters, D. T. (2002). Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO: A Journal of the Human Environment, 31(2), 132-140. https://doi.org./10.1579/0044-7447-31.2.132 Cassman, K. G., Kropff, M. J., & Yan, Z. D. (1994). A conceptual framework for nitrogen management of irrigated rice in high-yield environments. Hybrid rice technology: New developments and future prospects, 81-96. https://ci.nii.ac.jp/naid/10017994242/

Cassman, K. G., Kropff, M. J., Gaunt, J., & Peng, S. (1993). Nitrogen use efficiency of rice reconsidered: What are the key constraints?. In Plant nutrition—from genetic engineering to field practice (pp. 471-474). Springer, Dordrecht. www.jstor.org/stable/42939335. Accessed 25 Apr. 2021.

De Datta, S. K., & Buresh, R. J. (1989). Integrated nitrogen management in irrigated rice. In Advances in soil science (pp. 143-169). Springer, New York, NY. https://link.springer.com/chapter/10.1007/978-1-4613-8847-0_4

Deng, R., Jiang, Y., Tao, M., Huang, X., Bangura, K., Liu, C., ... & Qi, L. (2020). Deep learning-based automatic detection of productive tillers in rice. Computers and Electronics in Agriculture, 177, 105703. https://doi.org/10.1016/j.compag.2020.105703

Ding, Y., & Maruyama, S. (2004). Proteins and Carbohydrates in Developing Rice Panicles with Different Numbers of Spikelets:Cultivar difference and the effect of nitrogen topdressing—. Plant production science, 7(1), 16-21. https://doi.org/10.1626/pps.7.16

Ding, Y., Wang, Q., Li, G., Liu, Z., & Wang, S. (2009). Effect of high day-time temperature on rice quality under different panicle nitrogen treatments. Plant Nutrition and Fertilizer Science, 15(2), 276-282. https://www.cabdirect.org/cabdirect/abstract/20093165852

Duan, H., Fu, L., Ju, C., Liu, L., & Yang, J. (2013). Effects of application of nitrogen as panicle-promoting fertilizer on seed setting and grain quality of rice under high temperature stress. Chinese Journal of Rice Science, 27(6), 591-602. https://doi.org/10.3969/j.issn.1001-7216.2013.06.005

Fageria, N. K., & Baligar, V. C. (1999). Yield and yield components of lowland rice as influenced by timing of nitrogen fertilization. Journal of Plant Nutrition, 22(1), 23-32. https://doi.org/10.1080/01904169909365603

FAOSTAT, (2008). FAO statistical databases. Available online at htt://faostat.fao.org/site/342/ default. aspx. Accessed January 2013.

Gasim, S. H. (2001). Effect of nitrogen, phosphorus and seed rate on growth, yield and quality of forage maize (Zea mays L.). Unpublished master thesis), University of Khartoum, Sudan.

Gong, P., Liang, L., & Zhang, Q. (2011). China must reduce fertilizer use too. Nature, 473(7347), 284-285. https://doi.org/10.1038/473284e

Gregersen, P. L., Holm, P. B., & Krupinska, K. (2008). Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biology, 10, 37-49. https://doi.org/10.1111/j.1438-8677.2008.00114.x

Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., ... & Zhang, F. S. (2010). Significant acidification in major Chinese croplands. science, 327(5968), 1008-1010. https://doi.org/10.1126/science.1182570

Hou, W., Tränkner, M., Lu, J., Yan, J., Huang, S., Ren, T., ... & Li, X. (2020). Diagnosis of nitrogen nutrition in rice leaves influenced by potassium levels. Frontiers in plant science, 11. https://doi.org/10.3389/fpls.2020.00165

Huang, J. B., Fan, X. H., Zhang, S. L., Ge, G. F., Sun, Y. H., & Feng, X. (2007). Investigation on the economically-ecologically appropriate amount of nitrogen fertilizer applied in rice production in Fe-leaching-Stagnic Anthrosols of the Taihu Lake region. Acta Ecologica Sinica, 27(2), 588-595. (in Chinese with English abstract)

Islam, M. S., Peng, S., Visperas, R. M., Bhuiya, M. S. U., Hossain, S. A., & Julfiquar, A. W. (2010). Comparative study on yield and yield attributes of hybrid, inbred, and NPT rice genotypes in a tropical irrigated ecosystem. Bangladesh Journal of Agricultural Research, 35(2), 343-353. DOI: https://doi.org/10.3329/bjar.v35i2.5897

Ju, C., Buresh, R. J., Wang, Z., Zhang, H., Liu, L., Yang, J., & Zhang, J. (2015). Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Research, 175, 47-55. https://doi.org/10.1016/j.fcr.2015.02.007

Ju, X. T., Xing, G. X., Chen, X. P., Zhang, S. L., Zhang, L. J., Liu, X. J., ... & Zhang, F. S. (2009). Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences, 106(9), 3041-3046. https://doi.org/10.1073/pnas.0813417106

Juan, Y., Chaohu, A. C., Qirong, S., Bin, Y., & Xinjun, W. (2009). Fertilizer-n uptake and distribution in rice plants using {sup 15} N tracer technique. Acta Agriculturae Nucleatae Sinica, 23. https://www.osti.gov/etdeweb/biblio/21480754

Kamiji, Y., Yoshida, H., Palta, J. A., Sakuratani, T., & Shiraiwa, T. (2011). N applications that increase plant N during panicle development are highly effective in increasing spikelet number in rice. Field Crops Research, 122(3), 242-247. https://doi.org/10.1016/j.fcr.2011.03.016

Kant, S. (2018, February). Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency. In Seminars in Cell & Developmental Biology (Vol. 74, pp. 89-96). Academic Press. https://doi.org/10.1016/j.semcdb.2017.08.034

Lacroix, A., Beaudoin, N., & Makowski, D. (2005). Agricultural water nonpoint pollution control under uncertainty and climate variability. Ecological Economics, 53(1), 115-127. https://doi.org/10.1016/j.ecolecon.2004.11.001

Ladha, J. K., & Reddy, P. M. (2003). Nitrogen fixation in rice systems: state of knowledge and prospects. Plant and soil, 252(1), 151-167. https://doi.org/10.1023/A:1024175307238

Lee, Y. J., Yang, C. M., Chang, K. W., & Shen, Y. (2008). A simple spectral index using reflectance of 735 nm to assess nitrogen status of rice canopy. Agronomy Journal, 100(1), 205-212. https://doi.org/10.2134/agronj2007.0018

Li, G. H., Zhong, X. H., Tian, K., Huang, N. R., Pan, J. F., & He, T. H. (2013). Effect of nitrogen application on stem lodging resistance of rice and its morphological and mechanical mechanisms. Scientia Agricultura Sinica, 46(7), 1323-1334. https://en.cnki.com.cn/Article_en/CJFDTotal-ZNYK201307004.htm

Li, X., Hu, C., Delgado, J. A., Zhang, Y., & Ouyang, Z. (2007). Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north china plain. Agricultural Water Management, 89(1-2), 137-147. https://doi.org/10.1016/j.agwat.2006.12.012

Liang, T. A. N. G., XU, Z. J., & CHEN, W. F. (2017). Advances and prospects of super rice breeding in China. Journal of integrative agriculture, 16(5), 984-991. https://doi.org/10.1016/S2095-3119(16)61604-0

Liang, W. H., Shang, F., Lin, Q. T., Lou, C., & Zhang, J. (2014). Tillering and panicle branching genes in rice. Gene, 537(1), 1-5. https://doi.org/10.1016/j.gene.2013.11.058

Liao, Z., Yu, H., Duan, J., Yuan, K., Yu, C., Meng, X., ... & Li, J. (2019). SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nature communications, 10(1), 1-9. https://doi.org/10.1038/s41467-019-10667-2.

Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., ... & Zhang, F. (2013). Enhanced nitrogen deposition over China. Nature, 494(7438), 459-462. https://doi.org/10.1038/nature11917

Mae, T. (1997). Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis, and yield potential. Plant and soil, 196(2), 201-210. https://doi.org/10.1023/A:1004293706242

Muñoz-Huerta, R. F., Guevara-Gonzalez, R. G., Contreras-Medina, L. M., Torres-Pacheco, I., Prado-Olivarez, J., & Ocampo-Velazquez, R. V. (2013). A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. sensors, 13(8), 10823-10843. https://doi.org/10.3390/s130810823

Muthayya, S., Sugimoto, J. D., Montgomery, S., & Maberly, G. F. (2014). An overview of global rice production, supply, trade, and consumption. Annals of the new york Academy of Sciences, 1324(1), 7-14. https://doi.org/10.1111/nyas.12540

Normile, D. (2008). Reinventing rice to feed the world. Science, 321(5887), 330-333. https://doi.org/10.1126/science.321.5887.330

Patrick, R. M., Hoskins, F. H., Wilson, E., & Peterson, F. J. (1974). Protein and amino acid content of rice as affected by application of nitrogen fertilizer. Cereal chemistry. https://agris.fao.org/agris-search/search.do?recordID=US201303128106

Peng, S., & Cassman, K. G. (1998). Upper threshholds of nitrogen uptake rates and associated nitrogen fertilizer efficiencies in irrigated rice. Agronomy Journal, 90(2), 178-185. https://doi.org/10.2134/agronj1998.00021962009000020010x

Peng, S., Buresh, R. J., Huang, J., Yang, J., Zou, Y., Zhong, X., ... & Zhang, F. (2006). Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Research, 96(1), 37-47. https://doi.org/10.1016/j.fcr.2005.05.004

Salvagiotti, F., & Miralles, D. J. (2008). Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilization in wheat. European Journal of Agronomy, 28(3), 282-290. https://doi.org/10.1016/j.eja.2007.08.002

Samonte, S. O. P., Wilson, L. T., Medley, J. C., Pinson, S. R., McClung, A. M., & Lales, J. S. (2006). Nitrogen utilization efficiency: relationships with grain yield, grain protein, and yield‐related traits in rice. Agronomy journal, 98(1), 168-176. https://doi.org/10.2134/agronj2005.0180

Stevens, C. J., Dise, N. B., & Gowing, D. J. (2009). Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates. Environmental pollution, 157(1), 313-319. https://doi.org/10.1016/j.envpol.2008.06.033

Sugimoto, T., Sueyoshi, K., & Oji, Y. (1997). Increase of PEPC activity in developing rice seeds with nitrogen application at flowering stage. In Plant Nutrition for Sustainable Food Production and Environment (pp. 811-812). Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0047-9

Sui, B., Feng, X., Tian, G., Hu, X., Shen, Q., & Guo, S. (2013). Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors. Field Crops Research, 150, 99-107. https://doi.org/10.1016/j.fcr.2013.06.012

Tan, Q., Huang, G. H., & Cai, Y. P. (2011). Radial interval chance-constrained programming for agricultural non-point source water pollution control under uncertainty. Agricultural Water Management, 98(10), 1595-1606. https://doi.org/10.1016/j.agwat.2011.05.013

Tao, M., Ma, X., Huang, X., Liu, C., Deng, R., Liang, K., & Qi, L. (2020). Smartphone-based detection of leaf color levels in rice plants. Computers and Electronics in Agriculture, 173, 105431. https://doi.org/10.1016/j.compag.2020.105431

Tayefe, M., Gerayzade, A., Amiri, E., & Zade, A. N. (2014). Effect of nitrogen on rice yield, yield components and quality parameters. African Journal of Biotechnology, 13(1), 91-105. https://doi.org/10.5897/AJB11.2298

Tian, Z., Li, Y., Liang, Z., Guo, H., Cai, J., Jiang, D., ... & Dai, T. (2016). Genetic improvement of nitrogen uptake and utilization of winter wheat in the Yangtze River Basin of China. Field Crops Research, 196, 251-260. https://doi.org/10.1016/j.fcr.2016.07.007

ÜNAN, R., Sezer, I., ŞAHİN, M., & Mur, L. A. (2013). Control of lodging and reduction in plant length in rice (Oryza sativa L.) with the treatment of trinexapac-ethyl and sowing density. Turkish Journal of Agriculture and Forestry, 37(3), 257-264. https://doi.org/10.3906/tar-1207-72

Vlek, P. L., & Byrnes, B. H. (1986). The efficacy and loss of fertilizer N in lowland rice. In Nitrogen economy of flooded rice soils (pp. 131-147). Springer, Dordrecht. https://doi.org/10.1007/BF01048699

Wang, F., Cheng, F., & Zhang, G. (2006). The relationship between grain filling and hormone content as affected by genotype and source–sink relation. Plant growth regulation, 49(1), 1-8. https://doi.org/10.1007/s10725-006-0017-3

Wang, Y., Ren, T., Lu, J., Ming, R., Li, P., Hussain, S., ... & Li, X. (2016). Heterogeneity in rice tillers yield associated with tillers formation and nitrogen fertilizer. Agronomy Journal, 108(4), 1717-1725. https://doi.org/10.2134/agronj2015.0587

Xiong, Q., Tang, G., Zhong, L., He, H., & Chen, X. (2018). Response to nitrogen deficiency and compensation on physiological characteristics, yield formation, and nitrogen utilization of rice. Frontiers in plant science, 9, 1075. https://doi.org/10.3389/fpls.2018.01075

Xu, H., Zhong, G., Lin, J., Ding, Y., Li, G., Wang, S., ... & Ding, C. (2015). Effect of nitrogen management during the panicle stage in rice on the nitrogen utilization of rice and succeeding wheat crops. European Journal of Agronomy, 70, 41-47. https://doi.org/10.1016/j.eja.2015.06.008

Xue, H., Tian, X., Zhang, K., Li, W., Qi, Z., Fang, Y., ... & Ning, H. (2019). Mapping developmental QTL for plant height in soybean [Glycine max (L.) Merr.] using a four-way recombinant inbred line population. PloS one, 14(11), e0224897. https://doi.org/10.1371/journal.pone.0224897

Xun, W., Zhao, J., Xue, C., Zhang, G., Ran, W., Wang, B., ... & Zhang, R. (2016). Significant alteration of soil bacterial communities and organic carbon decomposition by different long‐term fertilization management conditions of extremely low‐productivity arable soil in S outh C hina. Environmental microbiology, 18(6), 1907-1917. https://doi.org/10.1111/1462-2920.13098

Yang, J., Chen, X., Zhu, C., Peng, X., He, X., Fu, J., ... & He, H. (2014). Effects of nitrogen level and high temperature at late booting stage on yield and physiological characteristics of two early rice cultivars. Chinese Journal of Rice Science, 28(5), 523-533. https://doi.org/10.3969/j.issn.1001-7216.2014.05.010

Yang, J., Peng, S., Zhang, Z., Wang, Z., Visperas, R. M., & Zhu, Q. (2002). Grain and dry matter yields and partitioning of assimilates in japonica/indica hybrid rice. Crop Science, 42(3), 766-772. https://doi.org/10.2135/cropsci2002.7660

Yang, L., Huang, J., Yang, H., Dong, G., Liu, H., Liu, G., ... & Wang, Y. (2007). Seasonal changes in the effects of free-air CO2 enrichment (FACE) on nitrogen (N) uptake and utilization of rice at three levels of N fertilization. Field Crops Research, 100(2-3), 189-199. https://doi.org/10.1016/j.fcr.2006.07.003

Ye, C., Huang, X., Chu, G., Chen, S., Xu, C., Zhang, X., & Wang, D. (2019). Effects of Postponing Topdressing-N on the Yield of Different Types of japonica Rice and Its Relationship with Soil Fertility. Agronomy, 9(12), 868. https://doi.org/10.3390/agronomy9120868

Yosef Tabar, S. (2012). Effect of nitrogen and phosphorus fertilizer on growth and yield rice (Oryza sativa L). International journal of agronomy and Plant Production, 3(12), 579-584. http://www.ijappjournal.com/wp-conten.

Yoshida, S. (1978). Tropical climate and its influence on rice. http://eprints.icrisat.ac.in/id/eprint/8613

Zeng, X., Han, B., Xu, F., Huang, J., Cai, H., & Shi, L. (2012). Effects of modified fertilization technology on the grain yield and nitrogen use efficiency of midseason rice. Field Crops Research, 137, 203-212. https://doi.org/10.1016/j.fcr.2012.08.012

Zhang, X., Dong, W., Dai, X., Schaeffer, S., Yang, F., Radosevich, M., ... & Sun, X. (2015). Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer. Science of the Total Environment, 536, 59-67. https://doi.org/10.1016/j.scitotenv.2015.07.043

Zhang, Z., Chu, G., Liu, L., Wang, Z., Wang, X., Zhang, H., ... & Zhang, J. (2013). Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Research, 150, 9-18. https://doi.org/10.1016/j.fcr.2013.06.002

Zheng, S., Cao, H., Huang, Q., Liu, M., Lin, X., & Li, Z. (2016). Long-term fertilization of P coupled with N greatly improved microbial activities in a paddy soil ecosystem derived from infertile land. European Journal of Soil Biology, 72, 14-20. https://doi.org/10.1016/j.ejsobi.2015.12.006

Zhong, X. H., Huang, N. R., & Zheng, H. B. (2007). Some principles for the “three controls” nutrient management technology for irrigated rice. Guangdong Agric. Sci, 5, 19-22. https://en.cnki.com.cn/Article_en/CJFDTotal-GDNY200705005.htm

Zhou, W., Lv, T., Yang, Z., Wang, T., Fu, Y., Chen, Y., ... & Ren, W. (2017). Morphophysiological mechanism of rice yield increase in response to optimized nitrogen management. Scientific reports, 7(1), 1-10. https://doi.org/10.1038/s41598-017-17491-y

ZHU, D. W., ZHANG, H. C., GUO, B. W., Ke, X. U., DAI, Q. G., WEI, H. Y., ... & HUO, Z. Y. (2017). Effects of nitrogen level on yield and quality of japonica soft super rice. Journal of integrative agriculture, 16(5), 1018-1027. https://doi.org/10.1016/S2095-3119(16)61577-0

Downloads

Published

2021-12-31

How to Cite

Ndille, C. N. . ., Lena, E. M. ., Mupeta, I. ., & Nkengafac, N. J. . (2021). Effect of the Amount and Timing of Ammonium Sulfate Single Top-dressing Application on Growth and Yield of Akitakomachi Rice (<em>Oryza sativa L.</em>). Asian Journal of Agriculture and Food Sciences, 9(6). https://doi.org/10.24203/ajafs.v9i6.6825