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_________________________________________________________________________________ 

ABSTRACT— The importance of symbolic systems is that they give us the possibility of simplifying some dynamical 

systems. Our expectations is that our work can help to understand better the behavior, under iteration, of the Real 

Rational Map, f(x)=(x²-a)/(x²-b), with 0<b<a<1. Kneading Theory is a powerful tool, and we use it to simplify 

processes arising from the complicated behavior of this map in a more simple way. In this work we establish some 

rules that bound regions where we can find, or not, Kneading pairs for f(x).  
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1. INTRODUCTION 

    Historically, the matter that today we call “Symbolic Dynamics” appeared with the french mathematician Jacques 

Hadamard in one attempt to simplify one problem: the use of sequences of symbols to study the distribution of geodesics 

in certain surfaces. Later in the years 1930-1940, Arnold Hedlund and Marston Morse developed the method in their 

studies of geodesics of negative curvature, designating these ideas as Symbolic Dynamics. 

Using all the work already developed to logistic maps, or polynomial maps with degree bigger than two, that we can 

find on the scientific publications related to the study of its iteration, and the work of Cabral [2] that describes a small 

difference on the behavior of rational maps from these ones, this work intends to be a small contribution to understand 

better the behavior, under iteration, of the Real Rational Map,    2 2( ) /f x x a x b   , and for start we work only with the 

parameters 0<b<a<1, without any loss of generalization. Milnor had published a lot of work regarding the dynamics of 

real rational maps, but all of them are continuous maps, and with rational degree bigger than two. In general, Milnor 

worked with real maps that are topological conjugate to the logistic map. Our maps are clearly rational maps 

discontinuous and with rational degree zero, as the case study by Cabral [2]. So we intend to add, with this paper, more 

information to the knowledge of how these kinds of maps f(x) behave.  

    Adler in [1], made the question "How and to what extent can a dynamical system be represented by a symbolic 

one?" This question as a very difficult incompatibility to solve: as, usual, the time evolution models are presented in a 

phase space of differential varieties but any symbolic system is totally disconnected. So, it is impossible to associate this 

two realities in one-to-one relation, but as said by Marcus, [3] "A symbolic system will be, always, one good 

approximation of the model that we want to study.”. The main question will be always to find the best possible 

approximation, that is, to define the set of points on the phase space that can be considered equivalent and so represented 

by an unique symbol. This identification is possible trough the Markov partitions. 

So, we will use Markov partitions and Kneading Theory to accomplish our goal of codifying the iteration under f(x) 

of one object. 

The most interesting symbolic systems are the ones, from a practical point of view, that allow us without many 

difficulties to characterize their dynamical aspects, and our map f(x)  is one of this cases. 

To avoid confusion in symbols, during this work, we use the underlined symbol N to represent the natural numbers 

set, and the underlined symbol R to represent the real numbers set. We also will differentiate the use of the symbols and 

“<”, “≤” using them when the order is the usual on the real numbers set, and will use them slightly modified as “≺”, “≼”, 

respectively, when ordering elements on the symbolic set S. 

2. INITIAL BACKGROUND 

The fundamental ingredient of a symbolic system is, naturally, the set of symbols A, that we call alphabet. This set A 

has a finite number of elements. The simplest symbolic system that we can create is the full shift system, that is, the 

space of all infinite sequences of symbols in S, with SN = {x=(xi):xiS, i=1,2,3,…}.  
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This space works as the set of orbits of the dynamical system, and the alphabet S is its phase space. With the 

introduction of the shift application : SN  SN, where each element i of the sequence y=σ(x) is given by yi=xi+1, we can 

recuperate usual concepts of dynamical systems as the periodic orbits of period p identified as σk+p(x)=σk(x), for all k, p  

N. The symbolic system for which is not allowed any symbol repetition is a sub shift. 

    From all the possible sequences generated by combining the elements of S, using standard combinatory, as we can 

see in Milnor and Thurston [5], only a few describe the dynamics of a map f. We will call these the group of "admissible 

sequences". If we denote Σf as the space of all admissible sequences for f, then we have σ(Σf)=Σf. In the construction of 

symbolic spaces Σf, the family of words that are finite receives the name of sub shift of finite type. So, given a symbolic 

system Σ=Σf, let Bm(Σ) be the set of all words of length m present in the sequences of Σ. The complexity of a symbolic 

system Σ will be related with the growth rate of the number of elements of Bm(Σ) as the length m grows to infinite, see 

Milnor and Thurston [5]. This number gives an interpretation of the growing of diversity of sequences, that is, the 

dynamics of the system.  

The following definition 2.1, definition 2.2 and theorem 2.1 are due to Milnor and Thurston [5], but they can be found 

also in the works of Adler [1], Martins, Severino and Sousa Ramos [4], among others. 

Definition 2.1: Let Σf be a symbolic space. We call entropy of Σf to the limit  

2

1
( ) lim log ( )f m f

m m
h B


   , 

where ( )m fB  represents the number of elements of ( )m fB  . 

Since Σf ⊂ SN, then |Bm(Σf)|≤|Bm(SN)|=|S|m, and we have h(Σf)≤log2|S|, the upper limit to entropy. 

Definition 2.2: Let A=(aij), the n-dimension square matrix with elements in the set {0,1}. Using the alphabet S, 

we call Topological Markov Chain (TMC) to the symbolic system ΣA with elements x=(xi) such that 1, 1
ax xi i




. 

Theorem 2.3: (Adler [1]) Let ΣA be a TMC, with an irreducible matrix A. Then its topological entropy is given by 

h(ΣA)=log(λp(A))=ρ(A) where λp(A) is the Perron Eigen Value of the matrix A, and ρ(A) the spectral radius of A. 

3. CODIFYING THE PHASE SPACE 

Codifying the phase space of the dynamical system is the fundamental point to initiate the symbolic representation of 

its dynamics. It is necessary to identify the critical points, the discontinuity points and the discontinuity points of the first 

derivative. In this article we study the dynamics of the map    2 2( ) /f x x a x b   .  

So, let’s define the sets M={x R: x<-√b}, D1={-√b},  L={x∈R:-√b<x<0}, C={0}, R={ x R:0<x<√b}, D2={√b}, 

N={ x R:√b<x<1}, U={1}, and F={ x R:x>1}. 

Definition 3.1: Let x ∈ R, and an application f, we define the itinerary it(x) of x, under f, to the sequence of 

symbols of the kneading alphabet S, it(x)=ad(x)ad(f(x))ad(f²(x))... We have that it(x) are the elements of Σ. ■ 

Example 3.1.1 For example, if a=1 and b=0,5, we have for the critical point x=0, the iterate  

it(0)=ad(0)ad(f(0))ad(f²(x))…=CFN…, having (it(0))=FN…. 

Definition 3.2: We define parity of a sequence (S1 S2... Sn ) as ρ(S1 S2... Sn ) with ρ(S1 S2... Sn )= -1 if the sum of 

the symbols M and L in (S1 S2... Sn ) is odd, and ρ(S1 S2... Sn )= +1 if it is even.■ 

Example 3.2.1 We have  ρ(FNM )=-1 and ρ(FNML )=+1. 

Definition 3.3: The relation of order in the set Σ is defined by M≺D1≺L≺C≺R≺D2≺N≺U≺F≺, ordering the 

elements of S, following their respective positions on the real axis.  

Let P, Q∈ Σ, Pn≠Qn. We say that P Q if  ρ(P1P2...Pn-1)=+1∧Pn Qn or  ρ(P1P2...Pn-1)= -1∧Qn Pn. ■ 

Example 3.3.1: If we want to order the sequences FNMC and FNML, we start with the first position and we see 

that they a common symbol, as in the second and third position, but since L≺C, we have FNML≺FNMC. 

The symbolic order is related with the natural order of the real numbers by the lemma 3.4. 
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Lemma 3.4 (Sousa Ramos [7]) If f is a modal application on the interval, and if x, y ∈ I R, x ≠ y, then    

x<yit(x) ≼ it(y) and it(x) ≺ it(y)x<y. ■ 

    Obviously not all elements of Σ are iterations of x∈ R, under some application f. To the ones that correspond to 

the iterations of some point we will call it admissible sequences.  

The relevance that symbolic dynamics achieved in the last two decades is due to the works of Milnor and Thurston 

[5] and Sousa Ramos [7]. Milnor and Thurston gave us the possibility of the classification of the dynamics through the 

iterations of some points, using kneading sequences. To study the dynamics of f(x) we need to study the dynamics of   

x=-√b, x=0 and x=√b. But, since f²(-√b)=f²(√b)=1, we will have f 3( √b)=f(1) so it is enough to study the point x=1 

and the critical point x=0 to understand the behavior of f(x) and we will do it at the same time defining a Kneading 

Invariant that uses both it(1) and it(f(0)), joined in a pair of elements. 

Definition 3.5: Let f be an application. We define the kneading invariant of f, K(f) as the pair K(f)=(K0, K1) with 

K0=it(f(0)) and K1=it(1). ■ 

Proposition 3.6: If x∈ R and f a modal application in each interval of its domain, we have it(f(x))≼K1 or 

K0≼it(f(x)), with K(f)=(K0,K1). ■ 

Proof: Let    2 2( ) /f x x a x b   , with 0<b<a<1. If x∈]-√b,√b[, the function f is a modal application on the 

interval, and we can see that f(x)≥f(0) and f(x)≥1. We have by lemma 3.4 that f(0)≤f(x)⇒it(f(0))≼it(f(x)), but 

it(f(0))=K0, so K0≼it(f(x)). If x∉]-√b,√b[, we have f(x)<1, and again using lemma 3.4 we have 

f(x)<1⇒it(f(x))≺it(1). But, it(1)=K1, so it(f(x))≺K1. ■ 

One of the main contributions of Sousa Ramos [7] in this area was the construction, through the kneading invariant of 

the application, of a Markov Matrix. Indeed, for any pair of finite kneading sequences, it is possible to find a Markov 

partition of the phase space, that is, a finite collection C={I0,I1,...,In} of disjoint open sets, such the closure of its union 

matches all phase space, and the image by the application of each one of this sets is the union of some elements of C. We 

have , ,j kI I j k  and 
0

n
I

j
j




 with ( )

1

j
m

f I I
j k

j

 .  

The Markov transition matrix AK(f)=(aij) associated to the kneading invariant is defined as aij=1, if f(Ii)⊃Ij and aij=0 

otherwise. 

    Example 3.7: In our function f, for a≃0,543237 and b≃0,317003 we have K(f)=(K0,K1)=(FND2,UNMC), a 

periodic orbit of period 8. Making x0=0 and y0=∞, with xn+1=f(xn) and yn+1=f(yn), we have the following values 

ordered in the real axis: -∞<y3<-√b<0<√b<y2<x2<1<x1<∞. Now we can create the finite collection            

C={I₀,I₁,I₂,I₃,I₄,I₅,I₆,I₇,I₈} with I₀=]-∞,y₃[, I₁=]y₃,-√b[, I₂=]-√b,0[, I₃=]0,√b[, I₄=]√b,y₂[, 

I₅=]y₂,x₂[, I₆=]x₂,1[, I₇=]1,x₁[ and I₈=]x₁,∞[. Applying f we have f(I₀)=I₃ I₄ I₅ I₆, f(I₁)=I₀

 I₁ I₂, f(I₂)=I₈, f(I₃)=I₈, f(I₄)=I₀, f(I₅)=I₁ I₂ I₃, f(I₆)=I₄, f(I₇)=I₅ and f(I₈)=I₆. Then the 

transition matrix of the phase space is  
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and using the spectral radius we can calculate its growth number s≃1,80709. 

4. THE SYMBOLIC WAY 

As is well known, the numerical calculus, especially if we deal with iterations of rational functions, can return a lot of 

errors hard to control, due to the sensitive iteration of small values under f. So it is important that if we could build the 

transition matrix using only the symbolic space and its dynamics.  

In our function f, we have periodic orbits of x=0 and x=1, that belong to the same orbit, characterized by Cabral [2], 

where it is given the influence on the calculus of entropy of the function f, but we have also distinct orbits, or one orbit is 

periodic and the other pre-periodic, telling us that the study of the function f dynamics will be a challenging work in the 

near future. So, in this paper we will dedicate our attention only to the cases where K(f)=(K0, K1) is a pair of finite 

sequences. 

Let (xik) be the sequences given by x0k=σk(K0), with k=1,2,...n0 and x1k=σ1k(K1), with k=1,2,...n1. The values n0 and n1 

are the length of K0 and K1, respectively. The points (xik) will belong to real intervals where the function is increasing or 

decreasing. We calculate the symbols iteration using the following rules: 

 

 

 

 

 

Then we build the transition matrix A and can calculate the growth number. To understand better this process let us 

see the next example. 

Example 4.1: Let K(f)=(FNNMC,UNMMD2). So we have K0=CFNNMC, K1=∞UNMMD2 and through shifting 

 

 

 

 

 

Comparing the first symbol of each xik and using the monotonicity of f we can order them on the real axis. We can 

see that x14, x04, and x13 are the lowest values since that f is decreasing in M. Next we look at the second symbol, 

and we see that M≺C≺D2 in the real axis partition, but before f was decreasing so D2≺C≺M, thus we have 

MD2≺MC≺MMD2. Doing the same to x03, x12 and x02 we can see that they have N as first symbol and f is 

increasing, there so, the order will be to the second symbol M≺N and we have x03, x12≺x02. Now we need to use the 

third symbol of x03 and x12, regarding the aspect that NM has parity -1, so f is decreasing, and the order will be to 

the third symbol C≺M. In conclusion we have x03≺x12≺x02  and repeating the process we have the Markov partition  

x14≺x04≺x13≺D1≺x05≺x15≺x03≺x12≺x02≺x11≺x01 

and we can build the partition matrix  
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Until now this calculation is suppressing only the errors in the iteration of the elements, but we need to know K0 and 

K1 by numeric calculations, so its calculation can have also some errors. How to avoid this? Is there a way to calculate K0 

and K1 without using numerical calculus? The answer is yes! The way is to build a set of rules that allow us to distinguish 

the admissible sequences from the ones that are not. This way is known as Kneading Sequence Combinatory, and this 

work intend to contribute to the generalization to the real rational functions, since it is already well known to other types 

of functions as the polynomial quadratic function, see Martins, Severino and Sousa Ramos [4], Marcus [3], Sousa Ramos 

[7]. 

5. KNEADING SEQUENCE COMBINATORY 

As we can evaluate from the graphic of the function    2 2( ) /f x x a x b   , with 0<b<a<1, as seen on the example in 

Figure 1,  

 

Figure 1: Graphic of f(x)=(x²-1)/(x²-0.5) 

under iteration the symbol U can shift to R or D2 or N, that is, U >> R, D2, N. Resuming we have: 

M>>M, D1, L, C, R, D2, N D2>>∞ 

D1>>∞ N>>M, D1, L, C, R, D2, N 

L>>F U>>R, D2, N 

C>>F F>>R, D2, N 

R>>F ∞>>U 

For simplify the results and to avoid long tables, we will consider only the sequences of 4 symbols for K1 and 5 

symbols for K0, at maximum. And with this restriction we can build universal rules for all sequences K0 and K1, in order 

to both sequences be admissible.  

The following proposition 5.1 and theorem 5.2. establish two rules in our construction that we call Rule 1 and Rule 2, 

respectively.  

Proposition 5.1: For K(f)=(K0,K1) we have (1) σⁿ(K0)≼K1 or K0≼σⁿ(K0), and (2) σⁿ(K1)≼K1 or K0≼σⁿ(K1). ■ 

Proof: This result comes directly from the properties of the function f and its monotonicity. ■  
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Theorem 5.2: Let (K0, K1) be a admissible kneading sequence of the real rational function    2 2( ) /f x x a x b   , 

with 0<b<a<1, then the following chain of inequalities is satisfied  

...≺σm(K0)≺σm-2(K1)≺σm-1(K0)≺...≺σ²(K1)≺σ³(K0)≺σ(K1)≺σ²(K0)≺K0≺σ(K0). 

The chain stops when the first symbol of one of the sequences σm(K0) or σm(K1) is not greater than N, for x>√b. ■ 

Proof: Since b<a<1 we have f²(0)<1<f(0), so σ²(K0)≺K1≺σ(K0). For x>√b, the function is increasing and working 

with lemma 3.4 we will have sequentially  

σ²(K0)≺K1≺σ(K0); 

σ³(K0)≺σ(K1)≺σ²(K0)≺K1≺σ(K0); 

σ4(K0)≺σ²(K1)≺σ³(K0)≺σ(K1)≺σ²(K0)≺K1≺σ(K0) 

... 

σm(K0)≺σm-2(K1)≺σm-1(K0)≺...≺σ²(K0)≺K1≺σ(K0). ■  

The conditions of Rule 2 to the initial iterates of x=f(0) and x=1 allow us to characterize the symbolic space where, 

fixed a kneading sequence, will be possible to identify the existing kneading pairs (K0,K1). Comparing this to what 

happens in the symbolic space of bimodal applications in the interval, see Martins, Severino and Sousa Ramos [4], this 

Rule 2 is a result with a new characteristic: it is possible to determine an upper and lower limit to the region where we 

can find the kneading pairs (K0,K1). Also the Rule 2 presents a condition to a pair (K0,K1) be a kneading invariant. 

 Resulting from the theorem 5.2 we have the next corollary: 

Corollary 5.2.1: Fixing a kneading sequence Ki, the kneading pairs will occupy a region in the symbolic set 

defined by σm(Ki) and σm-1(Ki) with m the lowest integer such that the first symbol of the sequence σm(Ki) is 

inferior to N. ■ 

Proof: We know that N represent values inferior to one. So, by Theorem 5.1 we have 

σm(K0)≺...≺σm-1(K0) and  σm-2(K1)≺...≺σm-3(K1) then we have the desired result. ■ 

To exemplify the utility of this rules in creating boundaries to the region where we can find the pair (K0,K1), we present 

two examples of application and an important result in the form of proposition that isolates a big region where we cannot 

find the desired pair.  

Example 5.3: Let K1=UNND1. In this case the chain of symbolic inequalities is 

σ
4
(K1)≺σ

4
(K0)≺σ2(K1)≺σ3(K0)≺σ(K1)≺σ2(K0)≺K1≺σ(K0). 

We conclude that the kneading sequence K0 must have the form K0=FNN..., but, since σ3(K1)≺σ4(K0)≺ND1 then 

the kneading sequences K0, which can create kneading pairs with K1=UNND1 are in the symbolic region 

FNND1≺K0≺FNNND1. 

Example 5.4 : Let K0=FNNMD2. We have K1=UN... and from theorem 5.2, and since 

σ4(K0)=MD2≺σ²(K1)≺σ³(K0)=NMD2 the kneading sequences K1, which can create kneading pairs with K0 are in 

the symbolic region UNMD2≺K1≺UNNMD2. 

Proposition 5.5 For K1=UNC, there is no kneading sequence K0 between FNND1 and FNNMMNLFNND1. ■ 

Proof: Let's suppose that exists a finite sequence S=S1S2...Sm-1X, with X=D1 or X=D2. We show that this 

sequence violates the necessary conditions for (K0,UNC) be a kneading invariant.  

Let FNNMMNLFNND1≺ S1S2...Sm-1X ≺FNND1. 

The first four symbols are already determined and so S=FNNMS5S6...Sm-1X. Since the parity of FNN is +1 we can 

write MMNNL...≺MS₅S₆... and so, S₅=M, S₆=N and S₇=N. This way we can write NLF...≺NS₈S₉. The 

alternatives for S₈ are L, R, D2 or N. But K1=UNC, so the itinerary of a point in √b<x<1 will necessarily be lower 

than this one, NS₈≺σ(UNC)=NC. The only possibility to S₈ is L, and S₉=N. 

Until now S=FNNMMNNLFNS11S12.... By other hand the itinerary of a point x>1 must be bigger that the itinerary 

of the critical point, so we have FNNM...≺FNS11S12... and this assure us that S11=N and the symbol S12 can be 

M,D1,L,R,D2 or N. But by Theorem 5.1  we have  σ²(FNNM)≺σ²(FNS12...)≺σ(UNC)≺σ(FNNM...)≺σ(FNS12...), 

that is  NM...≺S12S13...≺NC. 
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We conclude that S12=N and S13=M, D1 or L. But, since the parity of the initial subsequence of S is odd than we 

have S13≺D1, and follows that S13=M. This is not possible and the sequence should be S=(FNNMMNNL)∞, and 

this contradicts the fact that S should be finite, with a symbol D1 or D2. Then between FNND1 and 

FNNMMNLFNND1 there is no compatible kneading sequence with K1=UNC. ■ 

We can observe that (FNNMMNNL)∞ corresponds to the itinerary of the periodic orbit which kneading invariant is 

FNND1∞UNC. 

6. CONCLUSIONS 

We built in this work two important rules that allow us to create some boundaries on possible regions where we can 

find the kneading pairs, or to exclude some as they do not have any of this pairs. We opened the door to the study of the 

behavior of the real rational maps of degree zero, avoiding the use of numerical calculus, which could drive us into 

errors, using the Kneading Sequence Combinatory. This work will continue in order to find more and better criteria to 

bind in a more efficient way the regions of existence of the Kneading Pairs.     
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