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ABSTRACT— This work is an attempt to study the dynamics of real rational maps    bxaxxf ba  22

, )( , 

using symbolic dynamics. It is given an example that illustrates how the topological entropy can be calculated using 

kneading theory and Markov partitions in this family of rational maps.  
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1. INTRODUCTION 

The family of maps    bxaxxf ba  22

, )( is a large and distinct group of functions that are smooth, with 

degree zero, from a circle to itself, having two critical points, zero and infinity, and not onto. Depending of the 

parameters a and b we can organize this family in eight different groups as shown in figure 1. Each group has its own 

behavior. 

 

Figure 1: The family of maps    bxaxxf ba  22

, )(  

 

In this paper we will study only the dynamics of the map    bxaxxf ba  22

, )(  with a>b, a>0, b>0. 

With these restrictions the Schawrtzian derivative   2

, 23)( xxfS ba   is always negative and the roots of 

)(, xf ba  are super-stable fixed points and this map have one critical point at x=0. 

The dynamics of )(, xf ba is complex, but easy to understand with the proper tools. The goal of this work is to add 

one more tool to understand it, using tools already known in the study of the logistic map as symbolic dynamics and 

Markov partitions. To give one idea about of the complexity of the behavior of )(, xf ba  it is enough to see the 

bifurcation diagram shown in figure 2. 
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Figure 2: Bifurcation diagram for )(, xf ba  with b=-2.5 and  6.6,5.2a  

 

So, in section 2 and 3, using standard symbolic dynamics it is introduced admissibility rules of iteration sequences 

associated to )(, xf ba , and will be presented the structure of the set of admissible sequences, building one kneading 

sequence tree. The techniques of symbolic dynamics are based on the Kneading Theory for one-dimensional 

multimodal maps, developed by Milnor and Thurston, see [4] and Ramos, J.S. [5]. 

Since Kneading theory is an appropriate tool to obtain a topological classification of the one-dimensional maps 

this works intends to explore some results that can create a possibility of extension of it for the study of rational maps. 

2. SYMBOLIC DYNAMICS 

Let bd  , be  , the alphabet  ZEROLDAH ,,,,,, , and the set 0N
P of symbolic sequences of 

the elements of P, with  ,...2,1,00 N . Now, taking the application    
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as we can see in figure 3. 

 

Figure 3: The partitions of real axis 

 

If now we consider the shift operator : ,   ...... 321210 XXXXXX  we have the commutative 

diagram  
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with   EDfR
Nn

n

ba ,\
0

,


 , and ∑ is the symbolic space with alphabet P,  . 

We can introduce in Ω and order, induced lexicographically by the order in the real axis, R, with a parity defined by 

the subintervals where the function )(, xf ba is decreasing. So, we have ZROLA  , when the parity is even 

and ALORZ  , when the parity is odd. 

Definition 2.1. We say that YX  for YX , , iff kiiik YX  0,:  and 

k

XXnal

k

XXnal
YX kk )...()...( 1111 )1()1(   , where )...( 11 kXXnal is the number of times that the symbols A and L 

appear in )...( 11 kXX . 

We have, as example, using the definition 2.1., ...)(...)( RZLRZA  and ...)(...)( RZZRZR  . 

3. TWO METHODS, THE SAME ENTROPY VALUE 

The orbit of an element x is the set formed by the images of the successive compositions, or iterations, of )(, xf ba . If 

we construct a correspondence of each composition image, to a letter of the alphabet H, that identifies the partition of the 

real axis where the image is included, each orbit corresponds to a sequence in ∑.  

With some calculus we can see that the values in the left neighborhood of x=d and the values in the right 

neighborhood of x=e, have the same sequence in ∑. We will designate these points by p-points, associated to P 

sequences in Ω. By the same reason we will designate the values in the right neighborhood of x=d and the values in the 

left neighborhood of x=e as s-points, associated to S sequences in Ω. 

Using the map bai , we introduce the kneading data (P,Q,S), where Q codifies the orbit of the critical point x=0, P 

codifies the orbit of the p-points and S codifies the orbit of the s-points.  As an example if we take a=4.01 and b=2.5, on 

the iteration of baf , we will have the kneading data     
 )(,)(,,, ZARZZRZRZARZARZRZARZSQP . 

Looking at figure 4 we can see all the possible sequences to (P,Q,S), trough a combinatorial tree constructed using the 

order, and parity defined in definition 2.1., and notice that the minimal sequence is  AZ and the maximal sequence is 

Z with fixed b.  But not all the sequences are admissible in each family of maps baf , . 

 

 

Figure 4: Tree of all admissible sequences for x=0. 

Taking b=2.5 and  a5.2 we can characterize the admissible sequences, using a transition matrix T. If we define 

the matrix T as the matrix where the rows and columns are labeled by the elements of the alphabet H, such as  
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It produces the following result. 

Proposition 3.1.  Let ,...),...,,( 21 iXXXX  be an admissible sequence. Then X satisfies the following rules: 

1) 1
1, 
ii XXT ; 

2) If LX i  or RX i  then QXi )( , with Q the kneading sequence of the critical point x=0. 

Proof  

With the action of baf , each real interval changes and it is transferred in another interval or in the union of real 

intervals. Using the results of Lampreia, J.P. and Ramos, J.S. [1] on the map    bxaxxf ba  22

, )(  

with b=2.5 and  a5.2 , and considering the partitions of the real axis labeled by the symbols A, L, R, 

Z, using the symbol O for  x=0, having ZROLA  , when the parity of  baf , is even and

ALORZ  , when the parity of baf ,  is odd, we can see with simple calculus, that T 

represents the iteration of the elements of each partition by baf , , following naturally the results 1) and 2). ■    

 

 

Figure 5: Markov partition for ZARZ, a=4.01 and b=2.5. 

Taking proposition 3.1., and the real axis as we can see in figure 5, associating each ix , i=1,2,…,k to a 

symbolic sequence    )()( ... kki QQ   , where 
)(kQ is the corresponding kneading sequence to 

)0(,baf ; each iy , i=1,2,…,k to a symbolic sequence    )()( ... kki PP   , where 
)(kP is the 

corresponding kneading sequence to )(, pf ba , with x=p a p-point; each iz , i=1,2,…,k to a symbolic sequence 

   )()( ... kki SS   , where 
)(kS is the corresponding kneading sequence to )(, sf ba , with x=s a 

s-point we can build, for a=4.01 and b=2.5, see figure 5, the transition matrix 
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By Misiurewicz, M. and Szlenk, W. [3], we can calculate the topological entropy, 

    







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

k
k

k
batop Lfh

1

, limlog , where kL  is the number of laps of 
k

bababa fff ,,, ...  , that is, the 

number of sub-intervals where 
k

baf , is monotone, or  )(log)( max, Mfh batop  , where )(max M is the 



Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 – 516X) 

Volume 01– Issue 04, December 2013 
 

Asian Online Journals (www.ajouronline.com)  73 

 

spectral radius of the transition matrix M associated to the Markov partition.  In this case we have

51879.0)92756.1log()( , batop fh . 

Another route to calculate the topological entropy is trough the kneading matrix, as described in Lampreia, J.P. 

and Ramos, J.S [1], using the techniques developed by Ramos, J.S. [5]. 

As defined in Milnor, J. and Thurston, W. [4], page 483, the i-th kneading increment i  of one piecewise-

monotone map f , strictly monotone in the interval  iii wwI ,1 , associated to the kneading data, is

     iiw ww
i

 , with i=0,1,2,..., where )(x is the invariant coordinate of each symbolic sequence 

associated to the itinerary of each turning point iw .  On the work of Milnor and Thurston each point iw is a 

local minimum or maximum of the map f. We can deduce, very easily, if 



i

iII is the domain of a 

continuous map f, then if f is increasing in iI  it decreases in 1iI . But, if f is discontinuous this deduction is not 

true.  

Since the monotonicity of the map f, in iI , does not change if we consider iI  as an open interval  ii ww ,1 , we 

can make also the discontinuities of a map to be the turning points iw  and in our case, for baf ,  we do dw 0 , 

01 w  and ew 2 .  

Following the results presented by Leonel, J.L. and Ramos, J.S. [2], for maps with holes, we can adapt the 

results of Milnor and Thurston to our map baf , , using a kneading matrix N(t), see [4], page 482, and the 

kneading determinant 
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
, see [4], page 486, where )(tDi is the 

determinant of N(t) without the column i and the cyclotomic polynomials in the denominator corresponds to the 

stable periodic orbits of x=0, and x=1. 

Using the same example of baf , , with a=4.01 and b=2.5, that produces the Markov partition showed in figure 5, 

we have the kneading increment for     
 )(,)(,,, ZARZZRZRZARZARZRZARZSQP  as: 
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Resulting the kneading matrix 
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Choosing the first three independent columns, we have 
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1

1
)( det

tttt

tttt
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 , and since 
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t
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
, then 

4321)( tttttD  . So, by Misiurewicz, M. and 

Szlenk, W. [3], we have   51879.0
1
*, 

t
fh batop , where 

*t is the smallest zero, in module, of )(tD . 

So, calculating the topological entropy trough the kneading matrix, as described in Lampreia, J.P. and Ramos, J.S [1] 

or trough Markov partitions, as described in Misiurewicz, M. and Szlenk, W. [3], it is the same, giving us clues that both 

methods works for real rational maps for certain selected points. In our experimental computational research we found 

more working examples for both equivalent methods, leading us to the proposition 3.2. We can find a proof that both 

methods are equivalent in Ramos, J.S. [5]. 

 Proposition 3.2 Taking the kneading data (P,Q,S), where Q codifies the orbit of the critical point x=0, P codifies the 

orbit of the p-points and S codifies the orbit of the s-points of a map    bxaxxf ba  22

, )( , with a>b, a>0, b>0, 

if      SQP kji   , for some integers i, j and k, then we obtain the topological entropy value  

 
*,

1

t
fh batop  , with 

*t the smallest zero, in module, of the kneading determinant D(t), of the kneading matrix N(t), for 

each a, b. 

Proof  

When we calculate the i-th kneading increment i  of one piecewise-monotone map baf , , strictly monotone in the 

interval  iii wwI ,1 , associated to the kneading data,      iiw ww
i

 , each one of this values are infinite 

series. Since for some integers i, j and k, we have      SQP kji   , the infinite series 0 , d  and e have 

only the first elements as non-common elements, assuring that at least three of the columns of the kneading matrix N(t) 

are linear independent. As we can see in Milnor, J. and Thurston, W. [4], after a certain term order r, in our case

rkji ,, , we have a power series common to 0 , d  and e . This is enough to compute the kneading determinant 

D(t) and the topological entropy value. ■    

4. CONCLUSION 

After the identification of the values that works for both methods, described by proposition 3.2, we hope that our 

work opens a door on the calculus of the entropy value for discontinued rational real maps. We suspect that both of these 

methods also work in small neighborhoods of the already identified values, so our work will now proceed in this 

direction, trying to indentify these regions. It is easy to understand that both methods works when the orbits P, Q and S, 

converge to the same orbit, after some iteration of the map, but what happens when this does not happens? What will be 

the changes that we must do to both methods in order to use them to calculate the entropy value? Nice questions that our 

future work will try to solve.      

5. REFERENCES 

 

[1] Lampreia, J.P. and Ramos, J.S., “Symbolic Dynamics of Bimodal Maps”, In Portugaliae Mathematica, vol.54, Fasc. 

1, 1997 

[2] Leonel, J.L. and Ramos, J.S., “Weighted Kneading Theory of Unidimensional Maps with holes”, 

arxiv.org/abs/math/0302354, 2003  



Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 – 516X) 

Volume 01– Issue 04, December 2013 
 

Asian Online Journals (www.ajouronline.com)  75 

 

[3] Misiurewicz, M. and Szlenk, W., “Entropy of piecewise monotone mappings.”, Studia Math, 67, pp. 45-63, 1980. 

[4] Milnor, J. and Thurston, W., “On Iterated Maps of the Interval”, In J.C. Alexander (ed.) Proceedings Univ. Maryland 

1986-1987. Lect. Notes in Math. 1342, pp. 465-563, Springer-Verlag, berlin-New York, 1988. 

[5] Ramos, J.S., “Hiperbolicidade e Bifurcação de Sistemas Simbólicos”, PhD. Thesis, Universidade de Lisboa, 

available at http://purl.pt/7368, 1989 

 

 


