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ABSTRACT— In the short work, we generalize a problem in [1].This problem can be used in approximation theory 

and applied mathematical sciences. Finally, we solve a problem on a null set in a measure space, in a simple way. 
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1. INTRODUCTION 

Maurice Fréchet introduced metric spaces in 1906[2].A metric space is a set where a notion of distance (called a metric) 

between elements of the set is defined. 

The metric space which most closely corresponds to our intuitive understanding of space is the 3-dimensional Euclidean 

space. In fact, the notion of "metric" is a generalization of the Euclidean metric arising from the four long-known 

properties of the Euclidean distance. The Euclidean metric defines the distance between two points as the length of the 

straight line segment connecting them. Other metric spaces occur for example in elliptic geometry and hyperbolic 

geometry, where distance on a sphere measured by angle is a metric, and the hyperboloid model of hyperbolic geometry 

is used by special relativity as a metric space of velocities. For more detail see [3-7]. 

A metric space also induces topological properties like open and closed sets which leads to the study of even more 

abstract topological spaces. 

In this paper, we have discussed on the the minimum distance between a closed set and a compact set in a metric space 

which are distinct. Finally, we prove an assertion in a measure space. 

 

2. A GENERALIZATION 

In the section, first we have a problem which is in [1]. Next, a generalization of it, is proved.  

Let us to present the problem in special case.  

Problem2.1. Let  be compact and closed subsets of  , respectively. Further, suppose that  be 

distinct. Then there is a positive number  such that   for all  

 
Remark2.2. Notice that the condition "distinctness" in the above problem is necessary.  

Now, we are ready to prove the generalization of the previous problem. 
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Generalization2.3. Let  be compact and closed subsets of a metric space , respectively. Further, 

suppose that  be distinct. Then there is a positive number  such that   for all 

 

Proof. By contrary, Let for each , there are  so that  

 

Let  be an arbitrary positive integer. Set  . Then we can obtain two sequences  and  of elements in 

, respectively so that 

 
For sufficiently large  we have  

 
Since  is compact, so  has a convergent subsequence. Without loss of generality one may consider  as this 

subsequence. Hence  

 
For some  On the other hand we have 

 
If  , then the right side of the last inequality approaches to zero. Therefore 

 
As . Since  is closed, so  which is impossible; Since are distinct. □  

Remark2.4. According to the generalization2.3,  where  

 

3. A PROBLEM ON A NULL SET 

In the section, We present a problem which appeared in a measure space; This problem is as follow: 

Problem3.1. Let  be a nonempty set and  an outer measure. Suppose that  be a sequence of 

subsets in  such that  Consider the set  

Then =0. 

 

Proof. To show that =0,We prove that  is countable. By definition of  For each  there is  so 

that  Define the relation  on  as follow: 
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It is easy to verify that  is an equivalence relation on Set  Clearly,  Now, Consider 

the function  defined by =  , where  denotes the equivalence class of . Since the equivalence 

classes partite , so  is well-defined. Also, evidently  is onto. Let . This implies that   

On the other hand,  and so we must have  This means that  is also one to one.Therefore,  is 

countable.                                         □ 
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