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ABSTRACT— In this paper, we determine the degree of approximation of a function )),(( rtLipf  , where 

)(t is nonnegative and increasing function of t, by (E,1)(C,2) product operators on Fourier series associated with f. 
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1. INTRODUCTION 

Let f(x) be periodic with period 2  and integrable in the sense of Lebesgue. The Fourier series of f(x) is given by 
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with nth partial sum  xfsn : . 
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The degree of approximation of a function RRf :  by a trigonometric polynomial nt  of order 

n under sup norm 


 is defined as 
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                                                                                             (Definition 5.38 of Mc Fadden [6], 1942).  

 

Given a positive increasing function  t  and an integer   rtLipfr ,,1  if 
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 If    tt   then   rtLip ,  class coincides with the class  rLip , and if r  then  rLip , reduces to 

the .Lip  
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 We observe that 

    rtLiprLipLip ,,     for 1,10  r . 

This method of approximation is called trigonometric Fourier approximation (TFA).  

Let  


0n

nu be a given infinite series with the sequence of its nth partial sums  ns . 

 

The (C, 2) transform is defined as the nth partial sum of (C, 2) summability and is given by 
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then the infinite series  


0n

nu   is summable to the definite number s by (C,2) method. 
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then the infinite series 


0n

nu  is said to be summable (E,1) to the definite number s (Hardy[3]).  

    The  (E,1)  transform  of  the  (C,2)  transform  defines  (E,1)(C,2)  transform  and  we   denote  it by 
21

nnCE . 

 

Thus if 
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where 
1

nE   denotes  the  (E,1)  transform of ns and 
2

nC  denotes the (C,2) transform of sn, then  the  

series 


0n

nu  is said to be summable by (E,1)(C,2) means or summable (E,1)(C,2)  to a definite number s.  

 

We use the following notations: 
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2. MAIN THEOREM 
 

    Alexits [1], Sahney and Goel [11], Chandra [2], Qureshi and Neha [9], Liendler [5] and Rhoades [10] have determined 

the degree of approximation of a function belonging to Lip  class by Cesáro, Nörlund and generalized Nörlund single 

summability methods. Working in the same direction Sahney and Rao [12], Khan [4] and Qureshi [7,8] have studied the 

degree of approximation of function belonging to  rLip ,  class by Nörlund and generalized Nörlund single 

summability methods. But nothing seems to have been done so far in the direction of present work. 

The   rtLip , class is a generalization of Lip  class and  rLip ,  class. Therefore, in present paper, a theorem 

on degree of approximation of a function belonging to )),(( rtLip  class by (C,2)(E,1) product summability means of  

Fourier series has been established in the following form: 

2.1 Theorem 1 

    If f  is a 2 -periodic function, Lebesgue integrable on [0,2 ], belonging to the rtLip ),((  class then its degree of  
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approximation by (E,1)(C,2)  summability means on Fourier series is given by 
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provided  t  satisfies the following conditions:                                                                         
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and                                               
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where  is an arbitrary number such that ss  10  , 1
11


sr
, conditions (2.2) and (2.3) hold uniformly in x and 

21

nnCE  is (E,1)(C,2) means of the series (1.1). 

 

3. LEMMAS 
 

    For the proof of our theorems, following lemmas are required: 

 

3.1 Lemma 1    

               1 nOtKn   for 
1

1
0




n
t  

Proof:  For ,
1

1
0




n
t  tnnt sinsin    

    
 








































n

k

k

nn t

t

k
kkk

n
tK

0 0

2
sin

2

1
sin

)1(
)2)(1(

1

2

1








 

            

 
 
 
































n

k

k

n t

t

k
kkk

n

0 0

2
sin

2
sin12

)1(
)2)(1(

1

2

1







 

            
 





















n

k

k

n
kk

kkk

n

0 0

)1()12(
)2)(1(

1

2

1






 

           









 












n

k
n

kk
k

kkk

n

0 2

)2)(1(
)12(

)2)(1(

1

2

1


 

            


 


















n

k
n

k
k

n

0
1

12
2

1


 

           )}1(2{
2

1
1




nn

n
 



Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 – 516X) 

Volume 01– Issue 03, October 2013 

Asian Online Journals (www.ajouronline.com)  64 

 

          )1(  nO       

        

3.2 Lemma 2   
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                                    4. PROOF OF THEOREM 1 
 

    Following Titchmarsh [12] and using Riemann-Lebesgue theorem,  xfsn ;  of the series (1.1) is given by  
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    Therefore using (1.1), the (C, 2) transform 
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    Now denoting (E,1)(C,2) transform of  xfsn ;  by
21

nnCE , we write  
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    Since  t is a positive increasing function and using second mean value theorem for integrals, 
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Using Hölder’s inequality, 
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Since  t is a positive increasing function and using second mean value theorem for integrals, 
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    Combining (4.1), (4.2) and (4.3),  
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This completes the proof of the theorem. 

 

6. APPLICATIONS 
 

The following corollaries can be derived from our main theorem: 

 
 

Corollary 1  
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Corollary 2  
 

    If r in corollary 1, then the class ),( rLip   reduces to the class Lipf   and the degree of approximation 

of a function Lipf  , 10   is given by 
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Remark: An independent proof of above corollaries 1 can be obtained along the same lines of our theorem. 
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