Degree of Approximation of a Function Belonging to $Lip(\xi(t), r)$ Class by (E,1)(C,2) Summability Means

H. K. Nigam

Department of Mathematics, Faculty of Engineering & Technology, Mody Institute of Technology and Science (Deemed University), Laxmangarh, Sikar (Rajasthan), India.

ABSTRACT— In this paper, we determine the degree of approximation of a function $f \in Lip(\xi(t), r)$, where $\xi(t)$ is nonnegative and increasing function of t, by (E,1)(C,2) product operators on Fourier series associated with f.

Keywords— Degree of approximation, $Lip(\xi(t), r)$ class of function, (E,1) means, (C,2) means, (E,1)(C,2) product means, Fourier series, Lebesgue integral.

1. INTRODUCTION

Let f(x) be periodic with period 2π and integrable in the sense of Lebesgue. The Fourier series of f(x) is given by

$$f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
(1.1)

with nth partial sum $s_n(f:x)$.

 L_{∞} - norm of a function $f: R \to R$ is defined by $||f||_{\infty} = \sup\{|f(x)|: x \in R\}$

$$L_r - \text{norm is defined by } \left\| f \right\|_r = \left(\int_0^{2\pi} \left| f(x) \right|^r dx \right)^{\frac{1}{r}}, r \ge 1$$
(1.2)

The degree of approximation of a function $f : R \to R$ by a trigonometric polynomial t_n of order n under sup norm $\| \|_{\infty}$ is defined as

$$||t_n - f||_{\infty} = \sup\{|t_n(x) - f(x)| : x \in R\}$$

and $E_n(f)$ of a function $f \in L_r$ is given by

$$E_n(f) = \min \left\| t_n - f \right\|_r (\text{Zygmund [13]})$$
(1.3)

A function $f \in Lip\alpha$ if

$$f(x+t) - f(x) = O(|t|^{\alpha}) \quad \text{for } 0 < \alpha \le 1$$
(1.4)

 $f \in Lip(\alpha, r)$ if

$$\left(\int_{0}^{2\pi} \left|f\left(x+t\right)-f\left(x\right)\right|^{r} dx\right)^{\frac{1}{r}} = O\left(\left|t\right|^{\alpha}\right) \quad 0 < \alpha \le 1, \text{ and } r \ge 1$$
(1.5)
(Definition 5.38 of Mc Fadden [6], 1942).

Given a positive increasing function $\xi(t)$ and an integer $r \ge 1$, $f \in Lip(\xi(t), r)$ if

$$\left(\int_{0}^{2\pi} |f(x+t) - f(x)|^{r} dx\right)^{\frac{1}{r}} = O(\xi(t))$$
(1.6)

If $\xi(t) = t^{\alpha}$ then $Lip(\xi(t), r)$ class coincides with the class $Lip(\alpha, r)$ and if $r \to \infty$ then $Lip(\alpha, r)$ reduces to the $Lip\alpha$.

We observe that

$$Lip \alpha \subseteq Lip(\alpha, r) \subseteq Lip(\xi(t), r)$$
 for $0 < \alpha \le 1$, $r \ge 1$.
This method of approximation is called trigonometric Fourier approximation (TFA).

Let $\sum_{n=0}^{\infty} u_n$ be a given infinite series with the sequence of its nth partial sums $\{s_n\}$.

The (C, 2) transform is defined as the nth partial sum of (C, 2) summability and is given by

$$t_n = \frac{2}{(n+1)(n+2)} \sum_{k=0}^n (n-k+1) \ s_n \to s \ as \ n \to \infty$$
(1.8)

then the infinite series $\sum_{n=0}^{\infty} u_n$ is summable to the definite number s by (C,2) method. If

$$(E,1) = E_n^1 = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} s_k \to s \quad as \quad n \to \infty$$
(1.9)

then the infinite series $\sum_{n=0}^{\infty} u_n$ is said to be summable (E,1) to the definite number s (Hardy[3]).

The (E,1) transform of the (C,2) transform defines (E,1)(C,2) transform and we denote it by $E_n^1 C_n^2$.

Thus if

$$E_n^1 C_n^2 = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} C_k^2 \to s \quad \text{as } n \to \infty$$
(1.10)

where E_n^1 denotes the (E,1) transform of s_n and C_n^2 denotes the (C,2) transform of s_n , then the series $\sum_{n=0}^{\infty} u_n$ is said to be summable by (E,1)(C,2) means or summable (E,1)(C,2) to a definite number s.

We use the following notations:

$$\phi(t) = f(x+t) + f(x-t) - 2f(x)$$

$$K_n(t) = \frac{1}{\pi 2^n} \sum_{k=0}^n \left\{ \binom{n}{k} \frac{1}{(k+1)(k+2)} \sum_{\nu=0}^k (k-\nu+1) \frac{\sin\left(\nu + \frac{1}{2}\right)t}{\sin\frac{t}{2}} \right\}$$

2. MAIN THEOREM

Alexits [1], Sahney and Goel [11], Chandra [2], Qureshi and Neha [9], Liendler [5] and Rhoades [10] have determined the degree of approximation of a function belonging to $Lip\alpha$ class by Cesáro, Nörlund and generalized Nörlund single summability methods. Working in the same direction Sahney and Rao [12], Khan [4] and Qureshi [7,8] have studied the degree of approximation of function belonging to $Lip(\alpha, r)$ class by Nörlund and generalized Nörlund single summability methods. But nothing seems to have been done so far in the direction of present work. The $Lip(\xi(t), r)$ class is a generalization of $Lip\alpha$ class and $Lip(\alpha, r)$ class. Therefore, in present paper, a theorem on degree of approximation of a function belonging to $Lip(\xi(t), r)$ class by (C,2)(E,1) product summability means of Fourier series has been established in the following form:

2.1 Theorem 1

If f is a 2π -periodic function, Lebesgue integrable on $[0, 2\pi]$, belonging to the $Lip(\xi(t), r)$ class then its degree of

approximation by (E,1)(C,2) summability means on Fourier series is given by

$$\left\|E_{n}^{1}C_{n}^{2}-f\right\|_{r}=O\left[\left(n+1\right)^{\frac{1}{r}}\xi\left(\frac{1}{(n+1)}\right)\right]$$
(2.1)

provided $\xi(t)$ satisfies the following conditions:

$$\begin{cases} \frac{1}{n+1} \left(\frac{t|\phi(t)|}{\xi(t)} \right)^r dt \end{cases}^{\frac{1}{r}} = O\left(\frac{1}{n+1}\right), \tag{2.2}$$

and

$$\left\{\int_{\frac{1}{n+1}}^{\pi} \left(\frac{t^{-\delta}|\phi(t)|}{\xi(t)}\right)^r dt\right\}^{\frac{1}{r}} = O\left\{(n+1)^{\delta}\right\}$$
(2.3)

where δ is an arbitrary number such that $0 \neq \delta s + 1 < s$, $\frac{1}{r} + \frac{1}{s} = 1$, conditions (2.2) and (2.3) hold uniformly in x and $E_n^1 C_n^2$ is (E,1)(C,2) means of the series (1.1).

3. LEMMAS

For the proof of our theorems, following lemmas are required:

3.1 Lemma 1

$$|K_n(t)| = O(n+1)$$
 for $0 \le t \le \frac{1}{n+1}$

Proof: For $0 \le t \le \frac{1}{n+1}$, $\sin nt \le n \sin t$

$$\begin{split} \left| K_{n}(t) \right| &= \frac{1}{\pi 2^{n}} \left| \sum_{k=0}^{n} \left[\binom{n}{k} \frac{1}{(k+1)(k+2)} \sum_{\nu=0}^{k} (k-\nu+1) \frac{\sin\left(\nu+\frac{1}{2}\right)t}{\sin\frac{t}{2}} \right] \\ &\leq \frac{1}{\pi 2^{n}} \left| \sum_{k=0}^{n} \left[\binom{n}{k} \frac{1}{(k+1)(k+2)} \sum_{\nu=0}^{k} (k-\nu+1) \frac{(2\nu+1)\sin\frac{t}{2}}{\sin\frac{t}{2}} \right] \\ &\leq \frac{1}{\pi 2^{n}} \left| \sum_{k=0}^{n} \left[\binom{n}{k} \frac{1}{(k+1)(k+2)} (2k+1) \sum_{\nu=0}^{k} (k-\nu+1) \right] \right] \\ &\leq \frac{1}{\pi 2^{n}} \left| \sum_{k=0}^{n} \left[\binom{n}{k} \frac{1}{(k+1)(k+2)} (2k+1) \frac{(k+1)(k+2)}{2} \right] \right] \\ &= \frac{1}{\pi 2^{n+1}} \sum_{k=0}^{n} \left[\binom{n}{k} (2k+1) \right] \\ &= \frac{1}{\pi 2^{n+1}} \{2^{n} (n+1)\} \end{split}$$

Asian Online Journals (<u>www.ajouronline.com</u>)

$$= O(n+1)$$

3.2 Lemma 2

$$|K_n(t)| = O\left(\frac{1}{t}\right), \text{ for } \frac{1}{n+1} \le t \le \pi$$

Proof: For $\frac{1}{n+1} \le t \le \pi$, by applying Jordan's lemma

$$\begin{split} \sin \frac{t}{2} &\geq \frac{t}{\pi} \quad and \quad \sin nt \leq 1 \\ K_n(t) &\leq \frac{1}{\pi 2^n} \left| \sum_{k=0}^n \left[\binom{n}{k} \frac{1}{(k+1)(k+2)} \sum_{\nu=0}^k (k-\nu+1) \frac{\sin\left(\nu+\frac{1}{2}\right)t}{\sin(t/\pi)} \right] \right] \\ &\leq \frac{1}{\pi 2^n} \left| \sum_{k=0}^n \left[\binom{n}{k} \frac{1}{(k+1)(k+2)} \sum_{\nu=0}^k (k-\nu+1) \left(\frac{1}{t/\pi}\right) \right] \right] \\ &\leq \frac{1}{t 2^n} \left| \sum_{k=0}^n \left[\binom{n}{k} \frac{1}{(k+1)(k+2)} \sum_{\nu=0}^k (k-\nu+1) \right] \right] \\ &= \frac{1}{t 2^n} \left| \sum_{k=0}^n \left[\binom{n}{k} \frac{1}{(k+1)(k+2)} \frac{(k+1)(k+2)}{2} \right] \right] \\ &= \frac{1}{t 2^{n+1}} \left| \sum_{k=0}^n \left[\binom{n}{k} \right] \right] \\ &= \frac{1}{t 2^{n+1}} 2^n \\ &= O\left(\frac{1}{t}\right) \end{split}$$

4. PROOF OF THEOREM 1

Following Titchmarsh [12] and using Riemann-Lebesgue theorem, $s_n(f; x)$ of the series (1.1) is given by

$$s_{n}(f;x) - f(x) = \frac{1}{2\pi} \int_{0}^{\pi} \phi(t) \frac{\sin\left(n + \frac{1}{2}\right)t}{\sin\frac{t}{2}} dt$$

Therefore using (1.1), the (C, 2) transform C_n^2 of $s_n(f; x)$ is given by

$$C_n^2 - f(x) = \frac{1}{\pi (n+1)(n+2)} \int_0^{\pi} \phi(t) \sum_{k=0}^n (n-k+1) \frac{\sin\left(k+\frac{1}{2}\right)t}{\sin\frac{t}{2}} dt$$

Now denoting (E,1)(C,2) transform of $s_n(f;x)$ by $E_n^1 C_n^2$, we write

$$E_{n}^{1}C_{n}^{2} - f(x) = \frac{1}{\pi 2^{n}} \sum_{k=0}^{n} \left[\binom{n}{k} \frac{1}{(k+1)(k+2)} \int_{0}^{\pi} \frac{\phi(t)}{\sin \frac{t}{2}} \left\{ \sum_{\nu=0}^{k} (k-\nu+1) \sin\left(\nu+\frac{1}{2}\right) t \right\} dt \right]$$
$$= \int_{0}^{\pi} \phi(t) K_{n}(t) dt$$
$$= \left[\int_{0}^{\frac{1}{n+1}} + \int_{\frac{1}{n+1}}^{\pi} \right] \phi(t) K_{n}(t) dt$$
$$= I_{1} + I_{2} \quad (\text{say})$$
(4.1)

We consider,

 $\left|I_{1}\right| \leq \int_{0}^{\frac{1}{n+1}} \left|\phi(t)\right| \left|K_{n}(t)\right| dt$

Using Hölder's inequality and the fact that $\phi(t) \in Lip(\xi(t), r)$,

Since $\xi(t)$ is a positive increasing function and using second mean value theorem for integrals,

$$I_{1} = O\left\{\xi\left(\frac{1}{n+1}\right)\right\} \left[\int_{\epsilon}^{\frac{1}{n+1}} \frac{dt}{t^{s}}\right]^{\frac{1}{s}} \text{ for some } 0 \le \epsilon < \frac{1}{n+1}$$
$$= O\left\{\xi\left(\frac{1}{n+1}\right)\right\} \left[\left\{\frac{t^{-s+1}}{-s+1}\right\}_{\epsilon}^{\frac{1}{n+1}}\right]^{\frac{1}{s}}$$

Asian Online Journals (<u>www.ajouronline.com</u>)

$$=O\left\{\xi\left(\frac{1}{n+1}\right)\right\}\left\{(n+1)^{1-\frac{1}{s}}\right\}$$
$$=O\left\{(n+1)^{\frac{1}{r}}\xi\left(\frac{1}{n+1}\right)\right\}\quad \because \ \frac{1}{r}+\frac{1}{s}=1$$

Using Hölder's inequality,

$$\begin{split} |I_{2}| &\leq \int_{\frac{1}{n+1}}^{\pi} \left|\phi(t)\right| |K_{n}(t) | dt \\ &\leq \left[\int_{\frac{1}{n+1}}^{\pi} \left\{\frac{t^{-\delta} |\phi(t)|}{\xi(t)}\right\}^{r} dt\right]^{\frac{1}{r}} \left[\int_{\frac{1}{n+1}}^{\pi} \left\{\frac{\xi(t) |K_{n}(t)|}{t^{-\delta}}\right\}^{s} dt\right]^{\frac{1}{s}} \\ &= O\left\{(n+1)^{\delta}\right\} \left[\int_{\frac{1}{n+1}}^{\pi} \left\{\frac{\xi(t) |K_{n}(t)|}{t^{-\delta}}\right\}^{s} dt\right]^{\frac{1}{s}} \\ &= O\left\{(n+1)^{\delta}\right\} \left[\int_{\frac{1}{n+1}}^{\pi} \left\{\frac{\xi(t) |K_{n}(t)|}{t^{-\delta}}\right\}^{s} dt\right]^{\frac{1}{s}} \\ &\qquad by (2.3) \\ &= O\left\{(n+1)^{\delta}\right\} \left[\int_{\frac{1}{n+1}}^{\pi} \left\{\frac{\xi(t)}{t^{1-\delta}}\right\}^{s} dt\right] \end{split}$$

(4.2)

Now putting t = 1/y,

$$I_{2} = O\left\{ (n+1)^{\delta} \right\} \begin{bmatrix} \prod_{n+1}^{n+1} \left\{ \frac{\xi\left(\frac{1}{y}\right)}{\left(y\right)^{\delta-1}} \right\}^{s} \frac{dy}{y^{2}} \end{bmatrix}^{\frac{1}{s}}.$$

Since $\xi(t)$ is a positive increasing function and using second mean value theorem for integrals,

$$\begin{split} I_{2} &= O\left\{ \left(n+1\right)^{\delta} \xi\left(\frac{1}{n+1}\right) \right\} \left[\int_{\eta}^{n+1} \frac{dy}{y^{s(\delta-1)+2}} \right]^{\frac{1}{s}} & \text{for some } \frac{1}{\pi} \leq \eta \leq n+1 \\ &= O\left\{ \left(n+1\right)^{\delta} \xi\left(\frac{1}{(n+1)}\right) \right\} \left[\int_{1}^{n+1} \frac{dy}{y^{s(\delta-1)+2}} \right]^{\frac{1}{s}} & \text{for } \frac{1}{\pi} < 1 \leq n+1 . \\ &= O\left\{ \left(n+1\right)^{\delta} \xi\left(\frac{1}{n+1}\right) \right\} \left[\left\{ \frac{y^{s(1-\delta)-1}}{s(1-\delta)-1} \right\}_{1}^{n+1} \right]^{\frac{1}{s}} \\ &= O\left\{ \left(n+1\right)^{\delta} \xi\left(\frac{1}{n+1}\right) \right\} \left[\left(n+1\right)^{(1-\delta)-\frac{1}{s}} \right] \\ &= O\left\{ \xi\left(\frac{1}{n+1}\right) \right\} \left\{ \left(n+1\right)^{1-\frac{1}{s}} \right\} \end{split}$$

Asian Online Journals (<u>www.ajouronline.com</u>)

Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 – 516X) Volume 01– Issue 03, October 2013

$$=O\left\{\left(n+1\right)^{\frac{1}{r}}\xi\left(\frac{1}{n+1}\right)\right\} \qquad \because \frac{1}{r}+\frac{1}{s}=1$$
(4.3)

Combining (4.1), (4.2) and (4.3),

$$\left|E_{n}^{1}C_{n}^{2}-f(x)\right|=O\left\{(n+1)^{\frac{1}{r}}\xi\left(\frac{1}{n+1}\right)\right\}$$

Now using L_r - norm we get,

$$\begin{split} \left\| E_n^1 C_n^2 - f(x) \right\|_r &= \left\{ \int_0^{2\pi} \left| E_n^1 C_n^2 - f(x) \right|^r dx \right\}^{\frac{1}{r}} \\ &= O\left[\left\{ \int_0^{2\pi} \left\{ (n+1)^{\frac{1}{r}} \xi \left(\frac{1}{n+1} \right) \right\}^r dx \right\}^{\frac{1}{r}} \right] \\ &= O\left\{ (n+1)^{\frac{1}{r}} \xi \left(\frac{1}{n+1} \right) \right\} \left[\left\{ \int_0^{2\pi} dx \right\}^{\frac{1}{r}} \right] \\ &= O\left\{ (n+1)^{\frac{1}{r}} \xi \left(\frac{1}{n+1} \right) \right\} \right] \end{split}$$

This completes the proof of the theorem.

6. APPLICATIONS

The following corollaries can be derived from our main theorem:

Corollary 1

If $\xi(t) = t^{\alpha}$, $0 < \alpha \le 1$, then the class $Lip(\xi(t), r)$, $r \ge 1$, reduces to the class $Lip(\alpha, r)$ and the degree of approximation of a function $f \in Lip(\alpha, r)$, $\frac{1}{r} < \alpha < 1$, is given by

$$\left|E_{n}^{1}C_{n}^{2}-f\right|=O\left(\frac{1}{\left(n+1\right)^{\alpha-\frac{1}{r}}}\right)$$

 $\left\|E_{n}^{1}C_{n}^{2}-f\right\|_{r}=O\left\{\int_{0}^{2\pi}\left|E_{n}^{1}C_{n}^{2}-f\right|^{r}dx\right\}^{\frac{1}{r}}$

Proof:

We have

or

$$\left[(n+1)^{\frac{1}{r}} \xi \left(\frac{1}{n+1} \right) \right] = O\left\{ \int_{0}^{2\pi} \left| E_n^1 C_n^2 - f \right|^r dx \right\}^{\frac{1}{r}}$$

or

`

$$O(1) = O\left\{\int_{0}^{2\pi} \left|E_{n}^{1}C_{n}^{2} - f\right|^{r} dx\right\}^{\frac{1}{r}} \cdot O\left\{\frac{1}{(n+1)^{\frac{1}{r}}\xi\left(\frac{1}{n+1}\right)}\right\}$$

Hence

$$\left|E_{n}^{1}C_{n}^{2}-f\right|=O\left\{\left(n+1\right)^{\frac{1}{r}}\xi\left(\frac{1}{n+1}\right)\right\}$$

for if not the right-hand side will be O(1), therefore

$$\left|E_n^1 C_n^2 - f\right| = O\left\{\left(\frac{1}{n+1}\right)^\alpha (n+1)^{\frac{1}{r}}\right\}$$
$$= O\left(\frac{1}{(n+1)^{\alpha-\frac{1}{r}}}\right)$$

Corollary 2

If $r \to \infty$ in corollary 1, then the class $Lip(\alpha, r)$ reduces to the class $f \in Lip\alpha$ and the degree of approximation of a function $f \in Lip\alpha$, $0 < \alpha < 1$ is given by

$$\left\|E_n^1 C_n^2 - f\right\|_{\infty} = O\left\{\frac{1}{\left(n+1\right)^{\alpha}}\right\}$$

Remark: An independent proof of above corollaries 1 can be obtained along the same lines of our theorem.

7. ACKNOWLEDGEMENT

Author is thankful to his parents for their encouragement and support to this work.

8. REFERENCES

- [1] G. Alexits, "Convergence problems of orthogonal series", Pergamon Press, London, 1961.
- [2] P. Chandra, "Trigonometric approximation of functions in L_p norm", J. Math. Anal. Appl., vol. 275, no. 1, pp.13-26, 2002.
- [3] G. H. Hardy, "Divergent series, first edition", Oxford University Press, pp70, 1949.
- [4] H. H. Khan, "On degree of approximation of functions belonging to the class $\text{Lip}(\alpha, p)$ ", Indian J. Pure App. Math., vol. 5, no.2, pp. 132-136, 1974.
- [5] L. Leindler, "Trigonometric approximation in L_p norm", J. Math. Anal. Appl.. vol. 302, pp. 129-136, 2005.
- [6] L. McFadden, "Absolute Nörlund summability", Duke Math. J. vol. 9, pp. 168-207, 1942.
- [7] K. Qureshi, "On the degree of approximation of a periodic function f by almost Nörlund means", Tamkang J. Math. 12(1981), no. 1, 35-38.
- [8] K. Qureshi, "On the degree of approximation of a function belonging to the class Lip α ", Indian J. pure Appl. Math., Vol. 13, no. 8, pp. 560-563, 1982.
- [9] K. Qureshi, and H. K. Neha, "A class of functions and their degree of approximation", Ganita, vol. 41, no. 1, pp.37, 1990.
- [10] B. E. Rhodes, "On degree of approximation of functions belonging to Lipschitz class", Tamkang J. Math., vol. 34, no. 3, pp. 2450-247, (2003.
- [11] B. N. Sahney, and D. S. Goel, "On the degree of continuous functions", Ranchi, University Math. Jour., vol. 4, pp. 50-53, 1973.
- [12] E. C. Titchmarsh, "The Theory of functions", Oxford University Press, pp. 402-403, 1939.
- [13] A. Zygmund, "Trigonometric series", 2nd rev. ed., Cambridge Univ. Press, Cambridge, vol. 1, 1959.