Degree of Approximation of a Function Belonging to Lip $(\xi(t), r)$ Class by (E,1)(C,2) Summability Means

H. K. Nigam
Department of Mathematics, Faculty of Engineering \& Technology,
Mody Institute of Technology and Science (Deemed University),
Laxmangarh, Sikar (Rajasthan), India.

Abstract

In this paper, we determine the degree of approximation of a function $f \in \operatorname{Lip}(\xi(t)$, r), where $\xi(t)$ is nonnegative and increasing function of t, by $(E, 1)(C, 2)$ product operators on Fourier series associated with f.

Keywords- Degree of approximation, $\operatorname{Lip}(\xi(t), r)$ class of function, (E,1) means, (C,2) means, (E,1)(C,2) product means, Fourier series, Lebesgue integral.

1. INTRODUCTION

Let $f(x)$ be periodic with period 2π and integrable in the sense of Lebesgue. The Fourier series of $f(x)$ is given by

$$
\begin{equation*}
f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1.1}
\end{equation*}
$$

with $\mathrm{n}^{\text {th }}$ partial sum $s_{n}(f: x)$.
$L_{\infty}-$ norm of a function $f: R \rightarrow R$ is defined by $\|f\|_{\infty}=\sup \{|f(x)|: x \in R\}$
L_{r} - norm is defined by $\|f\|_{r}=\left(\int_{0}^{2 \pi}|f(x)|^{r} d x\right)^{\frac{1}{r}}, r \geq 1$
The degree of approximation of a function $f: R \rightarrow R$ by a trigonometric polynomial t_{n} of order n under sup norm $\left\|\|_{\infty}\right.$ is defined as

$$
\left\|t_{n}-f\right\|_{\infty}=\sup \left\{\left|t_{n}(x)-f(x)\right|: x \in R\right\}
$$

and $E_{n}(f)$ of a function $f \in L_{r}$ is given by

$$
\begin{equation*}
E_{n}(f)=\min \left\|t_{n}-f\right\|_{r}(\text { Zygmund [13] }) \tag{1.3}
\end{equation*}
$$

A function $f \in \operatorname{Lip} \alpha$ if

$$
\begin{equation*}
f(x+t)-f(x)=O\left(|t|^{\alpha}\right) \text { for } 0<\alpha \leq 1 \tag{1.4}
\end{equation*}
$$

$$
f \in \operatorname{Lip}(\alpha, r) \text { if }
$$

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{\frac{1}{r}}=O\left(|t|^{\alpha}\right) 0<\alpha \leq 1, \text { and } r \geq 1 \tag{1.5}
\end{equation*}
$$

(Definition 5.38 of Mc Fadden [6], 1942).
Given a positive increasing function $\xi(t)$ and an integer $r \geq 1, f \in \operatorname{Lip}(\xi(t), r)$ if

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{\frac{1}{r}}=O(\xi(t)) \tag{1.6}
\end{equation*}
$$

If $\xi(t)=t^{\alpha}$ then $\operatorname{Lip}(\xi(t), r)$ class coincides with the class $\operatorname{Lip}(\alpha, r)$ and if $r \rightarrow \infty$ then $\operatorname{Lip}(\alpha, r)$ reduces to the Lip α.

We observe that

$$
\operatorname{Lip} \alpha \subseteq \operatorname{Lip}(\alpha, r) \subseteq \operatorname{Lip}(\xi(t), r) \text { for } 0<\alpha \leq 1, r \geq 1
$$

This method of approximation is called trigonometric Fourier approximation (TFA).
Let $\sum_{n=0}^{\infty} u_{n}$ be a given infinite series with the sequence of its $\mathrm{n}^{\text {th }}$ partial sums $\left\{s_{n}\right\}$.
The $(\mathrm{C}, 2)$ transform is defined as the $\mathrm{n}^{\text {th }}$ partial sum of $(\mathrm{C}, 2)$ summability and is given by

$$
\begin{equation*}
t_{n}=\frac{2}{(n+1)(n+2)} \sum_{k=0}^{n}(n-k+1) s_{n} \rightarrow s \text { as } n \rightarrow \infty \tag{1.8}
\end{equation*}
$$

then the infinite series $\sum_{n=0}^{\infty} u_{n}$ is summable to the definite number s by $(\mathrm{C}, 2)$ method.
If

$$
\begin{equation*}
(E, 1)=E_{n}^{1}=\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k} s_{k} \rightarrow s \text { as } n \rightarrow \infty \tag{1.9}
\end{equation*}
$$

then the infinite series $\sum_{n=0}^{\infty} u_{n}$ is said to be summable (E,1) to the definite number s (Hardy[3]).
The $(\mathrm{E}, 1)$ transform of the $(\mathrm{C}, 2)$ transform defines $(\mathrm{E}, 1)(\mathrm{C}, 2)$ transform and we denote it by $E_{n}^{1} C_{n}^{2}$.

Thus if

$$
\begin{equation*}
E_{n}^{1} C_{n}^{2}=\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k} C_{k}^{2} \rightarrow s \quad \text { as } n \rightarrow \infty \tag{1.10}
\end{equation*}
$$

where E_{n}^{1} denotes the (E,1) transform of s_{n} and C_{n}^{2} denotes the (C,2) transform of s_{n}, then the series $\sum_{n=0}^{\infty} u_{n}$ is said to be summable by $(\mathrm{E}, 1)(\mathrm{C}, 2)$ means or summable $(\mathrm{E}, 1)(\mathrm{C}, 2)$ to a definite number s .

We use the following notations:

$$
\begin{gathered}
\phi(t)=f(x+t)+f(x-t)-2 f(x) \\
K_{n}(t)=\frac{1}{\pi 2^{n}} \sum_{k=0}^{n}\left\{\binom{n}{k} \frac{1}{(k+1)(k+2)} \sum_{v=0}^{k}(k-v+1) \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}
\end{gathered}
$$

2. MAIN THEOREM

Alexits [1], Sahney and Goel [11], Chandra [2], Qureshi and Neha [9], Liendler [5] and Rhoades [10] have determined the degree of approximation of a function belonging to Lip α class by Cesáro, Nörlund and generalized Nörlund single summability methods. Working in the same direction Sahney and Rao [12], Khan [4] and Qureshi [7,8] have studied the degree of approximation of function belonging to $\operatorname{Lip}(\alpha, r)$ class by Nörlund and generalized Nörlund single summability methods. But nothing seems to have been done so far in the direction of present work. The $\operatorname{Lip}(\xi(t), r)$ class is a generalization of $\operatorname{Lip} \alpha$ class and $\operatorname{Lip}(\alpha, r)$ class. Therefore, in present paper, a theorem on degree of approximation of a function belonging to $\operatorname{Lip}(\xi(t), r)$ class by $(\mathrm{C}, 2)(\mathrm{E}, 1)$ product summability means of Fourier series has been established in the following form:

2.1 Theorem 1

If f is a 2π-periodic function, Lebesgue integrable on $[0,2 \pi]$, belonging to the $\operatorname{Lip}(\xi(t), r$ class then its degree of
approximation by $(\mathrm{E}, 1)(\mathrm{C}, 2)$ summability means on Fourier series is given by

$$
\begin{equation*}
\left\|E_{n}^{1} C_{n}^{2}-f\right\|_{r}=O\left[(n+1)^{\frac{1}{r}} \xi\left(\frac{1}{(n+1)}\right)\right] \tag{2.1}
\end{equation*}
$$

provided $\xi(t)$ satisfies the following conditions:

$$
\begin{equation*}
\left\{\int_{0}^{\frac{1}{n+1}}\left(\frac{t|\phi(t)|}{\xi(t)}\right)^{r} d t\right\}^{\frac{1}{r}}=O\left(\frac{1}{n+1}\right) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\int_{\frac{1}{n+1}}^{\pi}\left(\frac{t^{-\delta}|\phi(t)|}{\xi(t)}\right)^{r} d t\right\}^{\frac{1}{r}}=O\left\{(n+1)^{\delta}\right\} \tag{2.3}
\end{equation*}
$$

where δ is an arbitrary number such that $0 \neq \delta s+1<s, \frac{1}{r}+\frac{1}{s}=1$, conditions (2.2) and (2.3) hold uniformly in x and $E_{n}^{1} C_{n}^{2}$ is $(\mathrm{E}, 1)(\mathrm{C}, 2)$ means of the series (1.1).

3. LEMMAS

For the proof of our theorems, following lemmas are required:

3.1 Lemma 1

$$
\left|K_{n}(t)\right|=O(n+1) \text { for } \quad 0 \leq t \leq \frac{1}{n+1}
$$

Proof: For $0 \leq t \leq \frac{1}{n+1}, \quad \sin n t \leq n \sin t$

$$
\begin{aligned}
\left|K_{n}(t)\right| & =\frac{1}{\pi 2^{n}}\left|\sum_{k=0}^{n}\left[\binom{n}{k} \frac{1}{(k+1)(k+2)} \sum_{v=0}^{k}(k-v+1) \frac{\sin \left(v+\frac{1}{2}\right)}{\sin \frac{t}{2}}\right]\right| \\
& \leq \frac{1}{\pi 2^{n}}\left|\sum_{k=0}^{n}\left[\binom{n}{k} \frac{1}{(k+1)(k+2)} \sum_{v=0}^{k}(k-v+1) \frac{(2 v+1) \sin \frac{t}{2}}{\sin \frac{t}{2}}\right]\right| \\
& \leq \frac{1}{\pi 2^{n}} \left\lvert\, \sum_{k=0}^{n}\left[\binom{n}{k} \frac{1}{(k+1)(k+2)}(2 k+1) \sum_{v=0}^{k}(k-v+1)\right]\right. \\
& \leq \frac{1}{\pi 2^{n}} \left\lvert\, \sum_{k=0}^{n}\left[\binom{n}{k} \frac{1}{(k+1)(k+2)}(2 k+1) \frac{(k+1)(k+2)}{2}\right]\right. \\
& =\frac{1}{\pi 2^{n+1}} \sum_{k=0}^{n}\left[\binom{n}{k}(2 k+1)\right] \\
& =\frac{1}{\pi 2^{n+1}}\left\{2^{n}(n+1)\right\}
\end{aligned}
$$

$$
=O(n+1)
$$

3.2 Lemma 2

$$
\left|K_{n}(t)\right|=O\left(\frac{1}{t}\right), \text { for } \frac{1}{n+1} \leq t \leq \pi
$$

Proof: For $\frac{1}{n+1} \leq t \leq \pi$, by applying Jordan's lemma

$$
\begin{aligned}
& \sin \frac{t}{2} \geq \frac{t}{\pi} \text { and } \sin n t \leq 1 \\
\left|K_{n}(t)\right| & \leq \frac{1}{\pi 2^{n}}\left|\sum_{k=0}^{n}\left[\binom{n}{k} \frac{1}{(k+1)(k+2)} \sum_{v=0}^{k}(k-v+1) \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin (t / \pi)}\right]\right| \\
& \leq \frac{1}{\pi 2^{n}}\left|\sum_{k=0}^{n}\left[\binom{n}{k} \frac{1}{(k+1)(k+2)} \sum_{v=0}^{k}(k-v+1)\left(\frac{1}{t / \pi}\right)\right]\right| \\
& \leq \frac{1}{t 2^{n}}\left|\sum_{k=0}^{n}\left[\binom{n}{k} \frac{1}{(k+1)(k+2)} \sum_{v=0}^{k}(k-v+1)\right]\right| \\
= & \frac{1}{t 2^{n}}\left|\sum_{k=0}^{n}\left[\binom{n}{k} \frac{1}{(k+1)(k+2)} \frac{(k+1)(k+2)}{2}\right]\right| \\
= & \frac{1}{t 2^{n+1}} \left\lvert\, \sum_{k=0}^{n}\left[\binom{n}{k}\right]\right. \\
= & \frac{1}{t 2^{n+1}} 2^{n} \\
= & O\left(\frac{1}{t}\right)
\end{aligned}
$$

4. PROOF OF THEOREM 1

Following Titchmarsh [12] and using Riemann-Lebesgue theorem, $s_{n}(f ; x)$ of the series (1.1) is given by

$$
s_{n}(f ; x)-f(x)=\frac{1}{2 \pi} \int_{0}^{\pi} \phi(t) \frac{\sin \left(n+\frac{1}{2}\right) t}{\sin \frac{t}{2}} d t
$$

Therefore using (1.1), the (C, 2) transform C_{n}^{2} of $s_{n}(f ; x)$ is given by

$$
C_{n}^{2}-f(x)=\frac{1}{\pi(n+1)(n+2)} \int_{0}^{\pi} \phi(t) \sum_{k=0}^{n}(n-k+1) \frac{\sin \left(k+\frac{1}{2}\right) t}{\sin \frac{t}{2}} d t
$$

Now denoting (E, 1)(C,2) transform of $s_{n}(f ; x)$ by $E_{n}^{1} C_{n}^{2}$, we write

$$
\begin{align*}
E_{n}^{1} C_{n}^{2}-f(x) & =\frac{1}{\pi 2^{n}} \sum_{k=0}^{n}\left[\binom{n}{k} \frac{1}{(k+1)(k+2)} \int_{0}^{\pi} \frac{\phi(t)}{\left.\sin \frac{t}{2}\left\{\sum_{v=0}^{k}(k-v+1) \sin \left(v+\frac{1}{2}\right) t\right\} d t\right]}\right. \\
& =\int_{0}^{\pi} \phi(t) K_{n}(t) d t \\
& =\left[\int_{0}^{\frac{1}{n+1}}+\int_{\frac{1}{n+1}}^{\pi}\right] \phi(t) K_{n}(t) d t \\
& =I_{1}+I_{2} \quad \text { (say) } \tag{4.1}
\end{align*}
$$

We consider,

$$
\left|I_{1}\right| \leq \int_{0}^{\frac{1}{n+1}}|\phi(t)|\left|K_{n}(t)\right| d t
$$

Using Hölder's inequality and the fact that $\phi(t) \in \operatorname{Lip}(\xi(t), r)$,

$$
\begin{align*}
\left|I_{1}\right| & \leq \int_{0}^{\frac{1}{n+1}}|\phi(t)|\left|K_{n}(t)\right| d t \\
& \leq\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{t|\phi(t)|}{\xi(t)}\right\}^{r} d t\right]^{\frac{1}{r}}\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{\xi(t)\left|K_{n}(t)\right|^{s}}{t}\right\}^{s} d t\right]^{\frac{1}{s}} \\
& =O\left(\frac{1}{n+1}\right)\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{\xi(t)\left|K_{n}(t)\right|}{t}\right\}^{s} d t\right]^{\frac{1}{s}} \tag{2.2}\\
& =O\left(\frac{1}{n+1}\right)\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{(n+1) \xi(t)}{t}\right\}^{s} d t\right]^{\frac{1}{s}}
\end{align*}
$$

by Leema 1

Since $\xi(t)$ is a positive increasing function and using second mean value theorem for integrals,

$$
\begin{aligned}
I_{1}= & O\left\{\xi\left(\frac{1}{n+1}\right)\right\}\left[\int_{\epsilon}^{\frac{1}{n+1}} \frac{d t}{t^{s}}\right]^{\frac{1}{s}} \text { for some } 0 \leq \in<\frac{1}{n+1} \\
& =O\left\{\xi\left(\frac{1}{n+1}\right)\right\}\left[\left\{\frac{t^{-s+1}}{-s+1}\right\}_{\epsilon}^{\frac{1}{n+1}}\right]^{\frac{1}{s}}
\end{aligned}
$$

$$
\begin{align*}
& =O\left\{\xi\left(\frac{1}{n+1}\right)\right\}\left\{(n+1)^{1-\frac{1}{s}}\right\} \\
& =O\left\{(n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\} \quad \because \frac{1}{r}+\frac{1}{s}=1 \tag{4.2}
\end{align*}
$$

Using Hölder's inequality,

$$
\begin{align*}
\left|I_{2}\right| \leq & \int_{\frac{1}{n+1}}^{\pi}|\phi(t)|\left|K_{n}(t)\right| d t \\
& \leq\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{t^{-\delta}|\phi(t)|}{\xi(t)}\right\}^{r} d t\right]^{\frac{1}{r}}\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{\xi(t)\left|K_{n}(t)\right|}{t^{-\delta}}\right\}^{s} d t\right]^{\frac{1}{s}} \\
& =O\left\{(n+1)^{\delta}\right\}\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{\xi(t)\left|K_{n}(t)\right| t^{s}}{t^{-\delta}}\right\}^{\frac{1}{s}} d t\right]^{\frac{1}{s}} \tag{2.3}\\
& =O\left\{(n+1)^{\delta}\right\}\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{\xi(t)}{\left.t^{1-\delta}\right\}^{s}} d t\right]\right.
\end{align*}
$$

by Leema 2

Now putting $t=1 / y$,

$$
I_{2}=O\left\{(n+1)^{\delta}\right\}\left[\int_{\frac{1}{\pi}}^{n+1}\left\{\frac{\xi\left(\frac{1}{y}\right)}{(y)^{\delta-1}}\right\}^{s} \frac{d y}{y^{2}}\right]^{\frac{1}{s}} .
$$

Since $\xi(t)$ is a positive increasing function and using second mean value theorem for integrals,

$$
\begin{aligned}
I_{2} & =O\left\{(n+1)^{\delta} \xi\left(\frac{1}{n+1}\right)\right\}\left[\int_{\eta}^{n+1} \frac{d y}{y^{s(\delta-1)+2}}\right]^{\frac{1}{s}} \text { for some } \frac{1}{\pi} \leq \eta \leq n+1 \\
& =O\left\{(n+1)^{\delta} \xi\left(\frac{1}{(n+1)}\right)\right\}\left[\int_{1}^{n+1} \frac{d y}{y^{s(\delta-1)+2}}\right]^{\frac{1}{s}} \text { for } \frac{1}{\pi}<1 \leq n+1 \\
& =O\left\{(n+1)^{\delta} \xi\left(\frac{1}{n+1}\right)\right\}\left[\left\{\frac{y^{s(1-\delta)-1}}{s(1-\delta)-1}\right\}_{1}^{n+1}\right]^{\frac{1}{s}} \\
& =O\left\{(n+1)^{\delta} \xi\left(\frac{1}{n+1}\right)\right\}\left[(n+1)^{(1-\delta)-\frac{1}{s}}\right] \\
& =O\left\{\xi\left(\frac{1}{n+1}\right)\right\}\left\{(n+1)^{1-\frac{1}{s}}\right\}
\end{aligned}
$$

$$
\begin{equation*}
=O\left\{(n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\} \quad \because \frac{1}{r}+\frac{1}{s}=1 \tag{4.3}
\end{equation*}
$$

Combining (4.1), (4.2) and (4.3),

$$
\left|E_{n}^{1} C_{n}^{2}-f(x)\right|=O\left\{(n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\}
$$

Now using L_{r} - norm we get,

$$
\begin{aligned}
\left\|E_{n}^{1} C_{n}^{2}-f(x)\right\|_{r} & =\left\{\int_{0}^{2 \pi}\left|E_{n}^{1} C_{n}^{2}-f(x)\right|^{r} d x\right\}^{\frac{1}{r}} \\
& =O\left[\left\{\int_{0}^{2 \pi}\left\{(n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\}^{r} d x\right\}^{\frac{1}{r}}\right] \\
& =O\left\{(n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\}\left[\left\{\int_{0}^{2 \pi} d x\right\}^{\frac{1}{r}}\right] \\
& =O\left\{(n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\}
\end{aligned}
$$

This completes the proof of the theorem.

6. APPLICATIONS

The following corollaries can be derived from our main theorem:

Corollary 1

If $\xi(t)=t^{\alpha}, 0<\alpha \leq 1$, then the class $\operatorname{Lip}(\xi(t), r), r \geq 1$, reduces to the class $\operatorname{Lip}(\alpha, r)$ and the degree of approximation of a function $f \in \operatorname{Lip}(\alpha, r), \quad \frac{1}{r}<\alpha<1$, is given by

$$
\left|E_{n}^{1} C_{n}^{2}-f\right|=O\left(\frac{1}{(n+1)^{\alpha-\frac{1}{r}}}\right)
$$

Proof:

We have

$$
\left\|E_{n}^{1} C_{n}^{2}-f\right\|_{r}=O\left\{\int_{0}^{2 \pi}\left|E_{n}^{1} C_{n}^{2}-f\right|^{r} d x\right\}^{\frac{1}{r}}
$$

or

$$
\left\{(n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\}=O\left\{\int_{0}^{2 \pi}\left|E_{n}^{1} C_{n}^{2}-f\right|^{r} d x\right\}^{\frac{1}{r}}
$$

or

$$
O(1)=O\left\{\int_{0}^{2 \pi}\left|E_{n}^{1} C_{n}^{2}-f\right|^{r} d x\right\}^{\frac{1}{r}} \cdot O\left\{\frac{1}{(n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)}\right\}
$$

Hence

$$
\left|E_{n}^{1} C_{n}^{2}-f\right|=O\left\{(n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right\}
$$

for if not the right-hand side will be $\mathrm{O}(1)$, therefore

$$
\begin{aligned}
\left|E_{n}^{1} C_{n}^{2}-f\right| & =O\left\{\left(\frac{1}{n+1}\right)^{\alpha}(n+1)^{\frac{1}{r}}\right\} \\
& =O\left(\frac{1}{(n+1)^{\alpha-\frac{1}{r}}}\right)
\end{aligned}
$$

Corollary 2

If $r \rightarrow \infty$ in corollary 1 , then the class $\operatorname{Lip}(\alpha, r)$ reduces to the class $f \in \operatorname{Lip} \alpha$ and the degree of approximation of a function $f \in \operatorname{Lip} \alpha, 0<\alpha<1$ is given by

$$
\left\|E_{n}^{1} C_{n}^{2}-f\right\|_{\infty}=O\left\{\frac{1}{(n+1)^{\alpha}}\right\}
$$

Remark: An independent proof of above corollaries 1 can be obtained along the same lines of our theorem.

7. ACKNOWLEDGEMENT

Author is thankful to his parents for their encouragement and support to this work.

8. REFERENCES

[1] G. Alexits, "Convergence problems of orthogonal series", Pergamon Press, London, 1961.
[2] P. Chandra, "Trigonometric approximation of functions in L_{p} - norm", J. Math. Anal. Appl., vol. 275, no. 1, pp.1326, 2002.
[3] G. H. Hardy, "Divergent series, first edition", Oxford University Press, pp70, 1949.
[4] H. H. Khan, "On degree of approximation of functions belonging to the class Lip (α, p) ', Indian J. Pure App. Math., vol. 5, no.2, pp. 132-136, 1974.
[5] L. Leindler, "Trigonometric approximation in L_{p} - norm", J. Math. Anal. Appl.. vol. 302, pp. 129-136, 2005.
[6] L. McFadden, "Absolute Nörlund summability", Duke Math. J. vol. 9, pp. 168-207, 1942.
[7] K. Qureshi, "On the degree of approximation of a periodic function f by almost Nörlund means", Tamkang J. Math. 12(1981), no. 1, 35-38.
[8] K. Qureshi, "On the degree of approximation of a function belonging to the class Lip α ", Indian J. pure Appl. Math., Vol. 13, no. 8, pp. 560-563, 1982.
[9] K. Qureshi, and H. K. Neha, "A class of functions and their degree of approximation", Ganita, vol. 41, no. 1, pp.37, 1990.
[10] B. E. Rhodes, "On degree of approximation of functions belonging to Lipschitz class", Tamkang J. Math., vol. 34, no. 3, pp. 2450-247, (2003.
[11] B. N. Sahney, and D. S. Goel, "On the degree of continuous functions", Ranchi, University Math. Jour., vol. 4, pp. 50-53, 1973.
[12] E. C. Titchmarsh, "The Theory of functions", Oxford University Press, pp. 402-403, 1939.
[13] A. Zygmund, "Trigonometric series", $2^{\text {nd }}$ rev. ed., Cambridge Univ. Press, Cambridge, vol. 1, 1959.

