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ABSTRACT--- We present a new efficient super convergent implicit Runge-kutta method (RKM) for solving
differential equations (ODES). Chybechev’s polynomial is used as basis function. Collocation and Matrix inversion
method is used to derive our continuous schemes. The continuous formula is evaluated at zeros of the first
Chybechev’s polynomial to give us Runge-kutta evaluation functions for the direct iteration of our solutions.
Experimental examples used show that the method is A stable, highly efficient, has simple coefficients, less
implementation cost when compared with similar methods in the literature.
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1. INTRODUCTION

Linear multi-step methods (LMM) for solving differential equations have been widely implored to solve ordinary
differential equations by Lambert [1], Butcher [2] etc. These methods have often been modified to obtain better results,
for examples, multi-step using Chybechev’s polynomials. (see Adeniyi et al [3], [4]), Fox [5] etc. Lie and Norsett [6]
also used multi-step collocation method to develop Super convergence multi-step method for fist order ordinary
differential equations (ODES).

Onumanyi et al [7] also developed new linear multi-step method with continuous coefficients for solving ODEs. This
method was modified to linear multi-step implicit Runge-kutta method by Yakubu ([8],[9]), Chollom et al [10] etc.
These methods mentioned above are good but they are of low order, having bigger coefficients and high computational
cost when compare with our proposed method. In our paper we have addressed those problems and developed a superior
Runge-kutta method with with simple coefficients, low implementation cost and more efficient than Lie et al [6].

2. METHODOLOGY
We shall find s-stage implicit Runge-kutta method of solution of first order differential equation of the form y" =

fGy), y(xo) =y, a<x<b (2.01)
We use a polynomial of the form
t—1 m-—1
Y@ =Y aCm+h Y {OS (53()) (202)
j=0 j=1

Where t denotes the number of interpolation points x,,; (j = 0,1,..t — 1), m denotes the number of collocation
points,c;, (j = 0,...m — 1) are the collocation points and f(x, y) is are smooth function.

The constants coefficients a;, f; are elements of (t + m)X(t +m) square matrix. They are selected so that high
accurate approximation of the solution (2.01) is obtained, h is a constant step size.

The functions a; (x), B; (x) in (2.02) can be represented by polynomial of the form
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-1
a(x) = Za]-,i +1x, j=(01,..t—1
j=0
m-—1
BB () = Y by i+ 1xt = (01, .m = 1) (2.03)
i=0

The coefficients ;,i + 1and f;,i+ 1 are to be determined.
Substituting (2.03) in (2.02), we have

m+t—1 (t—1 m-—1 m+t—1
y@ = D AN @it Uy v h Y B+ fuy = Y (2.04)
=0 \j=0 j=0 i=0
where
t—1 m-—1
j=0 j=0

a4 €R,je[0,12..t + m—1],y € C"[a,b].
This can be expressed in matrix form as
y(x) = (}’n' ---yn+t—1' fn! 'fn+m—1) CT(]-' xn! ""x‘rtl+m_l !

where
[ @01 .o @11 hBor ... hBm—-1,1
ag? .. a—12 hBoz .. hBm—1,2
o @03 .o @13 hBoz ... hBm+1,1 .
1 aos .« a—14 hBos . . . hBm—1,4 (2.05)
LX0,t+m - Ot—1t+m h.BO,t+m D hﬁm—l,t+m-
2 t+m_1 7
Xp, X2 ) ) X,
0 1 2Xniq, - . t+m—Dxtm?
D=, . . L . M (2.06)
0 1 2Xn+q . . (t+m—Dxtm?
| m—1 n qm—l-

q; are the collocation points

THEOREM 1.0

Let | denote the identity Matrix of dimension (m + t)x (m + t) and Matrices C and D defined by (2.05) and (2.06) satisfies
i) DC=1

m+t—1 (t—-1 m—1
y(x) = Z Z Qi+ Yntj T Z hB; iv1fns x! (2.07)
i=0 |j=0 =0

(see proof ( Onumanyi e tal [7])

Now we assume a power series solution of degree 5 of the form

5

5
Y@ =Y gx, Y= ) jaut (2.08)
j=0

j=0
we interpolate at x = x,, and collocate at x = x,,,4,,i = 0,1,..,5
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equation (2.08) yields system of simultaneous equation of the form
ag + ayx, + a,x? + azx> + - asx; =y,
@ + 205X, 44, + 303X 44, +  5asXpiq, = friqs

2 4 =
a + 2a2xn+q2 + 3a3xn+q2 + Sann+q2 - fn+q2

2 4 _
a; + 2a3Xp 445 T 3a3%5445 T 5a5xn+q5 = fnJrq5

(2.09)
where a; are parameters to be determined.
When (2.09) is rewritten in matrix form, we have
1 X, x32 A x4 X3
2 3
0 1 2xn+q1 3xn+q1 4xn+q1 5xf{+q1 ao fyn '|
o 1 2 332, 4x,. st ||%(E"
n+q, n+q, n+q, n+q,flay| fn+q2
2 3 -
0 1 2Xn4q, 3Xntg, 4Xntq, S5Xniq, Zs ?m
4
2 3 4 n+qs
0 1 an+q4 3xn+q4 4‘xn+q4 5xn+q4 asg fn+qs
2 3 4
»0 1 an+q5 3xn+q5 4‘xn+q5 5xn+q57
ie DA =Y ,where
1 Xn xrzl x% X;l'l JC,S1
2 3
0 1 2Xniq,  3%htq, 4%, 5Xikyg,
2 3 4
0 1 2xn+q2 3xn+q2 4‘xn+q2 an+q2 .
D = 1 ? 352 3 4 = D — matrix (2.10)
0 Xntqs Xn+qs 4xn+Q3 5xn+q3
2 3 4
0 1 2Xn4q,  3Xntq, AXn4q,  SXntq,
2 3 4
0 1 2Xntqy  3Xigs 4Xntgs  SXpyg

The D-matrix is non-singular and has inverse D=1 =
Using Maple Mathematical software, we obtain the coefficients a; j = (0,1, ...,5) and from (2.04) we have
y(x) = ag(0)y, + h{ﬁn+q1(x)fn+q1 + .8n+q2 (x)fn+q2 + .8n+q3(x)fn+q3 + .Bn+q4 (x)fn+q4

+ﬁn+q5 (x)f:n+q5} (2103.)
Solving for @; we obtain a continuous scheme for y(x).

When substituting the values of a;and B4, i = 1,2,..5in (2.10a) ieq, = % — g, q; = % ,q3 = % qs = % s =

g , we have the following discrete schemes.

7  3V3 27 3V3 13 3
Yorar =0 ¥ (% * %) Pl + (ﬁ - E) M + (% - E) M

+<37 3\/§>hfn+q4+(l 41x/§>hfn+q5

N | =
+

320 40 90 960

(29 33 31 1

1
Ynta, =Yn t\3g5t H) hfn+qr + 350 Mntar = gg Mavas + 350 Matas
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29 33
sl Er e LV
360 6 s
7 3 9 13 1 7 3
Yn+qs = In + %"'ﬁ hﬁ1+q1 +Ehﬁ1+q2 +%hfn+q3 _Ehfnﬂu + %_ﬁ hfn+q5
3 3V3 3 3 33 3 3V3
yn+q4 =n + % + E hﬁ1+q1 320 hﬁl+q2 Ehﬁl+Q3 320 hfn+q4 40 - ﬁ hfn+q5
7 413 27 33 13 3
yn+q5 =n + (% + 960 )hﬁ1+q1 + (m + E) hﬁ1+q2 (90 15) hfn+q3
37 3\/_ 7 33
T Pfnsas ¥ 90 320 Pfinsas
(2.11)
To convert to Runge-Kkutta, the discrete schemes must satisfy the differential equation (2.01), that is
, 7 33 27 33
y n+q1 — f(xn+q1'yn+q1) f Xn» yn (90 + %) hﬁ1+q1 + (320 40 )hﬁ1+q2
+13\/_ 37 3\/§h +7 41\/§h
90 15 Pfnsqs + 320 40 fo+as 90 960 fntas
, 29 33 31 1
Vontq, = f(xn+q2'yn+q2) = f[xn' Yn + 360 v rarye 64 fn+q1 320hfn+q2 %hfnﬂn
1 29 3V3
T3gg vt (% - H) hﬁqu]
, 7 V3
y n+qz — f(xn+q3'yn+q3) f Xn» yn (90 ) hﬁ1+q1 40 hﬁq-}-qz 90 hfn+q3
V3
_Ehﬁﬁ-% + % 24 fn+¢15
, 3 3V3 63
Y ntqs = f(xn+q4:37n+q4) = f[xn: Yn + E*’a fn+q1 +%hfn+q2 +Ehfn+q3
33 3 3v3
o hfys ( - i) hfys ]
T320"ma T\ 30 62 s
, 7 41V3 27 33
Yntqs = f(xn+qs'yn+qs) = flxn, o + (% + W) hfotq, + (320 )hfn+qz
13 \/_ 37 3\/_ 7 33
g0+ 15 ) Mrras T350 T Mnvai T\ g5 ~ 320 ) Mntas
(2.12)
substituting, k; = £ (%0, Yniq,) = favarr k2 = (X Yniqy) = fatq, ©IC.
we obtain the following function evaluations:
7 3V3 27  3V3 13 3 37 33
k1 —f[xn,yn +(%+%)hk1 + (m—ﬁ)hkz +<%_E>hk3 +<%_E>hk4
7 413
* (% 960 )hkS]
29 3V3 31 1 1 29 343
k2 = f[xn,yn +(360 +6—4)hk1 Zohkz ——Ohk3 +%hk + (%— 64 >hk5]
7 3 13 1 7 3
k3—f[xn,yn+<%+24>hk1 hkz 9Ohk Ehk4+(%—ﬁ>hk5]
3 3V3 63 3 33 3 3V3
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90 ' 960 320 40 15 320 40
7 3V3
The Butcher coefficient tableau for the above function evaluations can be written in the form below
C (A) )
1 3 7 +3V§ 27 33 13 3 37 3V3 7 41V3
2 4 90 320 320 40 90 40 320 40 90 960 1
1 29 +_3\/5 31 _1 1 29 3v3
4 360 ' 64 320 90 320 360 64 1
L 7 V3 £ 13 L RE
2 90 " 24 40 90 40 90 24 1
3 333 6 3 33 3 _3V3
4 20 " 64 320 10 320 20 64 1
1+V§ 7+4hﬁ 27+3%§ 13+v§ 37+3J§ 7 3V3
2 4 90 960 320 40 90 15 320 40 90 320 1
b, 1 13 1
45 5 45 5 45 1
V)
B)
(2.14)

The general R-K for this method is defined as
Yn+1 = Yn + biky + boky + bsks + biky + bsks

where
b—7b—1b—13b—1b d dk;d d 2.13
15350255 03 = 45 0 =5 05 =7z an efined as (2.13)

Note that the values of b;,i = 1,2,..5 are obtained by evaluating the continuous scheme (2.10a) at x = x,, 1
The above table can be summarized as

A | U |

B | v |

where
U=(111L1)" V=)A= (a;),a; are the coefficient of the Butcher table and B = b; i = 1, ..,5.

3. ANALYSIS OF THE SCHEME

(1 The exact solution is y(x, ;) and Runge-kutta solution is (y,,;) and the error of the method is E, = y(x,4;) —
V,+; and absolute error is AE, is

AE, = |ly(xXn4i) = Yol

The Order of the method is p , where
Y(Xnti) = Ynsi = p+1y(n+1)(x) + Cp+2y(n+2)(x) e = 0REPHD,

c1=¢ =c=¢ =-.=¢, =0and ¢,y #0,cp4q isthe error constant see Butcher [2].

(i) Consistency

The Runge-kutta method is consistent because

Z a; _C“Zb =1

j=
see Butcher Table of (214).

(iif)  Stability
The stability function R(z) is defined as
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R(z)=1+ZB (I —ZA)te

e =(1,1,1,1,1), Z = Ah, A is the coefficient matrix, | identity
B = (by, by, b3, by, bs), weights.

The A-stability Region is the set of points satisfying

(R(2)) = {z: |R.(2)| < 1} and the A-stable is the region
(R(2)) = {z: R(z) <0and|R(2)| <1}

The characteristic polynomial is
P(z) = det(R(z) — AI). The region of convergence can be plotted using mat lap etc

(iv)  The exact solution at x = x; is defined as y(x) and the approximate solution is x = x; is y;

Using Taylor’s series expansion

n._, n(n—1)h% , nn—1)m -2t
YCias) = Yo + 7 hy () + =" @) + -+ — Y@
and
7 1 13 1 7
yn+i = yn + Ehkl +§hk2 +Ehk3 +§hk4 +4_5hk5
The order of our scheme isp = 6, since ¢g = ¢y = =¢s =0and C, 41 = €7 = 3601600 ErrOr constant.

4. NUMERICAL EXPERIMENTS
We use similar methods developed by lie S Norsett[11] and Adegboye and Yahaya [12] to observe the level of
performances and efficiency of our new method in the following problems:
Problem 1
y =8(x—y)+1,y(0)=2h=0.02
Exact solution: y(x) = x + 2e %

Problem 2
"= Sinx —2 (E)—3h—£
y y’ y 2 ) 50
Exact solution: y(x) = L Cosx + 2 Sinx +Z il
-y 10 10 10 3*3771
Problem 3

, 1
y +20y = 20x? + 2x ,y(0) = §,h = 0.025

Exact solution: y(x) = x? +§ e~20x
The following are solution tables for the given problems above.

Table 1: Comparison of Numerical solution of Problem 1

x Exact solution Present method of Error of method Error of Present
(2.14) [10] method (2.14)
0.02 | 1.724287577932420 1.724287577929230 256 E-11 3.19E-12
0.04 | 1.492298074147380 1.492298074141940 435E-11 544 E -12
0.06 | 1.297566783612280 1.297566783556630 557 E-11 6.96 E -12
0.08 | 1.134584848086100 1.134584848078190 6.32 E-11 791E-12
0.10 | 0.998657928234444 0.998657928226020 6.74 E -11 8.42 E -12
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Table 2: Comparison of Numerical solution of Problem 2

x Exact solution Present method of (2.14) | Error of method | Error of Present
[10] method (2.14)
13n 2.5418383600099 2.541838359996723 1.05E-10 1.32E-11
25
27m 2.162157581773023 2.162157581751139 1.75E-10 219E-11
50
14m 1.847250042547062 1.847250042519876 2.17E-10 272 E-11
25
291 1.585764824898583 1.585764824898583 2.40E -10 3.00E-11
50
3n 1.368303725239477 1.368303725208400 248 E -10 3.10E-11
5
Table 3: Comparison of Numerical solution of Problem 3
X Exact solution Present method of (2.14) | Error of method | Error of Present
[11] method (2.14)
0.5 0.125126480390481 0.12512647903 1.97 E -09 1.36 E-09
0.1 0.055111761078871 0.0551117600813 1.30 E -08 9.98E-10
0.15 0.039095689455955 0.0390956889055 6.61 E -09 5.50 E -10
0.2 0.046105212962911 0.0461052126929 3.93 E -09 2.70 E-10

Note: The Method [11] has 5 iterations before obtaining the next solution while present method [2.14] has only 2 iterations.

We developed a highly super convergent Runge-kutta method for solution of first order order ODEs. The method is
more superior than Lie and Norsett methods (see numerical Examples). It has lesser implementation cost.(see example3).
For similar method mentioned in this research work you need to iterate five times before getting to the next solution (see
Yahaya and Adegboye [11]). In our new method only two iterations is needed before getting the next solution and the
results obtained are more efficient and stable than methods ([10], [11]). Finally we have successfully developed a new super

5. CONCLUSION

convergent implicit RK method which converges perfectly more than the existing methods.
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