A Trivial Note Concerning p And n!, Where pIs Prime $\geq n + 1$ And n Is An Integer ≥ 1 .

Ikorong A. Gilbert

Centre De Calcul;D'Enseignement Et De Recherche En Mathematiques Pures Universite' de Paris VI; France ikorong@ccr.jussieu.fr Paul Archambault; Research (Analytic Southern Europe) Paul.Archambault@pb.com

Abstract. We show that if n is an integer ≥ 1 and if p is a prime $\geq n + 1$, then for every integer k such that $1 \leq k \leq n$, p does not divide k!; where $k! = 1 \times ... \times k$; in particular, if p is a prime $\geq n + 1$, then the greatest common divisor of p and n! is 1 and therefore p does not divide n!. AMS classification 2000: 05xx and 11xx.

1. The proof of stated result.

We recall that if n is an integer ≥ 1 , then n! is defined as follow:

$$n! = \begin{cases} 1 & \text{if } n = 1, \\ 2 & \text{if } n = 2, \\ 1 \times 2 \times \dots \times n & \text{if } n \ge 3. \end{cases}$$

Theorem 1.1. Let n is an integer ≥ 1 and let p be a prime $\geq n+1$. Then for every integer k such that $1 \leq k \leq n$, p does not divide k!.

Corollary 1.2. Let n is an integer ≥ 1 and let p be a prime $\geq n + 1$. Then the greatest common divisor of p and n! is 1 (in particular, p does not divide n!).

Proof. Immediate, and follows immediately by using Theorem 1.1. \Box

Now, to prove simply Theorem 1.1, we use the fundamental Theorem of Euclide.

Theorem 1.3 (Euclide). Let a, b and c, be integers such that $a \ge 1$, $b \ge 1$ and $c \ge 1$. If a divides bc and if the greatest common divisor of a and b is 1, then a divides $c.\square$

Proof of Theorem 1.1. Otherwise [we reason by reduction to absurd], let k be a minimum counter-example to Theorem 1.1, clearly k > 3. It is immediate that the greatest common divisor of p and k is 1 [since p is prime $\geq n+1 \geq k+1$ (use the hypotheses) and since k is an integer > 3 (by the previous)]; now using the previous and Theorem 1.3, then we immediately deduce that p divides (k-1)! [since k > 3 and p divides k! and the greatest common divisor of p and k is 1]. This contradicts the minimality of k. \Box **Epilogue.** Using Theorem 1.1, then it becomes natural and not surprising to conjecture (see [1]):

Conjecture. Let n be an integer ≥ 4 . If n + 1 does not divide n! and if n + 3 does not divide n!, then n + 5 divides (n + 4)!.

References .

[1] Ikorong Anouk Gilbert Nemron. *Then We Characterize Primes and Composite Numbers Via Divisibility*. International Journal of Advanced In Pure Mathematical Sciences; Volume 2, no. 1; 2014.