A Trivial Note Concerning p And n !, Where p Is Prime $\geq n+1$ And n Is An Integer ≥ 1.

Ikorong A. Gilbert
Centre De Calcul;D'Enseignement Et De Recherche En Mathematiques Pures Universite' de Paris VI; France
ikorong@ccr.jussieu.fr
Paul Archambault;
Research (Analytic Southern Europe)
Paul.Archambault@pb.com

Abstract

We show that if n is an integer ≥ 1 and if p is a prime $\geq n+1$, then for every integer k such that $1 \leq k \leq n, p$ does not divide $k!$; where $k!=1 \times \ldots \times k$; in particular, if p is a prime $\geq n+1$, then the greatest common divisor of p and $n!$ is 1 and therefore p does not divide $n!$. AMS classification 2000: $05 x x$ and $11 x x$.

1. The proof of stated result.

We recall that if n is an integer ≥ 1, then $n!$ is defined as follow:

$$
n!= \begin{cases}1 & \text { if } n=1 \\ 2 & \text { if } n=2 \\ 1 \times 2 \times \ldots \times n & \text { if } n \geq 3\end{cases}
$$

Theorem 1.1. Let n is an integer ≥ 1 and let p be a prime $\geq n+1$. Then for every integer k such that $1 \leq k \leq n$, p does not divide k !.

Corollary 1.2. Let n is an integer ≥ 1 and let p be a prime $\geq n+1$. Then the greatest common divisor of p and n ! is 1 (in particular, p does not divide $n!$).
Proof. Immediate, and follows immediately by using Theorem 1.1.

Now, to prove simply Theorem 1.1, we use the fundamental Theorem of Euclide.
Theorem 1.3 (Euclide). Let a, b and c, be integers such that $a \geq 1, b \geq 1$ and $c \geq 1$. If a divides $b c$ and if the greatest common divisor of a and b is 1 , then a divides c.

Proof of Theorem 1.1. Otherwise [we reason by reduction to absurd], let k be a minimum counter-example to Theorem 1.1, clearly $k>3$. It is immediate that the greatest common divisor of p and k is 1 [since p is prime $\geq n+1 \geq k+1$ (use the hypotheses) and since k is an integer >3 (by the previous)]; now using the previous and Theorem 1.3, then we immediately deduce that p divides $(k-1)$! [since $k>3$ and p divides k ! and the greatest common divisor of p and k is 1]. This contradicts the minimality of k.
Epilogue. Using Theorem 1.1, then it becomes natural and not surprising to conjecture (see [1]):
Conjecture. Let n be an integer ≥ 4. If $n+1$ does not divide n ! and if $n+3$ does not divide n !, then $n+5$ divides $(n+4)$!.

References .

[1] Ikorong Anouk Gilbert Nemron. Then We Characterize Primes and Composite Numbers Via Divisibility. International Journal of Advanced In Pure Mathematical Sciences; Volume 2, no. 1; 2014.

