On Minimal $\boldsymbol{\lambda}_{\boldsymbol{c}}$-Open Sets

Alias B. Khalaf ${ }^{1}$ and Sarhad Faiq Namiq ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science, University of Duhok, Kurdistan-region, Iraq Corresponding author's email: aliasbkhalaf \{at\} gmail.com
${ }^{2}$ Department of Mathematics, Faculty of Education, University of Garmyan, Kurdistan-region, Iraq

Abstract

In this paper, we introduce and discuss minimal $\lambda_{\text {ropen }}$ sets in topological spaces. We establish some basic properties of minimal λ_{c}-open. We obtain an application of a theory of minimal λ_{c} open sets and we defined a $\lambda_{\boldsymbol{c}}$-locally finite space.

Keywords- λ-open sets, λ_{c}-open sets, minimal λ_{c}-open, s-regular operation.

1. INTRODUCTION

The study of semi open sets in topological spaces was initiated by Levine [7]. The concept of operation γ was initiated by Kasahara [3]. He also introduced γ-closed graph of a function. Using this operation, Ogata [9] introduced the concept of γ-open sets and investigated the related topological properties of the associated topology τ_{γ} and τ. He further investigated general operator approaches of closed graph of mappings. Further Ahmad and Hussain [1] continued studying the properties of γ-open (γ-closed) sets. In 2009, Hussain and Ahmad [2], introduced the concept of minimal γ-open sets. In $2011[4]$ (resp., in 2013[6]) Khalaf and Namiq defined an operation λ called s-operation. They defined λ^{*} open sets [8] which is equivalent to $\boldsymbol{\lambda}$-open set [4] and $\lambda_{g^{-}}$open set [6] by using s-operation. They defined $\lambda_{c^{-}}$open set [6] by using s-operation and closed set and also investigated several properties of λ_{c}-derived, λ_{c}-interior and λ_{c}-closure points in topological spaces.

In this paper, we introduce and discuss minimal λ_{d}-open sets in topological spaces. We establish some basic properties of minimal λ_{c}-open sets and provide an example to illustrate that minimal λ_{c}-open sets are independent of minimal open sets.
First, we recall some definitions and results used in this paper.

2. PRELIMINARIES

Throughout, X denotes a topological space. Let A be a subset of X, then the closure and the interior of A are denoted by $C l(A)$ and $\operatorname{lnt}(A)$ respectively. A subset A of a topological space (X, τ) is said to be semi open [7] if $A \subseteq C l(\operatorname{Int}(A))$. The complement of a semi open set is said to be semi closed [7]. The family of all semi open (resp., semi closed) sets in a topological space (X, τ) is denoted by $S O(X, \tau)$ or $S O(X)$ (resp. $S C(X, \tau)$ orS $C(X)$). We consider λ as a function defined on $S O(X)$ into $P(X)$ and $\lambda: S O(X) \rightarrow P(X)$ is called an s-operation if $V \subseteq \lambda(V)$ for each nonempty semi open set V. It is assumed that $\lambda(\phi)=\phi$ and $\lambda(X)=X$ for any s-operation λ. Let X be a topological space and $\lambda: S O(X) \rightarrow P(X)$ be an s-operation, then a subset A of X is called a λ^{*}-open set [8] which is equivalent to λ-open set [4] and λ_{g}-open set [6] if for each $x \in A$ there exists a semi open set U such that $x \in U$ and $\lambda(U) \subseteq A$. The complement of a λ^{*}-open set is said to be λ^{*}-closed. The family of all λ^{*}-open (resp., λ^{*}-closed) subsets of a topological space (X, τ) is denoted by $S O_{\lambda}(X, \tau)$ or $S O_{\lambda}(X)$ (resp., $S C_{\lambda}(X, \tau)$ or $S C_{\lambda}(X)$).
Definition 2.1. A λ^{*}-open [8] (λ-open [4], λ_{g}-open [6]) subset A of a topological space X is called λ_{c}-open [4] if for each $x \in A$ there exists a closed set F such that $x \in F \subseteq A$. The complement of a λ_{c}-open set is called $\lambda_{e^{e}}$-closed [4]. The family of all λ_{a}-open (resp., λ_{c}-closed) subsets of a topological space (X, τ) is denoted by $S O_{\lambda e}(X, \tau)$ or $S O_{\lambda c}(X)$ (resp. $S C_{\lambda e}(X, \tau)$ or $S C_{\lambda e}(X)$) [4].

The following definitions and results are in [4].
Proposition 2.2. For a topological space $X, S O_{\lambda c}(X) \subseteq S O_{\lambda}(X) \subseteq S O(X)$.

The following example shows that the converse of the above proposition may not be true in general.
Example 2.3.Let $X=\{a, b, c\}$, and $\tau=\{\phi,\{a\}, X\}$. We define an s-operation $\lambda: S O(X) \rightarrow P(X)$ as $\lambda(A)=A$ if $b \in A$ and $\lambda(A)=X$ otherwise. Here, we have $\{a, c\}$ is semi open but it is not λ^{*}-open. And also $\{a, b\}$ is λ^{*}-open set but it is $\operatorname{not} \lambda_{c^{-}}$open.

Definition 2.4. An s-operation λ on X is said to be s-regular which is equivalent to λ-regular [6] if for every semi open sets U and V containing $x \in X_{x}$ there exists a semi open set W containing x such that $\lambda(W) \subseteq \lambda(U) \cap \lambda(V)$.
Definition 2.5. Let A be a subset of X. Then:
(1) The λ_{c}-closure of $A\left(\lambda_{c} C l(A)\right)$ is the intersection of all λ_{c}-closed sets containing A.
(2) The λ_{c}-interior of $A\left(\lambda_{c} \operatorname{lnt}(A)\right)$ is the union of all λ_{c}-open sets of X contained in A.

Proposition 2.6. For each point $x \in X_{v} x \in \lambda_{c} C l(A)$ if and only if $V \cap A \neq \phi$ for every $V \in S O_{\lambda c}(X)$ such that $x \in V$.
Proposition 2.7. Let $\left\{A_{\alpha}\right\}_{\alpha \in I}$ be any collection of λ_{c}-open sets in a topological space (X, τ), then $\mathrm{U}_{\alpha \in I} A_{\alpha}$ is a λ_{c}-open set.
Proposition 2.8. Let λ be an s-regular s-operation. If A and B are λ_{c}-open sets in X_{v} then $A \cap B$ is also a λ_{c}-open set.
The proof of the following two propositions are in [5].
Proposition 2.9.Let $\left\{A_{\alpha}\right\}_{\alpha \in I}$ be any collection of λ^{*}-open sets in a topological space (X, τ), then $U_{\alpha \in I} A_{\alpha}$ is a λ^{*}-open set.
Proposition 2.10. Let λ be s-regular operation. If A and B are λ^{*}-open sets in $X_{\text {s }}$ then $A \cap B$ is also λ^{*}-open .

3. MINIMAL λ_{c}-OPEN SETS

Definition 3.1. Let X be a space and $A \subseteq X$ be a λ_{c}-open set. Then A is called a minimal λ_{c}-open set if ϕ and A are the only λ_{c}-open subsets of A.

Example 3.2. Let $X=\{a, b, c\}$, and $\tau=P(X)$. We define an s-operation $\lambda: S O(X) \rightarrow P(X)$ as $\lambda(A)=A$ if $A=\{a, c\}$ and $\lambda(A)=X$ otherwise. The λ_{c}-open sets are $\phi,\left\{a_{,} c\right\}$ and X. We have $\left\{a_{,} c\right\}$ is minimal λ_{c}-open set.

Proposition 3.3. Let A be a nonempty λ_{c}-open subset of a space X. If $A \subseteq \lambda_{c} C l(C)$, then $\lambda_{c} C l(A)=\lambda_{c} C l(C)$, for any nonempty subset C of A.
Proof. For any nonempty subset C of $A_{\text {, }}$ we have $\lambda_{c} C l(C) \subseteq \lambda_{c} C l(A)$. On the other hand, by hypothesis we have $\lambda_{c} C l(A)=\lambda_{c} C l\left(\lambda_{c} C l(C)\right)=\lambda_{c} C l(C)$ implies $\lambda_{c} C l(A) \subseteq \lambda_{c} C l(C)$.
Therefore, $\lambda_{c} C l(A)=\lambda_{c} C l(C)$ for any nonempty subset C of A.
Proposition 3.4. Let A be a nonempty λ_{c}-open subset of a space $X_{\text {. If }} \lambda_{c} C l(A)=\lambda_{c} C l(C)$, for any nonempty subset C of A_{s} then A is a minimal λ_{c}-open set.
Proof. Suppose that A is not a minimal λ_{c}-open set. Then there exists a nonempty λ_{c}-open set B such that $B \subseteq A$ and hence there exists an element $x \in A$ such that $x \notin B$. Then we have $\lambda_{c} C l(\{x\}) \subseteq X \backslash B$ implies that $\lambda_{c} C l(\{x\})=\lambda_{c} C l(A)$. This contradiction proves the proposition

Remark 3.5. In the remainder of this section we suppose that λ is an s-regular operation defined on a topological space X.
Proposition 3.6. The following statements are true:
(1) If A is a minimal $\lambda_{c^{-}}$-open set and B a $\lambda_{c^{-}}$-open set. Then $A \cap B=\phi$ or $A \subseteq B$.
(2) If B and C are minimal λ_{c}-open sets. Then $B \cap C=\phi$ or $B=C$.

Proof.(1) Let B be a $\lambda_{c^{-}}$-open set such that $A \cap B \neq \phi$. Since A is a minimal λ_{c}-open set and $A \cap B \subseteq A$, we have $A \cap B=A$. Therefore, $A \subseteq B$.
(2) If $A \cap B \neq \phi$, then by (1), we have $B \subseteq C$ and $C \subseteq B$. Therefore, $B=C$.

Proposition 3.7. Let A be a minimal $\lambda_{a^{-}}$-open set. If x is an element of A, then $A \subseteq B$ for any $\lambda_{c^{-}}$-open neighborhood B of x.
Proof. Let B be a λ_{a}-open neighborhood of x such that $A \not \subset B$. Since where λ is s-regular operation, then $A \cap B$ is λ_{c}-open set such that $A \cap B \subseteq A$ and $A \cap B \neq \phi$. This contradicts our assumption that A is a minimal λ_{c}-open set.

Proposition 3.8. Let A be a minimal λ_{c}-open set. Then for any element x of $A_{v} A=\cap\left\{B: B\right.$ is λ_{c}-open neighborhood of $x\}$.
Proof. By Proposition 3.4, and the fact that A is $\lambda_{c^{-}}$-open neighborhood of x, we have $A \subseteq \cap\left\{B: B\right.$ is λ_{c}-open neighborhood of $x\} \subseteq A$. Therefore, the result follows.

Proposition 3.9. IfA is a minimal λ_{c}-open set in X not containing the point x. Then for any λ_{c}-open neighborhood C of x, either $C \cap A=\phi$ or $A \subseteq C$.
Proof. Since C is a $\lambda_{c^{-}}$-open set, we have the result by Proposition 3.3.
Corollary 3.10. If A is a minimal λ_{c}-open set in X not containing $x \in X$ such that $x \notin A$. If $A_{x}=\cap\left\{B: B\right.$ is λ_{c}-open neighborhood of $x\}$. Then either $A_{\mathrm{x}} \cap A=\phi$ or $A \subseteq A_{x}$.
Proof. If $A \subseteq B$ for any $\lambda_{e^{-}}$-open neighborhood B of x, then $A \subseteq \cap\left\{B: B\right.$ is λ_{c}-open neighborhood of $\left.x\right\}$. Therefore, $A \subseteq A_{\mathrm{x}^{*}}$ Otherwise, there exists a $\lambda_{c^{\prime}}$-open neighborhood B of x such that $B \cap A=\phi$. Then we have $A_{\mathrm{x}} \cap A=\phi$.

Corollary 3.11. If A is a nonempty minimal $\lambda_{a^{-}}$open set of X_{v} then for a nonempty subset C of A, we have $A \subseteq \lambda_{c} C l(C)$.
Proof. Let C be any nonempty subset of A. Let $y \in A$ and B be any λ_{c} open neighborhood of y. By Proposition 3.4, we have $A \subseteq B \operatorname{and} C=A \cap C \subseteq B \cap C$.Thus, $B \cap C \neq \phi$ and hencey $\in \lambda_{c} C l(C)$.This implies that $A \cap \lambda_{c} C l(C)$. Hence the proof.

Combining Corollary 3.11 and Propositions 3.3 and 3.4, we have:
Theorem 3.11. Let A be a nonempty λ_{c}-open subset of space X. Then the following are equivalent:
(1) A is minimal λ_{c}-open set, where λ is s-regular.
(2) For any nonempty subset C of $A_{z} A \subseteq \lambda_{c} C l(C)$.
(3) For any nonempty subset C of $A_{,} \lambda_{c} C l(A)=\lambda_{c} C l(C)$.

4. FINITE λ_{c}-OPEN SETS

In this section, we study some properties of minimal λ_{c}-open sets in finite λ_{c}-open sets and λ_{c}-locally finite spaces.
Proposition 4.1. Let $B \neq \phi$ be a finite λ_{c}-open set in a topological space X. Then, there exists at least one (finite) minimal λ_{c}-open set A such that $A \subseteq B$.
Proof. Suppose that B is a finite $\lambda_{c^{-}}$-open set in X. Then, we have the following two possibilities:
(1) B is a minimal λ_{a}-open set.
(2) B is not a minimal λ_{c}-open set.

In case (1), if we choose $B=A_{s}$ then the proposition is proved. If the case (2) is true, then there exists a nonempty (finite) λ_{c}-open set B_{1} which is properly contained in B. If B_{1} is minimal λ_{c}-open, we take $A=B_{1}$. If B_{1} is not a minimal λ_{c}-open set, then there exists a nonempty (finite) λ_{ε}-open set B_{2} such that $B_{2} \subseteq B_{1} \subseteq B$. We continue this process and have a sequence of λ_{c}-open $\ldots \subseteq B_{\mathrm{m}} \subseteq \cdots \subseteq B_{2} \subseteq B_{1} \subseteq B_{x}$. Since B is finite, this process will end in a finite number of steps. That is, for some natural number k_{v} we have a minimal λ_{c}-open set B_{k} such that $B_{k}=A$. This completes the proof.
Definition 4.2. A space X is said to be a λ_{c}-locally finite space, if for each $x \in X$ there exists a finite λ_{c}-open set A in X such that $x \in A$.
Corollary 4.3. Let X be a λ_{c}-locally finite space and B a nonempty λ_{c}-open set. Then there exists at least one (finite) minimal $\lambda_{c^{-}}$-open set A such that $A \subseteq B_{x}$ where λ is s-regular.
Proof. Since B is a nonempty set, there exists an element x of B. Since X is a $\lambda_{c^{-}}$-locally finite space, we have a finite $\lambda_{c^{-}}$ open set B_{x} such that $x \in B_{x^{\prime}}$ Since $B \cap B_{x}$ is a finite $\lambda_{c^{\prime}}$-open set, so by Proposition 4.1, we get a minimal $\lambda_{c^{\prime}}$-open set A such that $A \subseteq B \cap B_{x} \subseteq B$.

Proposition 4.4. Let X be a space and for any $a \in I_{v} B_{\alpha}$ a λ_{c}-open set and $\phi \neq A$ a finite λ_{a}-open set. Then $A \cap\left(\bigcap_{\alpha \in I} B_{\alpha}\right)$ is a finite λ_{c}-open set, where λ is s-regular.

Proof. We see that there exists an integer n such that $A \cap\left(\cap_{\alpha \in I} B_{\alpha}\right)=A \cap\left(\cap_{i=1}^{n} B_{\alpha i}\right)$ and hence we have the result. Using Proposition 4.4 , we can prove the following:
Theorem 4.5. Let X be a space and for any $\alpha \in I, B_{\alpha}$ is a λ_{c}-open set and for any $\beta \in J, B_{\beta}$ is a nonempty finite λ_{c}-open set. Then, $\left(\mathrm{U}_{\beta \in J} B_{\beta}\right) \cap\left(\cap_{\alpha \in I} B_{\alpha}\right)$ is a λ_{c} open set, where λ is s-regular.

5. MORE PROPERTIES

Let A be a nonempty finite λ_{a}-open set. It is clear, by Proposition 3.3 and Proposition 4.1, that if λ is s-regular, then there exists a natural number m such that $\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ is the class of all minimal λ_{c}-open sets in A satisfying the following two conditions:
(1) For any t, n with $1 \leq b, n \leq m$ and $\iota \neq n, A_{i} \cap A_{n}=\phi$.
(2) If C is a minimal λ_{c}-open set in A_{v} then there exists \imath with $1 \leq \iota \leq m$ such that $C=A_{⿺^{*}}$

Theorem 5.1. Let X be a space and $\phi \neq A$ a finite λ_{e}-open set such that A is not a minimal $\lambda_{e^{-}}$-open set. Let $\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ be a class of all minimal λ_{c}-open sets in A and $y \in A \backslash\left(A_{1} \cup A_{2} \cup \ldots \cup A_{m}\right)$. Define $A_{y}=\cap\{B ; B$ is λ_{c}-open neighborhood of $\left.x\right\}$. Then there exists a natural number $k \in\{1,2,3, \ldots, m\}$ such that A_{k} is contained in $A_{y_{k}}$ where λ is s-regular.
Proof. Suppose on the contrary, that for any natural number $k \in\{1,2,3, \ldots, m\}, A_{k}$ is not contained in A_{y}. By Corollary 3.7, for any minimal λ_{c}-open set A_{k} in $A_{v} A_{k} \cap A_{y}=\phi$. By Proposition 4.4, $\phi \neq A_{y}$ is a finite λ_{c}-open set. Therefore, by Proposition 4.1, there exists a minimal $\lambda_{c^{c}}$-open set C such that $C \subseteq A_{y^{*}}$ Since $C \subseteq A_{y} \subseteq A_{s}$ we have C is a minimal $\lambda_{c^{-}}$ open set in A. By supposition, for any minimal $\lambda_{c^{-}}$-open set $A_{k^{x}}$ we have $A_{k} \cap C \subseteq A_{k} \cap A_{y}=\phi$. Therefore, for any natural number $\in\{1,2,3, \ldots, m\}, C \neq A_{k^{x}}$. This contradicts our assumption. Hence the proof.

Proposition 5.2. Let X be a space and $\phi \neq A$ be a finite λ_{c}-open set which is not a minimal λ_{c}-open set. Let $\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ be a class of all minimal λ_{c}-open sets in A and $y \in A \backslash\left(A_{1} \cup A_{2} \cup \ldots \cup A_{m}\right)$. Then there exists a natural number $k \in\{1,2,3, \ldots, m\}$ such that for any λ_{c}-open neighborhood B_{y} of $y_{v} A_{k}$ is contained in B_{y}, where λ is s-regular.
Proof. This follows from Theorem 5.1, as $\cap\left\{B: B\right.$ is λ_{c}-open of $\left.y\right\} \subseteq B_{y}$.
Theorem 5.3. Let X be a space and $\phi \neq A$ be a finite $\lambda_{c^{-}}$open set which is not a minimal λ_{a}-open set. Let $\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ be the class of all minimal λ_{c}-open sets in A and $y \in A \backslash\left(A_{1} \cup A_{2} \cup \ldots \cup A_{m}\right)$. Then there exists a natural number $k \in\{1,2,3, \ldots, m\}$, such that $y \in \lambda_{c} C l\left(A_{k}\right)$. where λ is s-regular.
Proof. Follows from Proposition 5.2, that there exists a natural number $k \in\{1,2,3, \ldots, m\}$ such that $A_{k} \subseteq B$ for any $\lambda_{c^{-}}$ open neighborhood B ofy. Therefore, $\phi \neq A_{k} \cap A_{k} \subseteq A_{k} \cap B$ implies $y \in \lambda_{c} C l\left(A_{k}\right)$. This completes the proof.

Proposition 5.4. Let $\phi \neq A$ be a finite λ_{c}-open set in a space X and for each $k \in\{1,2,3, \ldots, m\}, A_{k}$ is a minimal λ_{c}-open sets in A. If the class $\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ contains all minimal λ_{c}-open sets in A_{s} then for any $\phi \neq B_{k} \subseteq A_{k}, A \subseteq \lambda_{c} C l\left(B_{1} \cup B_{2} \cup B_{a} \cup \ldots \cup B_{m}\right)$, where λ is s-regular.
Proof. If A is a minimal $\lambda_{c^{-}}$-open set, then this is the result of Theorem 3.11 (2). Otherwise, when A is not a minimal $\lambda_{c^{-}}$ open set. If x is any element of $A \backslash\left(A_{1} \cup A_{2} \cup \ldots \cup A_{m}\right)$, then by Theorem 5.3, $x \in \lambda_{c} C l\left(A_{1}\right) \cup \lambda_{c} C l\left(A_{2}\right) \cup \ldots \cup \lambda_{c} C l\left(A_{m}\right)$. Therefore, by Theorem 3.11 (3), we obtain that $A \subseteq \lambda_{c} C l\left(A_{1}\right) \cup \lambda_{c} C l\left(A_{2}\right) \cup \ldots \cup \lambda_{c} C l\left(A_{m}\right)=\lambda_{c} C l\left(B_{1}\right) \cup \lambda_{c} C l\left(B_{2}\right) \cup \ldots \cup \lambda_{c} C l\left(B_{m}\right)=\lambda_{c} C l\left(B_{1} \cup B_{2} \cup B_{a} \cup \ldots \cup B_{m}\right)$.

Proposition 5.5. Let $\phi \neq A$ be a finite λ_{c}-open set and A_{k} is a minimal λ_{a}-open set in A_{v} for each $k \in\{1,2,3, \ldots, m\}$. If for any $\phi \neq B_{k} \subseteq A_{k}, A \subseteq \lambda_{c} C l\left(B_{1} \cup B_{2} \cup B_{2} \cup \ldots \cup B_{m}\right)$ then $\lambda_{c} C l(A)=\lambda_{c} C l\left(B_{1} \cup B_{2} \cup B_{2} \cup \ldots \cup B_{m}\right)$.
Proof. For any $\phi \neq B_{k} \subseteq A_{k}$ with $k \in\{1,2,3, \ldots, m\}$, we have $\lambda_{c} C l\left(B_{1} \cup B_{2} \cup B_{a} \cup \ldots \cup B_{m}\right) \subseteq \lambda_{c} C l(A)$. Also, we have $\lambda_{c} C l(A) \subseteq \lambda_{c} C l\left(B_{1}\right) \cup \lambda_{c} C l\left(B_{2}\right) \cup \ldots \cup \lambda_{c} C l\left(B_{m}\right)=\lambda_{c} C l\left(B_{1} \cup B_{2} \cup B_{2} \cup \ldots \cup B_{m}\right)$.
Therefore, $\lambda_{c} C l(A)=\lambda_{c} C l\left(B_{1} \cup B_{2} \cup B_{2} \cup \ldots \cup B_{m}\right)$ for any nonempty subset B_{k} of A_{k} with $k \in\{1,2,3, \ldots, m\}$.
Proposition 5.6. Let $\phi \neq A$ be a finite λ_{c}-open set and for each $k \in\{1,2,3, \ldots, m\}, A_{k}$ is a minimal λ_{c}-open set in A. If for any $\phi \neq B_{k} \subseteq A_{k}, \lambda_{c} C l(A)=\lambda_{c} C l\left(B_{1} \cup B_{2} \cup B_{a} \cup \ldots \cup B_{m}\right)$, then the class $\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ contains all minimal $\lambda_{c^{-}}$ open sets in A.
Proof. Suppose that C is a minimal $\lambda_{c^{\prime}}$ open set in A and $C \neq A_{k}$ for $k \in\{1,2,3, \ldots, m\}$. Then, we have $C \cap \lambda_{\mathrm{c}} C l\left(A_{k}\right)=\phi$ for each $k \in\{1,2,3, \ldots, m\}$. It follows that any element of C is not contained in $\lambda_{c} C l\left(A_{1} \cup A_{2} \cup \ldots \cup A_{m}\right)$. This is a contradiction to the fact that $C \subseteq A \subseteq \lambda_{c} C l(A)=\lambda_{c} C l\left(B_{1} \cup B_{2} \cup B_{3} \cup \ldots \cup B_{m}\right)$. This completes the proof.

Combining Propositions 5.4, 5.5 and 5.6, we have the following theorem:
Theorem 5.7. Let A be a nonempty finite λ_{ε}-open set and A_{k} a minimal λ_{c}-open set in A for each $k \in\{1,2,3, \ldots, m\}$. Then the following three conditions are equivalent:
(1) The class $\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ contains all minimal λ_{c}-open sets in A.
(2) For any $\phi \neq B_{k} \subseteq A_{k}, A \subseteq \lambda_{c} C l\left(B_{1} \cup B_{2} \cup B_{2} \cup \ldots \cup B_{m}\right)$.
(3) For any $\phi \neq B_{k} \subseteq A_{k}, \lambda_{c} C l(A)=\lambda_{c} C l\left(B_{1} \cup B_{2} \cup B_{a} \cup \ldots \cup B_{m}\right)$, where λ is s-regular.

REFERENCES

[1] B. Ahmad and S. Hussain: Properties of γ-Operations on Topological Spaces, Aligarh Bull.Math. 22(1) (2003), 45-51.
[2] S. Hussain and B. Ahmad: On Minimal γ-Open Sets, Eur. J. Pure Appl. Maths., 2(3)(2009),338-351.
[3] S. Kasahara: Operation-Compact Spaces, Math. Japon., 24(1979), 97-105.
[4] A. B. Khalaf and S. F. Namiq, New types of continuity and separation axiom based operation in topological spaces, M. Sc. Thesis, University of Sulaimani (2011).
[5] A. B.Khalaf and S. F. Namiq, Generalized λ-Closed Sets and $(\lambda, \gamma)^{*}$-Continuous Functions, International Journal of Scientific \& Engineering Research, 3(12), (2012), ISSN 2229-5518.
[6] A. B. Khalaf and S. F. Namiq, λ_{c}-Open Sets and λ_{c}-Separation Axioms in Topological Spaces, Journal of Advanced Studies in Topology, 4(1), (2013), 150-158.
[7] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math.Monthly, 70 (1)(1963), 3641.
[8] S. F.Namiq, $\lambda^{*}-R_{0}$ and $\lambda^{*}-R_{1}$ Spaces, Journal of Garmyan University, 4(3), (2014), ISSN 2310-0087.
[9] H. Ogata: Operations on Topological Spaces and Associated Topology, Math. Japon.,36(1)(1991), 175-184.

