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Abstract An initial boundary value problem for strongly nonlinear reaction diffusion

equation is studied. We show the exponential growth of solution with Lp- norm using a

differential inequalities.
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1 Introduction

In this paper, we study the following the initial boundary value problem of a class of reaction

diffusion equation with multiple nonlinearities

ut −∆u+ |u|k−2ut = |u|p−2u, (1.1)

u(x, t) = 0, x ∈ ∂Ω, (1.2)

u(x, 0) = u0(x), x ∈ Ω, (1.3)

where k > 2, p > 2 are real numbers and Ω is bounded domain in Rn with smooth boundary

∂Ω so that the divergence theorem can be applied. Here,∆ denotes the Laplace operator in

Ω.

This type of problems are not only important from the theoretical point of view, but also

arise in many physical applications and describe a great deal of models in applied science. It

appears in the models of chemical reactions, heat transfer, population dynamics, and so on

(see [1] and references therein).

In the absence of the nonlinear diffusion term |u|k−2ut, the equation (1.1) reduced to the

following equation

ut −∆u = |u|p−2u, (1.4)

A related problems to the equation (1.4) have attracted a great deal of attention in the last

two decades, and many results have been appeared on the existence, blowup and asymptotic
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behavior of solutions. It is well known that the nonlinear |u|p−2u reaction term drives the

solution of (1.4) to blow up in finite time and the diffusion term is known to yield existence

of global solution if the reaction term is removed from the equation [2]. The more general

equation

ut − div(| 5 u|m−2 5 u) = f(u), (1.5)

has also attracted a great deal of people. The obtained results show that global existence

and nonexistence depend roughly on m, the degree of nonlinearity in f , the dimension n,

and the size of the initial data. See in this regard, the works of Levine[3], Kalantarov and

Ladyzhenskaya[4], Levine et al.[5], Messaoudi[6], Liu et al.[7] and references therein. Pucci

and Serrin [8] have been discussed the stability of the following equation

|ut|l−2ut − div(| 5 u|m−2 5 u) = f(u), (1.6)

Levine et al. [5] got the global existence and nonexistence of solution for (1.6). Pang et.

al[9, 10] and Berrimi [11] given the sufficient condition of blow-up result for certain solutions

of (1.6) with positive or negative initial energy.

The class of equation (1.1) can also be as a special case of doubly nonlinear parabolic-type

equations (or the porous medium equation)[12, 5]

β(u)t −∆u = |u|p−2u (1.7)

if we take β(u) = u+ |u|m−2u. Such equation play an important role in physics and biology.

It should be noted that the questions of the solvability,local and global in time, asymptotic

behavior and blowup of initial boundary value problems and initial value problems for equa-

tion of the type (1.7) were investigated by many authors. We only mention the work [12, 13]

for this class equation.

We should also point out that Polat[14] established a blow up result for the solution with

vanishing initial energy of the following initial boundary value problem

ut − uxx + |u|m−2ut = |u|p−2u.

They also given detail results of the the necessary and sufficient blow up conditions together

with blow up rate estimates for the positive solution of the problem

(um)t −∆u = f(u),

subject to various boundary conditions. Korpusov [15, 16] have been obtained sufficient

conditions for the blowup for a finite time and condition of solvability for the following

generalized Boussinesq equation

ut −∆u−∆ut + |u|m−2ut = u(u− α)(u− β), (1.8)
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with initial boundary value (1.2) and (1.3) in R3 for α, β > 0 by the convex method [3, 4].

In this paper, we will investigate the (1.1)-(1.3). To the best of our knowledge, the problem

of (1.1)-(1.3) have not been well studied. We will prove that the solutions in bounded and

||ut||2 + || 5 u||2 →∞, t→ +∞.

In fact it will be proved that the Lp-norm of the solution grows as an exponential function.

An essential tool of the proof is an idea used in [17, 18], which based on an auxiliary func-

tion (which is a small perturbation of the total energy), using a differential inequalities and

obtaining the result. This article is organized as follows. Section 2 is concerned with some

notations and statement of assumptions. In Section 3, we give and prove the result if the

initial energy E(0) of our solutions is negative ( this means that our initial data are large

enough). In Section 4, we give and prove the result if the initial energy E(0) > 0.

2 Preliminaries

In this section, we will give some notations and statement of assumptions for k, p, g. We

denote Lp(Ω) by Lp, H1
0 (Ω) by H1

0 , the usual Soblev space. The norm and inner of Lp(Ω)

are denoted by ||.||p = ||.||Lp(Ω) and (u, v) =
∫

Ω u(x)v(x)dx, respectively. Especially, ||.|| =

||.||L2(Ω) for p = 2.

For the number k and p, we assume that

2 < k < p ≤ 2(n− 1)

n− 2
, if n ≥ 3; 2 < k < p < +∞, if n = 1, 2.

Similar to [14], we call u(x, t) a weak solution of problem (1.1)-(1.3) on Ω× [0, T ), if

u ∈ C(0, T ;H1
0 ) ∩ C1(0, T ;L2), |u|k−2ut ∈ L2(Ω× [0, T ))

satisfying u(x, 0) = u0(x) and∫ t

0

∫
Ω

[5u(s)5 v(s) + ut(s)v(s) + |u|k−2utv − |u|p−2uv]dxds = 0, ∀v ∈ C(0, T ;H1
0 ), ∀t ∈ [0, T ).

In this paper, we always assume that the problem (1.1)-(1.3) exist a local solution.

Now, we introduce two functionals

E(t) = E(u) =
1

2
|| 5 u||2 − 1

p
||u||pp, (2.1)

E(0) =
1

2
|| 5 u0||2 −

1

p
||u0||pp, (2.2)

where u ∈ H1
0 . Multiplying Equation (1.1) by ut and integrating over Ω, we have

E′(t) = −||ut||2 −
∫

Ω
|u|k−2u2

tdx. (2.3)
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3 Exponential growth of solution in case of E(0) < 0

In this section, we will prove the first main result. Our techniques of proof follow very

carefully the techniques used in [17, 18].

Theorem 3.1 Suppose that the assumption about k, p hold, u0 ∈ H1
0 and u is a local

solution of the system (1.1)-(1.3), E(0) < 0. Then the solution of the system (1.1)-(1.3)

grows exponentially.

Proof We set

H(t) = −E(t). (3.1)

By the definition of H(t) and (2.3)

H ′(t) = −E′(t) ≥ 0. (3.2)

Consequently, E(0) < 0, we have

H(0) = −E(0) > 0. (3.3)

It is clear that by (3.2) and (3.3)

0 < H(0) ≤ H(t). (3.4)

By (3.1) and the expression of E(t),

H(t)− 1

p
||u||pp = −1

2
|| 5 u||2 < 0, (3.5)

One implies

0 < H(0) ≤ H(t) ≤ 1

p
||u||pp. (3.6)

Let us define the functional

L(t) = H(t) +
ε

2
||u||2. (3.7)

By taking the time derivative of (3.7) and by (1.1),we have

L′(t) = H ′(t) + ε

∫
Ω
uutdx

= ||ut||2 +

∫
Ω
|u|k−2u2

tdx+ ε||u||pp − ε|| 5 u||2 − ε
∫

Ω
|u|k−2uutdx. (3.8)

To estimate the last term in the right-hand side of (3.8), we use the following Young’s

inequality

ab ≤ δ−1a2 + δb2,
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so we have∫
Ω
|u|k−2uutdx =

∫
Ω
|u|

k−2
2 ut|u|

k−2
2 udx ≤ δ−1

∫
Ω
|u|k−2u2

tdx+ δ

∫
Ω
|u|kdx.

Therefore, we have

L′(t) ≥ ||ut||2 − ε|| 5 u||2 + ε||u||pp − εδ||u||kk + (1− εδ−1)

∫
Ω
|u|k−2u2

tdx. (3.9)

By using

||u||pp = pH(t) +
p

2
|| 5 u||2,

Hence, (3.9) becomes

L′(t) ≥ ||ut||2 − ε|| 5 u||2 + ε[pH(t) +
p

2
|| 5 u||2]− εδ||u||kk + (1− εδ−1)

∫
Ω
|u|k−2u2

tdx

≥ ||ut||2 + (1− εδ−1)

∫
Ω
|u|k−2u2

tdx+ εa1|| 5 u||2 + εpH(t)− εδ||u||kk, (3.10)

where a1 = p
2 − 1 > 0. Note that p > k > 2 and embedding theorem,

||u||kk ≤ C||u||kp ≤ C(||u||pp)
k
p ,

where C > 0 is a positive constant. Since 0 < k
p < 1, now applying the inequality xl ≤

(x + 1) ≤ (1 + 1
z )(x + z), which holds for all x ≥ 0, 0 ≤ l ≤ 1, z > 0, in particular, taking

x = ||u||pp, l = k
p , z = H(0), we obtain

(||u||pp)
k
p ≤ (1 +

1

H(0)
)(||u||pp +H(0)),

then from (3.6)

||u||kk ≤ C||u||kp ≤ C1||u||pp, (3.11)

so we have

L′(t) ≥ ||ut||2 + (1− εδ−1)

∫
Ω
|u|k−2u2

tdx+ εa1|| 5 u||2 + εpH(t)− εδC1||u||pp, (3.12)

Taking 0 < 2a2 = a1, and by 2H(t) ≥ −|| 5 u||2 + 2
p ||u||

p
p, we have

L′(t) ≥ ||ut||2 + (1− εδ−1)

∫
Ω
|u|k−2u2

tdx+ ε(a1 − a2)|| 5 u||2

+ εpH(t)− εδC1||u||pp + εa2[|| 5 u||2 − 2

p
||u||pp]

= ||ut||2 + (1− εδ−1)

∫
Ω
|u|k−2u2

tdx+ εa2|| 5 u||2

+ ε(
2

p
a2 − δC1)||u||pp + ε(p− 2a2)H(t). (3.13)
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Taking δ small enough such that 2
pa2 − δC1 > 0, and then taking ε small enough such that

1− εδ−1 > 0, and noting that p− 2a2 = p− a1 = p
2 + 1 > 0, then

L′(t) ≥ C2(H(t) + ||ut||2 + || 5 u||2 + ||u||pp). (3.14)

On the other hand, by the definition of L(t), we get that there exists a positive constant C

such that

L(t) = H(t) +
ε

2
||u||2

≤ C3(H(t) + || 5 u||2)

≤ C3(H(t) + ||ut||2 + || 5 u||2 + ||u||pp). (3.15)

From (3.14) and (3.15), we obtain the differential inequality

L′(t) ≥ rL(t), (3.16)

Integration of (3.16) between 0 and t gives us

L(t) ≥ L(0)exp(rt), (3.17)

From (3.7) and ε small enough, we have

L(t) ≤ H(t) ≤ 1

p
||u||pp. (3.18)

By (3.17) and (3.18), we have

||u||pp ≥ Cexp(rt).

Therefore, we conclude that the solution in the Lp-norm growths exponentially.

4 Exponential growth of solution in case of E(0) ≥ 0

In this section, we will prove that the energy will grow up as an exponential function as time

goes to infinity, provided that the initial energy E(0) > 0.

The following Lemma will play an essential role in the proof of our main result, and it is

similar to a Lemma used firstly by Vitillaro [19]. In order to give the result and for the sake

of simplicity, we introduce the following We set

λ1 = C
− p

p−2
∗ , E1 = (

1

2
− 1

p
)λ2

1.

Lemma 4.1 Let u be a solution of (1.1)-(1.3). Suppose that the assumption of k, p hold.

Assume further that E(0) < E1 and ||u0|| > λ1. Then there exists a constant λ2 > λ1 such

that ||u|| > λ2.

6

Asian Journal of Fuzzy and Applied Mathematics (ISSN: 2321 – 564X) 
Volume 02 – Issue 05, October 2014 

Asian Online Journals (www.ajouronline.com) 171



Let us now state our main result.

Theorem 4.1 Suppose that the assumption about k, p hold, u0 ∈ H1
0 and u is a local

solution of the system (1.1)-(1.3), ||u0|| > λ1 and E(0) < E1 . Then the solution of the

system (1.1)-(1.3) grows exponentially.

Proof We set

H(t) = E2 − E(t), (4.1)

where E(0) < E2 < E1. By the definition of H(t) and (2.3)

H ′(t) = −E′(t) ≥ 0. (4.2)

Consequently,

H(0) = E2 − E(0) > 0. (4.3)

It is clear that by (4.2) and (4.3)

0 < H(0) ≤ H(t). (4.4)

By (4.1), the expression of E(t), and Lemma 4.1

H(t) = E2 −
1

2
|| 5 u||2 +

1

p
||u||pp

≤ E1 −
1

2
λ2

1 +
1

p
||u||pp = −1

p
λ2

1 +
1

p
||u||pp <

1

p
||u||pp, (4.5)

One implies

0 < H(0) ≤ H(t) ≤ 1

p
||u||pp. (4.6)

Then we can prove the theorem by the similar proof of Theorem 3.1.
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