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Abstract

We investigate the performance of a new 2nd order localized ap-

proximation, as extracted from the generalization of the localized ap-

proximation. These 2nd order localized approximation is then applied

in the study of electromagnetic field interaction of plane waves with a

slab of complex conductivity. The approximation allowed us to obtain

explicit expressions for the internal electric field of the one dimen-

sional slab from the integral equations for a piece-wise constant and

linear profiles. These equations were employed to compute the inter-

nal electric fields within the slab support. The computed results were

compared with the exact solutions obtained from transmission-line

theory. In addition we iteratively solved for the internal electric field

from the intergral equations. The three solutions were then evaluated

and compared at two distinct frequencies. The effect of background

profile and contract between the slab and background profiles on the

accuracy of the approximation were thoroughly investigated in detail.

We also derived explicit expressions for the internal electric field for

a slab with linear complex conductivity profile. However, these were

never numerically computed and evaluated. We defined as L
2 er-

ror norm, with reference to the exact solution from Transmission-line

theory as a metric for the performance evaluation of the computed

internal fields. The results are presented in both graphical and table
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forms. The Original Habashy approximation solutions were compared

against the new 2nd order solutions. We conclude with evaluation of

the performances of the approximations and recommendations for the

next logical direction in future investigation of the localized approxi-

mations.

1 Introduction

In electromagnetic inverse problems, we desire to extract accurate informa-
tion about the complex conductivity or permittivity profile composition of a
medium from its measured interaction with electromagnetic radiation. This
is not an easy problem and its computational difficulties are well documented
[3, 4], [2]−[5]. Over the years attempts have been made to perfect this art
of extracting useful profile information from imperfectly measured electro-
magnetic scattering data [7, 8, 9, 11]. The essential first step to achieve this
objective is finding an accurate forward model for the scattering fields of the
electromagnetic scattered fields.

In the Green function formulation of the electromagnetic scattering prob-
lem, this reduces to find a simple and feasible method for computing the in-
ternal scattered fields within the medium. A number of techniques have been
developed to solve the Green function method integral equation. The main
difficulty with the Green function method is that, the integrand is product of
the profile function and the internal field which are mutually dependent. The
implication is that, the integral equation is extremely nonlinear. The earliest
attempts at solving integral equations of these kinds were Born[6, 12, 15] and
Rytov[14] and by Habashy et al [10]. In recent times, Habashy and other
[7] proposed the Localized Approximation technique for solving the internal
electromagnetic electric fields of the integral equation.

The localized approximation technique is based on the observed localiza-
tion properties of the Green’s function in higher dimensional problems and
the smoothly varying internal electromagnetic fields. In a follow up work to
those of Habashy et al [7], Adopley [1] extended the localized approxima-
tion to the one dimension (1D) case, where the singularity of the Green’s
function in higher dimensions degrades into a localized peak for complex
profile systems. Adopley [1] used the localized approximation technique to
investigate the performance of the first order Habashy approximation, and
a 2nd order Adopley approximations in a 1D slab-problem. However in that
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work nothing was done to study the performance of an alternative 2nd order
approximation based on the second of the two generalized localized approx-
imation model developed in [1, 7]. The performance of this alternative 2nd

order localized approximation, is the main focus of this work. We study in
great details its potential in accurately predicting the internal field of the
integral equation. The investigation is limited to the 1D slab with piece-wise
constant complex conductivity profile as used in [11]. However we present
the Green function formulation in all three dimensions. The Green function
formulations are presented just for completeness. These derivations are read-
ily available [8, 9, 16]. It is instructional to note the fact that, the Green
function of the 1D slab-problem has the least localizing power with respect
to higher dimensions. In addition the exact internal electric fields are readily
computed from Transmission-Line theory (TL-Mode) [13] for the piece-wise
constant profile. It is noted that, apart from the distinct expressions for the
Green function in each dimension, the general format of the electromagnetic
integral equation are identical in all dimensions.

In the next section, we define the geometry of the slab problem with
its governing Green function integral equation. In addition we present the
Green function integral equations in higher dimensions (3D and 2D), with ex-
plicit expressions for the respective Green functions. The following section,
provides analytic expressions for the internal electric field of the piece-wise
constant profile of the 2nd order localized approximation. Section 4 pro-
vides the explicit solutions for the linear slab profile. However the derived
expressions for the linear profile were never applied in any computations.
The investigation of their performance is left for the future.

In section 5 we present the solution models and provide extensive nu-
merical study of the performance of the second order localized approximation
against the Habashy approximation at two frequencies of 2.4 MHz and 2.4
GHz. The 2nd Order Localized Approximation numerical performance were
then compared against the Habashy Localized Approximation and a direct
numerical iterative solution of the integral equation. All approximate solu-
tions were evaluated against the exact solution from transmission-line theory.
Deviations of the approximate solutions from the exact solution are displayed
both in tables and graphs. We concluded with our findings on the perfor-
mance of the second order approximation and provided our recommendation
and the directions of our future work in the last section.
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2 Slab problem and its Integral Equations

The slab problem geometry is displayed in Figure 1. The integral equation
governing interaction of plane wave with the slab was derived in [1] and is
given by

Ey(z) = Ein
y (z) +

kb
2ǭb

∫ d

0

q̄(z
′

)Ey(z
′

)g(z, z
′

)dz
′

(1)

in terms of complex permittivity or

Figure 1: Lossy Dielectric slab

Ey(z) = Ein
y (z) +

kb
2σ̄b

∫ d

0

σ̄(z
′

)Ey(z
′

)g(z, z
′

)dz
′

(2)

in terms of complex conductivity. Here q̄(z) and σ̄(z) are complex permittiv-
ity and complex conductivity contrast respectively. q̄(z) is defined as ǭs − ǭb
and relative complex permittivity is defined as ǭ = ǫr + σ/(ω0ǫ0). Similarly
complex conductivity is defined as σ̄ = σ − ωǫrǫ0. It is instructional to
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know that, the integral formulation of electromagnetic scattering problems
with Green’s function techniques assume the same form in multiple dimen-
sions. In the cases of 2D and 3D systems, the integral equations assume the
form [9]

E(r) = Eb(r) +

∫

τ

∆ ¯̄σ(r0)
¯̄G(r, r0)E(r0) dr0 (3)

where ¯̄G(r, r0) is the Dyadic Green’s function. The differential equations
that govern the Green functions and their solutions are well presented in the
works of Gao et al [9, 16].

In the works of Adopley et al [11] on localized approximation of the slab
problem, nothing was said about the performance of the 2nd order of the
second type generalization of the localized approximation. Specifically, the
approximation of the second type generalization, specialized to the 2nd order
gives the internal field as

Eint(z) = ΓN(z) ·
N−1
∑

n=0

En(z) (4)

and
ΓN(z) = [1− (Ω(z))N ]−1. (5)

with

Ω(z) =
kb
2σ̄b

∫ d

0

σ̄(z
′

)g(z, z
′

)dz
′

(6)

En(z) is defined recursively as

En(z) =
kb
2σ̄b

∫ d

0

En−1(z
′

)σ̄(z
′

)g(z, z
′

)dz
′

(7)

and E0(z) = Eb(z) is the incident field. The 2nd order localized approxi-
mation of the second approximation then becomes, for the internal electric
field

Eint(z) =
1

(1− [Ω(z)]2)
·

[

Eb(z) +
kb
2σ̄b

∫ d

0

σ̄(z
′

)Eb(z
′

)g(z, z
′

)dz
′

]

(8)

The accuracy of Equation 8 in predicting the internal electric field is
our main focus in this work. Armed with the knowledge of the complex
conductivity distribution of the slab, the internal electric field can be ready
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evaluated using the above approximation. In this study on the performance
of the 2nd order approximation, we generated a generic analytical solution of
the integral equation for the internal field in case of the piece-wise constant
profile. This should not be regarded as a set back as any complex profile
distribution, can be reduced to piece-wise constant profile approximation
to any desired accuracy. Indeed, with computing power presently at the
disposal of researchers and application of parallel computing, this may be
the best available option as individual discretized integration components
are independent of each other and hence can all be evaluated in parallel.
The above expressions for the internal electric field will now be solved for
piece-wise constant and linear profiles explicitly.

3 2nd Order Localized Approximation: Piece-

wise Constant Profile Solution

We need to compute the integrals in the expressions for both Ω(z) and En(z)
in order to evaluate the internal electric field. Note that for the 2nd Order
approximation where N = 2, the two integrals that we need to evaluate are

Ω(z) =
kb
2σ̄b

∫ d

0

σ̄(z
′

)g(z, z
′

)dz
′

(9)

and Ein(z) = E0(z) + E1(z) is given by

Ein(z) = Eb(z) +
kb
2σ̄b

∫ d

0

Eb(z
′

)σ̄(z
′

)g(z, z
′

)dz
′

(10)

Note that the expression for the Green function for the 1D case is given

by g(z, z
′

) = e−kb|z−z
′

| and Eb(z) = e−kbz for the incident plane wave. For a
piece-wise constant profile, the two integrals are readily evaluated as

Ω(z) =
kb
2σ̄b

(

−

[

m−1
∑

n=1

σ̄n

(

ekbzn − ekbzn−1

)

− σ̄me
kbzm−1

]

e−kbz

+

[

N
∑

n=m+1

σ̄n

(

e−kbzn − e−kbzn−1

)

− σ̄me
−kbzm

]

ekbz − 2σ̄m

)

(11)

and
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E2(z) =
ekbz

4σ̄b

(

[

e−2kbzm − e−2kbz
]

+
n
∑

n=m+1

σ̄n

[

e−2kbzn − e−2kbzn−1

]

)

+ e−kbz

(

1 +
kb
2σ̄b

[

m−1
∑

n=1

(zn − zn−1)σ̄n + σ̄m(z − zm−1)

])

(12)

Equations 11 and 12 are then deployed to investigate the performance
of the 2nd order localized approximation against the exact solution from
transmission-line theory, the Habashy approximation and a directly iterative
solution of the integral equation. In the case of the iteration of the integral
equation, we assume the initial solution E0

y(z) and then apply the iteration
step

En
y (z) = Ein

y (z) +
kb
2σ̄b

∫ d

0

σ̄(z
′

)En−1
y (z

′

)g(z, z
′

)dz
′

(13)

to numerically compute an approximation for Ey.

4 2nd Order Localized Approximation: Linear

Profile Solution

In this section we developed the analytical solutions for the linear profile for
the 2nd Order localized approximation. It should be noted that, for more
complex geometries, appropriate fundamental basis functions can be used to
represent the profile. In the future, Fourier series analysis will be employed
to model the complex conductivity profiles with compact support. Presently
the linear profile is used to display the power of the localized approximation
technique as the relevant integral can be expressed in close form.

For the linear profile, we assume the complex conductivity distribution
to be of the form σ̄(z) = ᾱz + σ̄0 , where σ̄0 is some constant complex
conductivity and ᾱ is some complex number constant. The solution can
then be separated into two parts using linearity of the integral equation.
The first part due to the constant term, is what was already analyzed in
the piece-wise constant profile. The second part due the z dependent part
is what needs to be evaluated. Since ᾱ is just a complex number constant
that scales through, it not really needed. Hence, the linear form analyzed is
simply σ̄(z) = z. The two integrals to evaluate are then
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Ω(z) =
kb
2σ̄b

∫ d

0

z
′

g(z, z
′

)dz
′

(14)

which evaluates to

Ω(z) =
1

2kbσ̄b

[

(1 + kb d) e
−kb(d−z) − e−kbz − 2kb z

]

(15)

and Ein(z) = E0(z) + E1(z) is given for the linear profile by

Ein(z) = Eb(z) +
kb
2σ̄b

∫ d

0

Eb(z
′

)z
′

g(z, z
′

)dz
′

(16)

which evaluates to

Ein(z) =

(

1 +
kbz

2

4σ̄b

)

e−kbz

+
ekbz

8kbσ̄b

[

(1 + 2kbd) e
−2kbd − (1 + 2kbz) e

−2kbz
]

(17)

5 Numerical Performance Evaluation

We computed the internal electric field of the slab problem using expressions
derived for 1st and 2nd Order Habashy approximations, the iterative method,
and the exact solution from Transmission-line theory for uniform complex
conductivity profile. When there is no contrast between the background and
slab complex conductivity profiles, all approximations produced the same re-
sults. The numerical computers were performed at two frequencies. A lower
frequency of 2.4 MHz and a higher frequency of 2.4 GHz were used for the
analysis evaluation. In this analysis we did not include the Adopley Local-

ized Approximation since its performance against the 1st Order Habashy
approximation is well documented in [1]. We used background conductivity
of 1.0 s/m (σb = 1.0) and relative permittivity of 1 (ǫb = 1.0) throughout the
analysis. In our numerical experimentation, we first varied the slab conduc-
tivity (σs) from 1.0 − 1.5 s/m in step of 0.1 with constant slab permittivity
at the frequency of 2.4 GHz. At the lower frequency, the slab conductivity
was varied from 1 − 2.0 in steps of 0.2. Then in our second computation,
we swept the slab permittivity (ǫs) from 1.0− 4.0 in steps 0.3 also with con-
stant background complex conductivity profiles for both frequencies of 2.4
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MHz and 2.4 GHz. As the contrast in complex conductivity profile between
the background and slab increases, the approximations degrade in numeri-
cal performance with the degree of degradation tracking the profile contrast
magnitude.

The first set of plots, Figure 2 are for slab profile of σs = 1 and ǫs = 4.0
The plots displays the Magnitude and Phase of computed internal electric
field at 2.4 MHz. The second set of plots in Figure 3 display the same
information for the same slab profile at 2.4 GHz. From the plots we note
that all approximations accurately modelled the internal E-field at 2.4 MHz.
The 2nd Order Habashy model providing the best results at 2.4 GHz.
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Figure 2: Manitude and Phase of Internal E-Field.

In the performance evaluation we defined an L2-Error norm to quantify
the performance metric of the approximation. We define an L2-Error norm
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Figure 3: Magnitude and Phase of Internal E-Field.

as

||δEy
err|| =

√

(

1

d

∫ d

0

[

Ey(z)− ETL
y (z)

]2
dz

)

(18)

based on difference between the internal electric fields of the approximations
and the TL-Mode values. The error metric as computed by equation 18 are
displayed in Table 1 and Table 2 at 2.4 MHz and 2.4 GHz respectively for
the plots in Figures 2 and 3.

In our next set of plots, Figure 4 and 5 show results for the same back-
ground profile of unit relative permittivity and unit conductivity at 2.4MHz
and 2.4 GHz respectively. The slab relative permittivity in these compu-
tations is kept at unity. We used conductivity of 2.0(s/m) at 2.4MHz and
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Approximation Mode ||δEer
y ||

1st Order Habashy 3.2048e-005
2st Order Habashy 2.2137e-006
Iteration 1.2525e-004

Table 1: F = 2.4 MHz.; σb = 1 ; σs = 1; ǫb = 1 ; ǫs = 4

Approximation Mode ||δEer
y ||

1st Order Habashy 0.0153
2st Order Habashy 0.0054
Iteration 0.0871

Table 2: : F = 2.4 GHz.; σb = 1 ; σs = 1; ǫb = 1 ; ǫs = 4

Approximation Mode ||δEerr
y ||

1st Order Habashy 0.0394
2st Order Habashy 0.1254
Iteration 0.1578

Table 3: F = 2.4 MHz.; σb = 1 ; σs = 2.0; ǫb = 1 ; ǫs = 1

Approximation Mode ||δEerr
y ||

1st Order Habashy 0.0145
2st Order Habashy 0.0096
Iteration 0.0568

Table 4: F = 2.4 GHz.; σb = 1 ; σs = 1.5; ǫb = 1 ; ǫs = 1

Approximation Mode ||δEerr
y ||

1st Order Habashy 0.0071
2st Order Habashy 0.0015
Iteration 0.0281

Table 5: F = 2.4 GHz.; σb = 1 ; σs = 1.2; ǫb = 1 ; ǫs = 1
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Figure 4: Relative Error to TL-Mode: Real & Imaginary Components.

1.5(s/m) at 2.4GHz for the slab. The plots of δEy(z) are defined as the dif-
ference between, internal E-filed approximations and the TL-Mode. We note
from Figure 5 the relative superior performance for the 2nd Order Habashy
model. The iterative method provides the least accurate results relative to
the TL-Mode. The relative error information are provided in Table 4. In our
numerical experimentation, we uncovered The relative error information are
provided in Table 4. In our numerical experimentation, we uncovered some
subtle results. We noted that, at 2.4 MHz, the 1st Order Habashy model
outperforms the 2nd Order Habashy model with better accuracy as the con-
ductivity contrast increases between the background and the slab. Table 3
provides the L2Error norm as defined by equation 18. It was also noted that,
above conductivity contrast of 1.5 with the applied background profile, the
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Figure 5: Relative Error to TL-Mode: Real & Imaginary Components.

Iteration Model provides better results than both Habashy models. We note
in Table 5 that, at the high frequency of 2.4 GHz, the accuracy improves for
all approximations with lower conductivity contrasts.

6 Conclusion

With the 2nd Order localized approximation extracted from the generaliza-
tion of the extended Born approximation, we obtained closed-form explicit
solutions of the 1D slab problem for both piece-wise constant and linear
profiles. From the extensive numerical computations, we succeeded in com-
paring the performance of the 2nd localized approximation with the Habashy
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approximation, the direct iterative solution of the 1D integral equation and
the exact solutions from TL-theory at two different frequencies of 2.4 MHz
and 2.4 GHz. At the lower frequency, all approximations were very accu-
rate with respect to the magnitude of phase data of the internal electric field
computations relative to the exact solution from transmission-line theory for
a slab permittivity contrast of ≤ 4 and conductivity contrast of 1. In all
computations, the background profile was set at ǫb = 1 and σb = 1 (s/m).
We defined an L2 Error norm which was used as the metric to evaluate
the performance of the approximations. However, restricting the permittiv-
ity contrast to unity, and increasing the conductivity contrast of the slab
against the background, the Habashy approximation tends to simulate the
internal electric fields better than the 2nd order approximation with increas-
ing conductivity contrast at the 2.4 MHz range. In a follow up work, we
intend to the adopt the 2nd localized approximation as a forward model for
inverse profile reconstruction.
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