Topological Basis of Flat Electroencephalography’s State Space

Tan Lit Ken, Tahir Bin Ahmad, Lee Kee Quen, Gan Yee Siang, Tey Wah Yen, Wong Wai Kit

Abstract


Neuroinverse problem are often associated with complex neuronal activity. It involves locating problematic neuron which usually a highly challenging task. While epileptic foci localization is possible with the aid of EEG signals, it relies greatly on the ability to extract hidden information or pattern within EEG signals. Flat EEG being an enhancement of EEG is a way of viewing electroencephalograph on the real plane. In the perspective of dynamical systems, the equivalency of epileptic seizure and Flat EEG is important since the underlying structure of Flat EEG is dynamic. In this paper, a basis for the topological space of Flat EEG is presented. It is expected to facilitate in the constructions of dynamic transformation from epileptic seizure to Flat EEG. It provides a better understanding on Flat EEG itself.

 


Keywords


Epilepsy, Flat EEG, Topology, Dynamical Systems.

Full Text:

PDF

References


Panayiotopoulos, C. P., Atlas of Epilepsies, 1st Edition, Springer-Verlag, London Limited. 2010; Chapter 1, pp: 5.

Jahnecke, C. A. N., Schwarz, L., Sovierzoski, M. A., Azevedo, D. F. M. and Argoud, F. I. M., “C++ Video-EEG Processing System With Sights to the Epileptic Seizure Detection”, World Congress on Medical Physics and Biomedical Engineering, IFMBE Proceedings, 2007; 14(8): 1052-1055.

Wyllie, E., Gupta, A. and Lachhwani, D.K., The treatment of epilepsy: principles & practice, 4th Edition, Lippincott Williams & Wilkins, USA. 2006; pp: 1185.

Sharon, R., David, I.M. and Shlomo, Y., “Anticonvulsant efficiency, behavioral performance and cortisal levels: a comparison of carbamazepine (CBZ) and a fatty acid compound (SR-3)”, Elsevier, Psychoneuroendocrinology. 2004; 29(2): 113-124.

Stefan, H. and Feuerstein, T. J., “Novel Anticonvulsant Drugs”, Elsevier, Pharmacology & Therapeutics. 2007; 113(1): 165-183.

Bennett, T. L., Ciritical issue in Neuropsychology: The Newropsychology of Epilepsy, 2nd Edition, Springer. 1992; pp: 88.

Kiymik, M.K., Guler, I., Dizibuyuk, A. and Akin, M., “Comparison of STFT wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application”, Elsevier, Computers in Biology and Medcine. 2005; 35(7): 603-616.

Desco, M., Pascau, J., Pozo, M. A., Santos, A., Reig, S., Gispert, J. and Garcia, B. P., “Multimodality localization of epileptic foci”, Physiology and Function from Multidimensional Images, Proceedings of SPIE, Medical Imaging. 2001; 4321(1): pp: 362-370.

Tiihonen, J., Hari, R., Kjola, M., Nousiainen, U. and Vapalahti, M., “Localization of epileptic foci using large-area magnetometer and functional brain anatomy”, Wiley, Annals, of Neurology. 2004; 27(3): 283-290.

Evim, A., Canan, A. B., Haluk, B. and Bulent, Y., “Computational analysis of epileptic focus localization”, ACTA Press Anaheim, BioMed’06 Proceedings of the 24th IASTED international conference on Biomedical Engineering. 2006; pp 317-322.

Natasa, M., Malek, D., Ilker, Y. and Prasanna, J., “3-D source Localization of Epileptic Foci Integrating EEG and MRI Data”, Springer-Verlag, Brain Topography. 2003; 16(2): 111-119.

Toni, A., Aopa, N., Matti, S. H., Liro, P. J. Jouko, L., Aki, V. and Mikko, S., “Bayesian analysis of the neuromagnetic inverse problem with lp-norm priors”, Elsevier, Neuroimage. 2005; 26(3): 870-884.

Jan, C. D. M., Fetsje, B., Pawel, G., Cezary, A. S., Maria, I. B. and Heethaar, R. M. A., “Maximum-Likelihood Estimator For Trial-to-Trial Variations in Noisy MEG/EEG Data Sets”, IEEE Transactions on Biomedical Engineering. 2004; 51(2): 2123-2128.

Liau, L. Y., “Homeomorfisma Antara S2 Dan E2 MelaluiStrukturPermukaan Riemann Serta Deduksi Teknik Pembuktiannya Bagi Homeomorfisma Pemetaan Topologi Topografi Kabur (FTTM)”, Master Thesis, UniversitiTeknologi Malaysia, Skudai. 2001.

Tahir, A., Rashdi, S. A., Liau, L. Y., Fauziah, Z. and Wan Eny Zarina, W. A. R., ”Homeomorphisms of Fuzzy Topographic Topological Mapping (FTTM)”, UTM, Matematika. 2005; 21(1): 35-42.

Fauziah, Z., “Dynamic Profiling Of Electroencephalography Data During Seizure Using Fuzzy Information Space”, UniversitiTeknologi Malaysia, PhD Thesis, Skudai. 2008.

Eduard, G., Helwig, L. and Raine, W., “Visualization of Dynamical Systems. Elsevier, Future Generation Computer Systems”, 1999; 15(1): 75-86.

Eugene, M. I., “Dynamical System in Neuroscience: The Geometry of Excitability and Bursting”, The MIT Press Cambridge, Massachusetts London England. 2007; pp: 8.

Tan, L. K., Tahir, A., Mohd, S. M. and Su. K. N., “Dynamical System of Flat Electroencephalography”, Science Publications, American Journal of Applied Sciences. 2015; 12(7): 495-505.

Tahir, A. and Tan, L. K., “Topological Conjugacy between Seizure and Flat Electroencephalography”, Science Publications, American Journal of Applied Sciences. 2010; 7(3): 1470-1476.

Tahir, A. and Tan, L. K., “Flows of Continuous-Time Dynamical Systems with No Periodic Ordbit as an Equivalence Class under Topological Conjugacy Relation”, Science Publications, Journal of Mathematics and Statistics. 2011; 7(3): 207-215.

Faisal, A. M. B. and Tahir, A., “EEG Signals During Epileptic Seizure as a Semigroup of Upper Triangular Matrices”, Science Publications, American Journal of Applied Sciences. 2010; 7(4): 540-544.

Tan, L. K. and Tahir, A., “Structural Stability of Flat Electroencephalography”, Marsland Press, Life Science Journal-Acta Zhengzhou University Overseas Edition. 2014; 11(8): 165-170.




DOI: https://doi.org/10.24203/ajet.v5i2.4756

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Asian Journal of Engineering and Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.