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ABSTRACT— Elimination of the spurious or numerical oscillations is very important in the solution of unsteady
boundary value problem by FDM. Upwind differencing in advection problem is very popular, but numerical diffusion
is too big. Flux limiters are very effective to eliminate the numerical oscillations, but the procedure is rather
complicated. In the present paper, a very simple and unique method is proposed to reduce numerical oscillations. The
method is verified by numerical calculations. This solution can be applied to many problems and to other solutions
such as FEM, BEM etc. This solution can be applied not only to explicit method but also to implicit method. This
solution can be extended easily to multi-dimensional problems.
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1. INTRODUCTION

In solution of unsteady boundary value problems, the numerical instability and the numerical or spurious oscillation
must be avoided. The former was discussed also by the present author [1] recently. The implicit solution is very effective
to avoid it. On the other hand, Lax-Wendroff [2] and the flux limiter [3-5] methods are useful for reducing and
eliminating the latter.

Elimination of the numerical oscillation is very important in FDM. Upwind differencing in advection problem is very
popular. However, the upwind differencing generates rather large numerical diffusion.

In the present paper, a very simple and unique method for reducing the numerical oscillation is proposed. In many
cases, computational noise of sinusoidal nature is generated. If a signal of opposite phase is generated by differentiating
the original signal twice and is added to the original signal, this kind of noise can be cancelled easily. On the other hand,
the rapidly varying component in the original signal can be made by subtracting the slowly varying component from the
original signal, and the slowly varying component can be extracted by taking the moving average of the original signal.
Hence, if we regard that the rapidly varying component in the original signal is the numerical oscillation, the numerical
oscillation may be easily reduced or eliminated by subtracting the rapidly varying component from the original signal.
This suggests us that taking the second derivative is equivalent to generating the rapidly varying component by averaging
process.

The method is verified by numerical calculations, one- and two-dimensional examples are shown. This solution can
be applied to many problems and to other solutions such as FEM, BEM etc.

2. SUMMARY OF EXISTING METHODS TO REDUCE SPURIOUS OR NUMERICAL
OSCILLATIONS

Let us consider an initial value problem of advection equation:

E+U & =V, (1)
u(x,0)= f(x). 2)
In the following, we assume U >0 for simplicity.
The upwind difference is given by
e N U/s| N o udt o My Udxdt 1 " n
™ =u - SR U - u) =y -8 U -u D)+ SOE -2 ) ©

Hence, the upwind difference is “central difference + diffusion with diffusion constant v =Udx/2 . The second
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term on the right hand side is a source of spurious oscillation and the third term is the diffuser with diffusion
const. v=Udx/2. However, the diffuser is excessive. If we use the upwind differencing, a rather big numerical

diffusion or spurious diffusion takes place. This is the drawback of the upwind differencing.

On the other hand, the central difference is defined as
ue =y — Udt U -u). @

i+1

If we use the central differencing, a numerical or spurious oscillation occurs. This is the drawback of the central
differencing. However, in case of the central differencing, if we decrease dx , the accuracy is increased, and the
numerical oscillation is reduced. The reduction of dx increases the computational cost.

If we rewrite Eq. (4), we have

Udt Udt Udt

(n+1) _ (") ) _ (n) ) u™ _ (n) u™ — (n)
u™ = u! u; : 5
i i de( i+l ) ( i+1 ) ( ) ( )
and
. Soudt o m Udt oy Udtdx 1 . 0
ui( K Eui( V- 2d (u|(+1) ( )) u( ) - d ( ( ) - ( )) 2 ( |(+]? U( ) +ui(—1)) . (6)

Equations (5) gives a relationship between “central difference” and “forward plus backward difference”, and Eqg. (6) a
relationship between “central difference” and “upwind difference”. In Eq. (6), the second term on RHS is upwind
derivative. The upwind derivative generates an excessive diffusion. The third term on RHS is anti-diffuser. The
anti-diffuser is too strong. From Eqg. (6), we know that the central difference corresponds to the upwind difference with
negative diffusion coefficient v =—Udx/2.

Lax-Wendroff method [2-8] is an effective way to reduce the numerical oscillation and is obtained as follows. First,
we have Taylor expansion:

u(x,t +dt) = u(x,t) +u, (x, t)dt +%un(x,t)dt2 e (8)
Then, from Eq. (1), we notice
u =-Uu, u, =), =-Uu,), =U%,, ---. 9)
Substituting Eq. (9) into Eq. (8), we derive
u(x,t+dt) =u(x,t) —Uu, (x,t)dt +%U U, (x,t)dt? +---. (10)
If we replace both u, (x,t) and u,(x,t) in Eq. (10) by the central differences, we obtain, from Eq. (10)
u? =u® - Udt g i U+ U o (U.&"f 20" +u). (11)

In Eq. (11), the second term on RHS is a source of spurious oscnlatlon, and the third term is anti-diffuser with a
strength improved more than upwind method, Eq. (3). Equation (11) corresponds to convective diffusion with

positive diffusion coefficient v =U ?dt/2:
o ou 1

= U&:EUZdt Fv (12)

The flux term or the diffusion term in Eq. (12) contributes to suppress the numerical oscillation due to the advection
term. Hence, Eq. (11) gives better numerical solution than Eq. (4). Namely, Equation (11) improves Eq. (4).

According to [4], we rewrite Eq. (11) as follows. Substituting

SR - =@ -u+ @2 -2 +ul) (13)
into Eq. (11), we obtain
) =y S w0 - f"f)—%(l Lédtjudt( ug) 20 +ul). (14)
X

The second term on the right hand side has a role of anti-diffuser.

Rewriting u{” —2u™ +u® as
U =20 +uf = (U —u) - (" —u) =AUl —u) =AA_UY), (15)

where
A7(ym) = ym _ym—l . (16)
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Substituting Eg. (15) into Eq. (14), we have

vy _yo YAt o) L Udt\Udt
U~y ~=2LA () - (1— dx] L A, (17)

Adjusting the anti-diffuser, we assume

Udt Udt \ Udt A (u™)
u™d u_(n) A (n) _ ( j A i u™My |, 18
i i d ( ) 2 dX dX - (/) A_ (U-(n)) —( |+1) ( )

i+l

Equations (17) and (18) correspond to Egs. (3.2) and (3.6) in [4], respectively.
Now, we introduce TV (Total Variation) TV(u™) [3]:

TVU®)=>u —u®|. (19)
We require TVD (Total Variation Diminishing):
TVU™) <TVu™). (20)
When
U =u® —CA_(U")+ DA (u), (21)
then, the condition to satisfy TVD condition, Eq. (20), is given from [3, 4] by
0<C;,0<D;, 0<C,+D, <1. (22)
Applying Eq. (22) to Eg. (18), we obtain
Udt|, 1(, Udt A_(ui™) - m
Ci=—1]1+Z|1-—— |A —= 1A _(u A (uy™)|, D, =0. 23
i dX |: 2( dX ) _(¢[A(UI(EB) ( |+1) —( i ) ( )
since
Udt|, 1(, Udt A_(u™)
ul™ =y™m — 1+=1-—|A A UMY | /A @u™) A u™). 24
i i dX l: 2( dX ) _(¢[A(Ul(+nf) —( |+1) —( i ) —( i ) ( )

Rewriting Eq. (23), we have

Udt 1 _ Udt Af(ui(n)) O Af(ui(?l)) ) (n)
" [1 % j{¢(A<u§ff))A‘(”‘+1) Aawm)+ 1)
_Udt|. 1( Udt A_(UM) ) A_(ui?) A_(u™")
o {1 A% JMA (U.Tf)jA(ui‘”’) “{A(u@)m' @
Equations (24) and (25) correspond to Egs. (3.8) and (3.9) in [4], respectively.
From Egs. (22) and (23), we have 0<C, <1. If we define ® as

(n) (n) (n)
¢ A (U ) A (u|+1) ¢ A (U ) q)' (26)
A_uR) JA_u®) A u®)
then, we obtain
Udt 1 1- Yat D <C < Ydt 1+l 1- U—dt , (27)
x| 2 dx dx 2 dx
where Courant number is assumed to satisfy
U—dt<1. (27)
dx
From the left inequality in Eq. (27), we have that
O<2, (28)

is sufficient to satisfy Eq. (22). If we require to maximize the role of anti-diffuser, we may asuume

() M _ym
A (U ) _Y Uiy <0. (29)
A U®)  u® —y®

i+l i+l i

$>0and ¢=0 when r, =

Then, we obtain that

™ _ o M _ ™ M _ o
u™ —un o(r) u Uy und -
0< ¢(r) ¢( (n) u(n) J <2 and 0< r ¢[u(n) u:(n) uf(n) u(n) <2 (30)

|+1 i i i+l
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is sufficient to satisfy Egs. (26) and (28). Hence, #(r) must be in a region of Figure 1(a) surrounded by ¢ =2r, p =2
and ¢ =0. In order to maximize the role of anti-diffuser, ¢(r) should be the maximum, that is

#(r) =min(2r, 2), (31)
which is the upper boundary of the region [4]. The region D+@) in Figure 1(b) gives the second order TVD region [4].

\ Lax-Wendroff ¢=1
=0

T f |
0 1 T 0 1

Lo
o 4
-

Figure 1: TVD regions [4]
More detailed specification of explanation of choosing #(r) is given in [3] and [5]. Fifteen limiter functions are
introduced in [5]. For example, “superbee” and “osprey” limiters are shown in Figure 2. Superbee-symmetric limiter of
Roe is given by

#(r) = max[0, min(2r, 1), min(r, 2)], 1 im ¢(r) =2, (32)
and Ospre-symmetric limiter of Waterson and Deconinck by
#(r )—M lim ¢(r) =1.5. (33)
+1 r—>mo
3 3

Figure 2: (a) Superbee limiter; (b) Ospre limiter [5]

Previous efforts by many researchers to eliminate and minimize the spurious oscillation is well explained in reference
[5]. There are remarks in [5]: “The various limiters have differing switching characteristics and are selected
according to the particular problem and solution scheme. No particular limiter has been found to work well for all
problems, and a particular choice is usually made on a trial and error basis.”

Similar results would also be obtained by choosing proper values of parameters «; and g, in the following
procedures:

U =y - U -y UIY' —20 ) >0 (34)
2\ dx
or
s o udt, n Udt \udt , , n n
b =u - " —u) -4 [ dx} U3 -2u® +ul), >0, (35)

Even if we use constant values for «; and g, these procedures would give useful results at moderate costs.
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3. REDUCTION OF NUMERICAL OSCILLATIONS BY MOVING AVERAGE

Let dx be the space interval of the adjacent signal y, = y(idx), i =0,1, ---. Therapid variation F(y) of the signal is
given by subtracting the moving average from the signal:

1
) =-V; +E(yi—1 +VYia) (36a)
1
F(y)) ==y + 3 (Yia +Yi + Vi) (36h)
1
(i) =-V +g(yi-z +Yia +Yi +Via Vi) » (36¢)
1
Fy)=-y+ 7(yi—3 FYio +Yia tYi+ Yia T Viea + Yisa) - (36d)
On the other hand, we have

1 dx?
Fz(yi):E(yi—l_zyi +Yi+1)z7y (yi)! (379)

1 dx?
F3(Yi):§(Yi71_2)'i +Yi+1)zTy (i) (37b)

If we consider the rapid variation corresponds to the computational noise, the noise is reduced in a signal G(y) as
shown in Figure 3, where

G(Y)=y+F(y). (38)
15 —
101 @
S 4
T 05
= 0.0
0.5 —_—
0.0 0.2
15
104 ()
2 05
= 004
-0.5 T T T
0.0 0.2
104 (©
> i
@ 054
= 004
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0.0 02 04 y 06 0.8 1.0

Figure 3: Reduction of noise from a signal ((a) Signal with noise; (b) (High-pass signal) < (-1); (c) (Signal with noise) -
(High-pass signal))

If we repeat this process, the noise is reduced further as shown in Figure 4.
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Figure 4: Reduction of noise from a signal
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4. APPLICATION TO ONE_DIMENSIONAL (1D) BURGERS’ EQUATION
The 1D Burger’s equation is given by

M MOt i —o<x<oo (39)
ot ox  Ox 6x
or
2
@+ua—u: 6_2+Q8_u+f in —o<X<o0, (40)
ot oX  Oox°  OXx oX
In case
v=const and f=0in wo<X<w, (41, 42)
we have
2
@.}ua_uz 6—2 in —o<Xx<ow. (43)
ot OX X

We approximate the infinite region by a finite one —L < x < L and discretize the finite region as
2L

dx=ﬁ, X =—-L+idx, i=0,1---,M, (444, b)
u™ =u(x, +ndt). (45)
The central differencing equation is given by
(0D _ (M ™ _yo ) QINTQ)
Ui Ui +u® Uia—Uig _ ) Uia — 2u; _ tUi for i=12- (46)
dt 2dx dx

In case of the upwind differencing, the derivative in the advection term or the second term on the left-hand side of
equation (43) is replaced by the upwind derivatives. Namely

4wl
1
if u™ >0
dx
™y () _
Uiy — Ui Ui — 4 if u™ <0 (47)
2dx dx :
() _
ut —u .
Sl il gtherwise
2dx

If we use Euler Solution, u™® is calculated from u{™ explicitly.

The initial condition is given by

u® — {U +4/@L)  when —L/2<x <L/4 )

0 otherwise
The exact solution of this problem [9] is given by

u——2v—ln{mj‘ ( (x—2)’ —2—1VIO§U(77,0)dan§}

X cf) L 3

1 f—(x‘f)exp Gl S LAY TS (49)
\/47”/[ © 2t 4yt 2v 90

In order to reduce the numerical oscillations, after u™® is calculated from u™ by Eq. (46) at the end of time step n,
ul™ is modified by

1
ui(n+1) _a|:ui(n+l) _ 1 (U.(fil) I u(n+1) + u(n+1) 4 u(n+l) - u(n+1) )} N ui(n+1) ’ (50)
+

where the quantity in the square bracket is the rapidly varying component in the signal u{™® generated by subtracting
slowly varying component or the moving average from the signal u{™" .
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Table 1: Computational condition

L 6 21,41, 81, 161, 321 v 0.01 dt 0.00025
U 1 1 a 0, 0.001, 0.0015, 0.002
0.320250| 0.320250
128 0.640250 1359 0.640250
130 0.980250 1304 0.960250
125 1.280250 125 1.260250
. 1.600250 120] 1.600250
1145 1154
=/ 110 = 1104
105 1054
1.00 1004
085 095+
o T T 080 T T T
2 ] 4 ] ] 4 -2 1] 2 4 B
X X
0.320250
0.320250
1501 0.640250 120 0.640250
0.960250 125 0.980250
125 1.280250 e
1204 1.600250 = 1.600250
1154 S 115
= 110 i
1054 105
100 1.00
] 095 - . T
B -4 2 0 2 4 1]
X
0.320250 0.320250
0640250 128 0640250
1 0.960250 0.960250
1.280250 120 : 1.280250,
1209 1.800250 : 1.600250
1154 N
1154
=1 3
1104 110 ;
1.054 106 :
1.00-] 100 e
4 -IZ ]

Figure 5: Central differencing (U=1, « =0; (a) M=21; (b) M=41; (c) M=81; (d) M=161; (e) M=321; (f) Exact solution)
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Figure 6: Comparison of central differencing+ « with upwind differencing (U=1, M=41; (a) Central, ¢ =0; (b) Central,
a=0,1t=1.6; (c) Central. & =0.001; (d) Central & exact, & =0.001, t=1.6; (€) Central, « =0.0015; (f) Central &
exact, ¢ =0.0015, t=1.6; (g) Central, & =0.002; (h) Central & exact, & =0.002, t=1.6; (i) Upwind; (j) Upwind &

exact, t=1.6)
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Figure 7: Comparison of central differencing+ « with upwind differencing (U=1, M=81, (a) Central differencing,
a =0; (b) Central & exact, « =0, t=1.6; (c) Central, « =0.001; (d) Central & exact, « =0.001, t=1.6; (e) Central,
a =0.0015; (f) Central & exact, « =0.0015, t=1.6; (g) Central. « =0.002; (h) Central & exact, « =0.002, t=1.6; (i)

Upwind; (j) Upwind & exact, t=1.6)
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Figure 8: Comparison of central differencing+ « with upwind differencing (U=1, M=161; (a) Central, « =0; (b)
Central & exact, « =0, t=1.6; (c) Central, & =0.001; (d) Central & exact, « =0.001, t=1.6; (e) Central, & =0.0015;
(f) Central & exact, o =0.0015, t=1.6; (g) Central, & =0.002; (h) Central & exact, & =0.002, t=1.6; (i) Upwind; (j)
Upwind & exact, t=1.6)

Asian Online Journals (www.ajouronline.com)

197



Asian Journal of Engineering and Technology (ISSN: 2321 — 2462)
Volume 02 — Issue 03, June 2014

Numerical results are given in Figures 5-8. The computational condition is shown in Table 1. Figure 5 shows that if
the number of division M is increased, the numerical oscillations are reduced drastically. This means that if the accuracy
of the difference equation is increased, the numerical oscillations would be eliminated at least in this problem. However,
this results in a high cost from the viewpoint of numerical calculation. Figures 6-8 show that if « is increased, the
numerical oscillations are reduced sufficiently. “Central differencing+ « * is better than Upwind differencing.

5. TWO-DIMENSIONAL (2D) BURGERS’ EQUATION

The 2D Burger’s equation is given by
au auou a(au) a(auj N N v a(av) a[a\/j
—4+U—+V—= v +—|v— +f,—+u&+v—:— v— |+—|v—|+¢

ot ox oy ox\ ox) oyl oy ot ay ox\ ox) oyl oy
in —o< X<, —00< Y < (514, b)
or
ou ou  éu ou d’u) advaou odvau .
—HU—+V—=V|—S+— [+——+——+F in —o<x<w, 0o<y<w, (52a)
ot ox oy ox: oy OX OX 0Oy oy
N NV ov o) odvov  ovov :
—HtU—+V—=V|—+— |[+——+——+0 iINn —0<X<0, w<y<ow. (52b)
ot ox oy X oy*) oxox  oyoy
In case
v=const and f=0, g=0, (53, 54)
we have
ou au _éu ou ou) ov v ov ov o
—HtU—+tV—=V| S+ |, —tU—+V—=V|—+— (554, b)
ot ox oy ox: oy ot ox oy 0 oy
We approximate the infinite region by a finite region —L<x< L, —B <y <B and discretize the finite region as
2L 2B
dx=—, dy=—, 56a
VLAY (56a)
% =-L+idx, i=0,1---,M; y;=-B+jdy, j=0,1---,N. (56h)
u =u(x,y; ndt), v =v(x,y,ndt), i=0,1--M, j=01-N. (57)
The central differencing equation is given by
() _ () M _ M m _ M
U;j ' — Uy G Ui — Uiy Ly Uija — UL
dt H 20dx H 2dy
u™ —2u™ Ly u® _oym 4
=yt 0 H gy m U2 for i=1,2,-,M-1, j=12,--,N-1, (58a)
dx dy
() _ () M _ym M _ 0
Vij ' —Vij G) Viaj —Viaj Ly Vi —Vija
dt H 2dx Y 2dy
v —ov® @y gy @
=y d"z =Ly d"z U2 fori=12--,M-1, j=12---,N-1. (58b)
X y

In case of the upwind differencing, the derivatives in the advection terms or the second and third terms on the left-hand
side of Eq. (55) are replaced by the upwind derivatives. Namely

fi(ln) Q) fi(jn) — £

LS SR PN U2 ifv® >0
i if ui’ >0 dy i
Q) Q) ) Q) Q) Q) Q) Q)
fi+1j - fi—lj N fi+1j - fij if u™ <0 ijn+1 - fijn—l N fi in+1 -f in if v <0 (59a, b)
2dx dx Y ' 2dy dy Y ’ ’
fm _ §M () _ £
—=L__ otherwise T fin otherwise
2dx 2dy

where f is u or v. If we apply Euler solution, u™® and v{"*" are calculated from u{™ and v{" explicitly.
The initial condition is given by
o 3 1 1 o _ 3 1 1
ud ==-= ;v =42 .
4 4l+exp((—4x +4y,)/(32v)) 4 4l+exp((-4x +4y;)/(B2v))

(60a, b)
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The exact solution of this problem [10, 11] is given by
1 1 1 1
v(x,y.t) =
4 41+exp((-4x+4y—t)/(32v))’ 4 41+exp(( —4x+4y-1)/(32v))

In order to reduce the numerical oscillations, after u(™® and v{"® are calculated from u™ and v by Eg. (58) at

u(x,y,t) = (61a, b)

the end of time step n, u™and v("™ are modified by

1

B s o
1

v — {vi‘;”” c (vf"fjl) +VI v v D v )} —> v, (62b)

where the quantities in the square brackets are the rapidly varying components in the signal u™® and v{"™ generated by

subtracting slowly varying components or the moving averages from the signal u{™™® and v{"". Rewriting, we have

u + % a [(ui(_"ﬂ.l) 2u( + u,("fjl)) (ui(;'fll) 205 +ulD )] —>u{?, (63a)
Vo 42 ,B[( VD - 2v0 T ) (5D 2y D )| s 5, (63b)
Equation (63) corresponds to
u(x, y,t) - (8225()2( t) 82;;); t)J —>u(x,y,t). (64a)
v Y- (a LA g(yx ”J v y.0). (64b)

5.1 Example 1

Numerical results are given in Figures 9 and 10. The computational condition is shown in Table 2. Central
differencing is better than the upwind differencing in this case. In this case, the viscosity coefficient v is 0.01, and a
good result is obtained even when « is zero.

Table 2: Computational condition

L 2 B 2 M 81 N 81
v 0.01 dt 0.00025 a 0
0.320250 —u
o8 0.640250 oS - - -u_exact
0960250
o 1280250 ¢ 7 (b)
5 1.600250 g aes
2 o T oen
3 El
0ss Z os
0sa Z om
2 1 3 i H 2 o 1 2
X X
0.320250 —
. 0.640250 s ~ - - -u_exact
0.960250
o = 1.280250 70 )

1.600250

u(x, 0)
uix, 0)
-3

0.320250
0.640250
09680250
1.280250
1.600250

(x, 0)

u_exact|

Figure 9: Comparison of u by central differencing with u by upwind differencing (M=N=81, v =0.01; (a) Central,
a =0; (b) Central & exact, o =0, t=1.6; (c) Upwind; (d) Upwind & exact, t=1.6; (€) Exact solution)
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0.320250
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1.800250

v_exact(x, 0)

vix, 0),

v(x, 0), v_exact(x, 0}
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—v

- - -v_exact

Figure 10: Comparison of v by central differencing with v by upwind differencing (M=N=81, v =0.01; (a) Central,
a=0; (b) Central, « =0, t=1.6; (c) Upwind; (d) Upwind, t=1.6; (e) Exact solution)

5.2 Example 2

Table 3: Computational condition

v 0.002 dt 0.001 a 0, 0.004
o ——t= 0.101000 o u
----t= 0.201000 S om - -u_exact
s ‘ - t= 0.301000 X om
s = 2 ~--t= 0.401000 g oo ®)
X os ¥ --t=  0.501000 e
ERE ¥ 3 om
E: = s
i =]
o A
%
3 o 1 H = 2 [] i 2
X X
0.101000) PR
0.201000 T
- 0.301000 T o
5 ™ 0.401000 L
X 0.501000 o
o g om
X o .
oss 5 7 H
X
0.101000 _ u_y0
o 0.201000 g o - - - -uex_y0
om0 0.301000 £ om
5 e 0.401000 g o
Z om 0.501000| R
7 o 3 s
0 8
%
= a 1 2
X
0.101000)
0.201000
o 0.301000
5 s 0.401000
X o 0.501000
5
o
o0

K H 1

Figure 11: Comparison of u by central differencing+a with u by upwind differencing (M=N=81, v =0.002 ; (a)
Central,  =0; (b) Central, « =0, t=0.501; (c) Central,  =0.004 ; (d) Central, « =0.004, t=0.501; (e) Upwind,; (f)
Upwind, t=0.501; (g) Exact solution)
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Figure 12: Comparison of v by central differencing+« with v by upwind differencing (M=N=81, v =0.002 ; (a)
Central,  =0; (b) Central & exact, « =0, t=0.501; (c) Central, & =0.004 ; (d) Central & exact, « =0.004, t=0.501;
(e) Upwind; (f) Upwind & exact, t=0.501; (g) Exact solution)

Numerical results are given in Figures 11 and 12. The computational condition is shown in Table 3. In this case, the
viscosity coefficient v is 0.002, and the numerical oscillations occurs when « is zero. “Central differencing+ « ” is
much better than the upwind differencing.

6. CONCLUSIONS

Reduction of the spurious or numerical oscillations is very important in numerical calculations. The Upwind
differencing in advection problem is well known in finite difference method (FDM), but the numerical diffusion is rather
excessive. Flux limiter method overcomes the defect of the upwind differencing, but the method is not simple. In the
present paper, a simple and unique method was proposed to reduce numerical oscillations effectively.

The rapidly varying component in the original signal can be made by subtracting the slowly varying component from
the original signal, and the slowly varying component can be extracted by taking the moving average of the original
signal. Hence, if we regard that the rapidly varying component in the original signal is the numerical oscillation, the
numerical oscillation may be easily reduced or eliminated by subtracting the rapidly varying component from the original
signal. This idea would easily be applied to many problems. In many cases, numerical oscillation is sinusoidal. If a signal
of opposite phase is generated by differentiating the original signal twice and is added to the original signal, this kind of
noise can be cancelled easily This suggests us that taking the second derivative is equivalent to generating the rapidly
varying component by averaging process.

The method is verified by numerical calculations for one- and two-dimensional Burger equation. The numerical
oscillation due to discontinuity of the solution is reduced effectively.

This solution can be applied to many problems and to other solutions such as FEM, BEM etc.
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