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_________________________________________________________________________________ 

ABSTRACT— Elimination of the spurious or numerical oscillations is very important in the solution of unsteady 

boundary value problem by FDM. Upwind differencing in advection problem is very popular, but numerical diffusion 

is too big. Flux limiters are very effective to eliminate the numerical oscillations, but the procedure is rather 

complicated. In the present paper, a very simple and unique method is proposed to reduce numerical oscillations. The 

method is verified by numerical calculations. This solution can be applied to many problems and to other solutions 

such as FEM, BEM etc. This solution can be applied not only to explicit method but also to implicit method. This 

solution can be extended easily to multi-dimensional problems. 
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1. INTRODUCTION 

In solution of unsteady boundary value problems, the numerical instability and the numerical or spurious oscillation 

must be avoided. The former was discussed also by the present author [1] recently. The implicit solution is very effective 
to avoid it. On the other hand, Lax-Wendroff [2] and the flux limiter [3-5] methods are useful for reducing and 

eliminating the latter. 

Elimination of the numerical oscillation is very important in FDM. Upwind differencing in advection problem is very 

popular. However, the upwind differencing generates rather large numerical diffusion. 

In the present paper, a very simple and unique method for reducing the numerical oscillation is proposed. In many 

cases, computational noise of sinusoidal nature is generated. If a signal of opposite phase is generated by differentiating 

the original signal twice and is added to the original signal, this kind of noise can be cancelled easily. On the other hand, 

the rapidly varying component in the original signal can be made by subtracting the slowly varying component from the 

original signal, and the slowly varying component can be extracted by taking the moving average of the original signal. 

Hence, if we regard that the rapidly varying component in the original signal is the numerical oscillation, the numerical 

oscillation may be easily reduced or eliminated by subtracting the rapidly varying component from the original signal. 

This suggests us that taking the second derivative is equivalent to generating the rapidly varying component by averaging 
process. 

The method is verified by numerical calculations, one- and two-dimensional examples are shown. This solution can 

be applied to many problems and to other solutions such as FEM, BEM etc. 

2. SUMMARY OF EXISTING METHODS TO REDUCE SPURIOUS OR NUMERICAL 

OSCILLATIONS 

Let us consider an initial value problem of advection equation: 
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In the following, we assume 0U  for simplicity.  

The upwind difference is given by 
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Hence, the upwind difference is “central difference + diffusion with diffusion constant 2Udx  ”. The second 
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term on the right hand side is a source of spurious oscillation and the third term is the diffuser with diffusion 

const. 2Udx . However, the diffuser is excessive. If we use the upwind differencing, a rather big numerical 

diffusion or spurious diffusion takes place. This is the drawback of the upwind differencing.  

On the other hand, the central difference is defined as 
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If we use the central differencing, a numerical or spurious oscillation occurs. This is the drawback of the central 

differencing. However, in case of the central differencing, if we decrease dx , the accuracy is increased, and the 

numerical oscillation is reduced. The reduction of dx  increases the computational cost.  

If we rewrite Eq. (4), we have 
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and 
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Equations (5) gives a relationship between “central difference” and “forward plus backward difference”, and Eq. (6) a 

relationship between “central difference” and “upwind difference”. In Eq. (6), the second term on RHS is upwind 

derivative. The upwind derivative generates an excessive diffusion. The third term on RHS is anti-diffuser. The 

anti-diffuser is too strong. From Eq. (6), we know that the central difference corresponds to the upwind difference with 

negative diffusion coefficient 2Udx . 

Lax-Wendroff method [2-8] is an effective way to reduce the numerical oscillation and is obtained as follows. First, 

we have Taylor expansion: 
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Then, from Eq. (1), we notice 

xt Uuu  , xxtxtttt uUuUuu 2)()(  ,  .                                                     (9) 

Substituting Eq. (9) into Eq. (8), we derive 
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If we replace both ),( txux  and ),( txuxx  in Eq. (10) by the central differences, we obtain, from Eq. (10) 
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In Eq. (11), the second term on RHS is a source of spurious oscillation, and the third term is anti-diffuser with a 

strength  improved more than upwind method, Eq. (3). Equation (11) corresponds to convective diffusion with 

positive diffusion coefficient 22dtU : 
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The flux term or the diffusion term in Eq. (12) contributes to suppress the numerical oscillation due to the advection 

term. Hence, Eq. (11) gives better numerical solution than Eq. (4). Namely, Equation (11) improves Eq. (4).  

According to [4], we rewrite Eq. (11) as follows. Substituting 
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into Eq. (11), we obtain 
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The second term on the right hand side has a role of anti-diffuser.  

Rewriting )(

1

)()(

1 2 n

i

n

i

n

i uuu    as 

)()()()(2 )(

1

)()(

1

)(

1

)()()(

1

)(

1

)()(

1

n

i

n

i

n

i

n

i

n

i

n

i

n

i

n

i

n

i

n

i uuuuuuuuuu   ,                         (15) 

where 

1)(   mmm yyy .                                                                         (16) 
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Substituting Eq. (15) into Eq. (14), we have 
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Adjusting the anti-diffuser, we assume 
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Equations (17) and (18) correspond to Eqs. (3.2) and (3.6) in [4], respectively.  

Now, we introduce TV (Total Variation) )(TV )(nu  [3]: 
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We require TVD (Total Variation Diminishing): 
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then, the condition to satisfy TVD condition, Eq. (20), is given from [3, 4] by 

iC0 , iD0 , 10  ii DC .                                                               (22) 

Applying Eq. (22) to Eq. (18), we obtain 
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since 
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Rewriting Eq. (23), we have 
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Equations (24) and (25) correspond to Eqs. (3.8) and (3.9) in [4], respectively.  

From Eqs. (22) and (23), we have 10  iC . If we define   as 
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then, we obtain 
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where Courant number is assumed to satisfy 
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From the left inequality in Eq. (27), we have that 
2 .                                                                                       (28) 

is sufficient to satisfy Eq. (22). If we require to maximize the role of anti-diffuser, we may asuume 
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Then, we obtain that 

2)(0
)()(

1

)(

1

)(
























n

i

n

i

n

i

n

i
i

uu

uu
r   and 2

)(
0

)(

1

)(

)()(

1

)()(

1

)(

1

)(
































n

i

n

i

n

i

n

i

n

i

n

i

n

i

n

i

i

i

uu

uu

uu

uu

r

r



                              (30) 



Asian Journal of Engineering and Technology (ISSN: 2321 – 2462) 

Volume 02 – Issue 03, June 2014  

Asian Online Journals (www.ajouronline.com)  193 

 

is sufficient to satisfy Eqs. (26) and (28). Hence, )(r  must be in a region of Figure 1(a) surrounded by r2 , 2  

and 0 . In order to maximize the role of anti-diffuser, )(r  should be the maximum, that is 

)2,2min()( rr  ,                                                                       (31) 

which is the upper boundary of the region [4]. The region ①+② in Figure 1(b) gives the second order TVD region [4]. 

 
Figure 1: TVD regions [4] 

More detailed specification of explanation of choosing )(r  is given in [3] and [5]. Fifteen limiter functions are 

introduced in [5]. For example, “superbee” and “osprey” limiters are shown in Figure 2. Superbee-symmetric limiter of 

Roe is given by 
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 and Ospre-symmetric limiter of Waterson and Deconinck by 
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Figure 2: (a) Superbee limiter; (b) Ospre limiter [5] 

Previous efforts by many researchers to eliminate and minimize the spurious oscillation is well explained in reference 

[5]. There are remarks in [5]: “The various limiters have differing switching characteristics and are selected 

according to the particular problem and solution scheme. No particular limiter has been found to work well for all 

problems, and a particular choice is usually made on a trial and error basis.” 

Similar results would also be obtained by choosing proper values of parameters i  and i  in the following 

procedures: 
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Even if we use constant values for i  and i , these procedures would give useful results at moderate costs. 
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3. REDUCTION OF NUMERICAL OSCILLATIONS BY MOVING AVERAGE 

Let dx  be the space interval of the adjacent signal )(idxyyi  , ,1,0i . The rapid variation )(yF  of the signal is 

given by subtracting the moving average from the signal: 
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On the other hand, we have 
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If we consider the rapid variation corresponds to the computational noise, the noise is reduced in a signal )(yG  as 

shown in Figure 3, where 

)()( yFyyG  .                                                                             (38) 

 

Figure 3: Reduction of noise from a signal ((a) Signal with noise; (b) (High-pass signal)☓(-1); (c) (Signal with noise) - 

(High-pass signal)) 

If we repeat this process, the noise is reduced further as shown in Figure 4. 

 
Figure 4: Reduction of noise from a signal 
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4. APPLICATION TO ONE_DIMENSIONAL (1D) BURGERS’ EQUATION 

The 1D Burger’s equation is given by 
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In case 

const   and  0f  in  x ,                                                           (41, 42) 

we have 
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We approximate the infinite region by a finite one LxL   and discretize the finite region as 
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L
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 ,   dxiLxi  ,   Mi ,,1,0  ,                                                     (44a, b) 
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The central differencing equation is given by 
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In case of the upwind differencing, the derivative in the advection term or the second term on the left-hand side of 

equation (43) is replaced by the upwind derivatives. Namely 
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If we use Euler Solution, )1( n

iu  is calculated from )(n

iu  explicitly.  

The initial condition is given by 
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The exact solution of this problem [9] is given by  
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In order to reduce the numerical oscillations, after )1( n

iu  is calculated from )(n

iu  by Eq. (46) at the end of time step n , 

)1( n

iu  is modified by 
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where the quantity in the square bracket is the rapidly varying component in the signal )1( n

iu  generated by subtracting 

slowly varying component or the moving average from the signal )1( n

iu .  
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Table 1: Computational condition 

L  6 M  21, 41, 81, 161, 321   0.01 dt  0.00025 

U  1 K  1   0, 0.001, 0.0015, 0.002   

 

 
Figure 5: Central differencing (U=1, 0 ; (a) M=21; (b) M=41; (c) M=81; (d) M=161; (e) M=321; (f) Exact solution) 

 
Figure 6: Comparison of central differencing+  with upwind differencing (U=1, M=41; (a) Central, 0 ; (b) Central, 

0 , t=1.6; (c) Central. 001.0 ; (d) Central & exact, 001.0 , t=1.6; (e) Central, 0015.0 ; (f) Central & 

exact, 0015.0 , t=1.6; (g) Central, 002.0 ; (h) Central & exact, 002.0 , t=1.6; (i) Upwind; (j) Upwind & 

exact, t=1.6) 
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Figure 7: Comparison of central differencing+  with upwind differencing (U=1, M=81; (a) Central differencing, 

0 ; (b) Central & exact, 0 , t=1.6; (c) Central, 001.0 ; (d) Central & exact, 001.0 , t=1.6; (e) Central, 

0015.0 ; (f) Central & exact, 0015.0 , t=1.6; (g) Central. 002.0 ; (h) Central & exact, 002.0 , t=1.6; (i) 

Upwind; (j) Upwind & exact, t=1.6) 

 
Figure 8: Comparison of central differencing+  with upwind differencing (U=1, M=161; (a) Central, 0 ; (b) 

Central & exact, 0 , t=1.6; (c) Central, 001.0 ; (d) Central & exact, 001.0 , t=1.6; (e) Central, 0015.0 ; 

(f) Central & exact, 0015.0 , t=1.6; (g) Central, 002.0 ; (h) Central & exact, 002.0 , t=1.6; (i) Upwind; (j) 

Upwind & exact, t=1.6) 
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Numerical results are given in Figures 5-8. The computational condition is shown in Table 1. Figure 5 shows that if 

the number of division M  is increased, the numerical oscillations are reduced drastically. This means that if the accuracy 

of the difference equation is increased, the numerical oscillations would be eliminated at least in this problem. However, 

this results in a high cost from the viewpoint of numerical calculation. Figures 6-8 show that if   is increased, the 

numerical oscillations are reduced sufficiently. “Central differencing+ ” is better than Upwind differencing. 

5. TWO-DIMENSIONAL (2D) BURGERS’ EQUATION 

The 2D Burger’s equation is given by 
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In case 

const   and  0f ,  0g ,                                                              (53, 54) 

we have 
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We approximate the infinite region by a finite region LxL  , ByB   and discretize the finite region as 

M

L
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2
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2
 ,                                                                              (56a) 

dxiLxi  ,  Mi ,,1,0  ;  dyjBy j  ,  Nj ,,1,0  .                                            (56b) 
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The central differencing equation is given by 
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In case of the upwind differencing, the derivatives in the advection terms or the second and third terms on the left-hand 

side of Eq. (55) are replaced by the upwind derivatives. Namely 
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where f  is u  or v . If we apply Euler solution, )1( n

iu  and )1( n

iv  are calculated from )(n

iu  and )(n

iv  explicitly.  

The initial condition is given by 
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The exact solution of this problem [10, 11] is given by  
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In order to reduce the numerical oscillations, after )1( n

iu  and )1( n

iv  are calculated from )(n

iu  and )(n

iv  by Eq. (58) at 

the end of time step n , )1( n

iu and )1( n

iv  are modified by 
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where the quantities in the square brackets are the rapidly varying components in the signal )1( n

iu  and )1( n

iv  generated by 

subtracting slowly varying components or the moving averages from the signal )1( n

iu  and )1( n

iv . Rewriting, we have 
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Equation (63) corresponds to 
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5.1 Example 1 

Numerical results are given in Figures 9 and 10. The computational condition is shown in Table 2. Central 

differencing is better than the upwind differencing in this case. In this case, the viscosity coefficient   is 0.01, and a 

good result is obtained even when  is zero. 

Table 2: Computational condition 

L  2 B  2 M  81 N  81 

  0.01 dt  0.00025   0   

 

 
Figure 9: Comparison of u by central differencing with u by upwind differencing (M=N=81, 01.0 ; (a) Central, 

0 ; (b) Central & exact, 0 , t=1.6; (c) Upwind; (d) Upwind & exact, t=1.6; (e) Exact solution) 
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Figure 10: Comparison of v by central differencing with v by upwind differencing (M=N=81, 01.0 ; (a) Central, 

0 ; (b) Central, 0 , t=1.6; (c) Upwind; (d) Upwind, t=1.6; (e) Exact solution) 

5.2 Example 2 

Table 3: Computational condition 

L  2 B  2 M  81 N  81 

  0.002 dt  0.001   0, 0.004   

 
Figure 11: Comparison of u  by central differencing+  with u  by upwind differencing (M=N=81, 002.0 ; (a) 

Central, 0 ; (b) Central, 0 , t=0.501; (c) Central, 004.0 ; (d) Central, 004.0 , t=0.501; (e) Upwind; (f) 

Upwind, t=0.501; (g) Exact solution) 
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Figure 12: Comparison of v  by central differencing+  with v  by upwind differencing (M=N=81, 002.0 ; (a) 

Central, 0 ; (b) Central & exact, 0 , t=0.501; (c) Central, 004.0 ; (d) Central & exact, 004.0 , t=0.501; 

(e) Upwind; (f) Upwind & exact, t=0.501; (g) Exact solution) 

Numerical results are given in Figures 11 and 12. The computational condition is shown in Table 3. In this case, the 

viscosity coefficient   is 0.002, and the numerical oscillations occurs when  is zero. “Central differencing+ ” is 

much better than the upwind differencing. 

6. CONCLUSIONS 

Reduction of the spurious or numerical oscillations is very important in numerical calculations. The Upwind 

differencing in advection problem is well known in finite difference method (FDM), but the numerical diffusion is rather 

excessive. Flux limiter method overcomes the defect of the upwind differencing, but the method is not simple. In the 

present paper, a simple and unique method was proposed to reduce numerical oscillations effectively.  

The rapidly varying component in the original signal can be made by subtracting the slowly varying component from 

the original signal, and the slowly varying component can be extracted by taking the moving average of the original 

signal. Hence, if we regard that the rapidly varying component in the original signal is the numerical oscillation, the 
numerical oscillation may be easily reduced or eliminated by subtracting the rapidly varying component from the original 

signal. This idea would easily be applied to many problems. In many cases, numerical oscillation is sinusoidal. If a signal 

of opposite phase is generated by differentiating the original signal twice and is added to the original signal, this kind of 

noise can be cancelled easily This suggests us that taking the second derivative is equivalent to generating the rapidly 

varying component by averaging process. 

The method is verified by numerical calculations for one- and two-dimensional Burger equation. The numerical 

oscillation due to discontinuity of the solution is reduced effectively.  

This solution can be applied to many problems and to other solutions such as FEM, BEM etc.  
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