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ABSTRACT---- The global gold market has recently attracted a lot of attention and the price of gold has been
fluctuating over the years with high volatility. The frequent fluctuation of gold prices has affected many related
sectors and stock market indices and the development of a model to estimate gold prices is of much economic
importance to many stake holders. Thus this study was carried out to develop a GARCH model using monthly gold
price series (in US$) for the period from December 1978 to December 2012. GARCH models under normal, non-
normal innovations: t-distribution and generalized error distribution were selected for the data. After several levels of
statistical screening the AR(1) —PARCH(1, 1) with t distribution was found to be the best model for the gold price
data. The model was trained using December 1978 to December 2010 and validated using January 2011 to December
2012. There was a very strong correlation (r = 0.98, p = 0.000) between observed data and the fitted data for both
training and validation data sets.
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1. INTRODUCTION

Gold has been used throughout the history as money and has been a relative standard for currency equivalents specific to
economic regions or countries, until recent times. Of all the precious metals, gold is the most popular as an investment
and its price is mostly volatile in the commodity market (Worthington and Pahlavani, 2007). Investors generally buy gold
as a hedge against economic, political, or social fiat currency crises. The gold market is subject to speculation like other
markets, especially through the use of futures contracts and derivatives (Wikipedia, 2013). The demand for gold is ever
increasing, not only for jewellery, coins, and bars but also for many industries, such as electronics, space, as well as in
medical technology.

Since the breakdown of the Bretton Woods agreement in 1971-1973 the official role of gold in the international monetary
system has ended. After the de-linking of the US Dollar to gold there has been a wide fluctuation in gold prices.
Globally, the gold that is produced is consumed 50% as jewellery, 40% in the form of investments and 10% by industry
(Goodman, 1956). With the investment demand for gold being on the rise, and a complex set of factors influencing the
investment demand for gold, forecasting the price of gold has been an essential activity and decision making in various
sectors, particularly in banking sector. According to Abken (1980) the major determinants for the gold prices are: Supply
and demand, US dollar exchange rate, Central banks and other official organizations activity, Oil price, Inflation rate and
Political turmoil.

In recent years, demand for gold has been increasing rapidly, due to the world economic recession, high inflation,
depreciation of the US dollar, and reduction in world gold production. These may be the reasons causing high volatility
on stock exchanges, as investors tend to reconstruct their investment portfolios by replacing part of their stock shares
with gold to hedge their risks (Tully and Lucey, 2007).

These reasons have awakened business statisticians and financial economists towards forecasting time series data which
are characterized by various forms of volatility (Bollerslev et al, 1992). In many scientific and managerial applications,
short term predictions for the next few values in a given variable over time can be extremely useful for planning,
preparing, or controlling the system under study (George et al, 2007). Price forecasting is an integral part of economic
decision making. For instance, speculators may use forecasts to try to earn income from investments (Ismail et al, 2009).
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In view of the above, the objective of this study was to develop a Generalized Autoregressive Conditionally
Heteroscedastic (GARCH) model with normal and non-normal distribution innovations for forecasting gold prices.

2. MATERIALS AND METHODS
2.1 Secondary Data

The month end gold prices quoted in US dollars per troy ounce for the period 31* December 1978 to 31% December 2012
were obtained from the statistics division of the World Gold Council website (WGC, 2013). The gold price series was
divided in to two parts. The in-sample period for estimating the models, were from 31% December 1978 to 30" December
2010. The out of sample period for validating the fitted models, were from 31% January 2011 to 31 December 2012.

2.2 GARCH Models and Distribution Assumptions

Forecasting ARMA / GARCH process is in one way similar to forecasting ARMA process. However, the difference
between ARMA / GARCh and ARMA process is the behavior of the prediction intervals. In series having high
volatility, prediction using ARMA / GARCH model will widen to take into account the higher amount of uncertainty.
Similarly, the prediction interval will narrow in times of lower volatility. Prediction interval using an ARMA model
without conditional heteroskedasticity cannot adapt in this way. Thus ARMA / GARCH models were investigated to
gold price series.

With in a class of autoregressive processes with white noises having conditional heteroscedastic variances, it is possible
to find reasonable models of {y,}. Us if the mean equation is considered as AR(k) process and the variance equation by
GARCH(p, q) process then if {y,}is an autoregressive process of order k with a GARCH noise of order p and g, it is
represented as:

Ve = 1) + Q)1Yt—1 + .. + Q)kYt—k + U (1)
U, = o.e , , (2)
of = ag+ aqqui_y + -+ ayui_, + Brof + o+ Boly 3)

Where white noise, e,~iid N(0,1) and {o?} satisfies the recurrence equation (3). This model is normally denoted by
AR(k)-GARCH(p, q).

3. RESULTS AND DISCUSSIONS
Developing a forecasting model should always begin with graphical display and analysis of the available data
(Montgomery and Jennings, 2011). Thus gold price data from 31% December 1978 to 30" December 2010 were plotted

(Fig.1) to gain a visual understanding of the behavior of the series.

Figure 1: The Time Series Plot for the Gold Price Series.
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Figure 1 shows, an upward trend and also fluctuations about the trend line. The prices gradually increases since 2007 and
there after all prices are above the trend line. Thus it confirm that the varaince of the series increases with time. This
complex temporal pattern of monthly gold price series suggests that a trend line is not suitable. In such instances, it is
customary to transform the series to log in order to stabilize the variance and remove the effect of the trend. The log
transformation is used as a variance stabilizing method as well as to avoid negative values (Aczel and Sounderpandian,
2008).

Figure 2: Histogram and Normality Test for the Log (Gold Price) Series.
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The log gold price series displays the properties of volatility clustering and leptokurtosis  (Fig 2). Statistics shown in
Figure 2 indicates the needs to consider the possibility of developing a GARCH model.

Identification of the Mean Equation
Three types of AR models having AR(1) parameter only, AR(2) parameter only and both AR(1) and AR(2) parameters
only were considered for the mean model (Table 1).

Table 1: Comparison of Different Diagnostic Measure for the Identified Three Mean Equations for the Log (Gold Price)

Series.
P Value of the AR AIC Value SIC Value Durbin-Watson R?value
Parameter Statistic
AR(1) p =0.0000 -3.008188 -2.987612 2.021643 0.9787
AR(2) p =0.0000 -2.324279 -2.303663 1.055098 0.9576
AR(1) p =0.0000 -3.001233 -2.970308 2.000355 0.9786
AR(2) p=0.8174

Results in Table 1 clearly indicates that the model with both AR(1) and AR(2) is not suitable as the AR(2) parameter is
not significant (p = 0.814). The AR (1) model was selected on the basis of minimum AIC and SIC values. Further the
DW value close to two (2.02) indicates that there is no serial correlation in the residuals of the AR (1) model. The highest
R? value was also obtained for the AR(1) model. Thus, AR(1) is considered as the best mean equation for the log gold
price series. In order to test, the randomness of the error series, correlogram of the residual squared was plotted at
different lags and the results are shown in Figure 3.
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Figure 3: Correlogram of Residual Squared for the Mean Equation of AR(1).
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The correlogram (Figure 3) of the residual squared for the mean equation of AR(1) confirms that the errors of the mean
equation are not having constant variance. In other words the low probability value (p < 0.05) rejects the
homoscedasticity hypothesis of the residuals of the mean equations.

The ARCH test results shown in Table 2 strongly suggest the presence of ARCH effect in the residuals.

Table 2: The ARCH-LM Test for the Mean Equation of AR (1)

ARCH Test:
F-statistic 5.999732 Probability 0.002878
Obs*R-squared 8.838205  Probability 0.002950
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Identification of the VVariance Equation

In order to identify some possible parsimonious models for variance equation the plot of ACF and PACF of the squared
residuals are used (Figure 3). It was found that the autos and partials of residual squares are significant irrespective of
lags. Thus it is difficult to identify a suitable model for the variance equation. However, it is not recommended to go for
higher order of GARCH models for the variance equation. Thus, it was decided to consider GARCH(1,1),
GARCH(0,1), GARCH (1,0), GARCH(2,0) and GARCH(0,3). The comparison of parameters and its significance of
the above five models are shown in Table 3.

Table 3: Parameter Estimation of the Parsimonious GARCH Models

Model Parameter Estimate Standard P - Value
Error
AR(1) — GARCH(1,1) ARCH(1) 0.090231 0.026459 0.0006
GARCH(1) 0.884103 0.032818 0.0000
AR(1) — GARCH(0,1) ARCH(1) 0.458588 0.008828 0.0000
AR(1) — GARCH(1,0) GARCH(1) -0.440719 3.534087 0.9008
AR(1) — GARCH(0,2) ARCH(1) 0.450368 0.083942 0.0000
ARCH(2) 0.162354 0.057346 0.0046
AR(1) — GARCH(0,3) ARCH(1) 0.340861 0.077098 0.0000
ARCH(2) 0.094631 0.054494 0.0825
ARCH(3) 0.152771 0.062145 0.0140

Based on the significance of the parameters the GARCH(1,1), GARCH(0,1) and GARCH(0,2) models can be
considered for the variance equations.

Identification of the Best Fitted GARCH Model.

Table 4: Comparison of Diagnostic Stat for the Selected Three GARCH Models

Model AlC SIC Log
Value Value Likelihood
AR(1)-GARCH(1,1) -3.239062 -3.187621 626.8998
AR(1)-GARCH(0,1) -3.079733 -3.038580 595.3087
AR(1)-GARCH(0,2) -3.135490 -3.084049 607.0141

Based on the minimum values of AIC, SIC and log likelihood values (Table 4) it can be concluded that the GARCH(1,1)
is most suitable for the variance equation.

Figure 4: Normality Test for the AR(1) —GARCH(1,1) Model.
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The normality assumptions of errors do not satisfy for the models and it shows thick tails (Figure 4). Thus in addition to
normality, the standardized student t distribution and Generalized Error Distribution (GED) were also considered to find
the best fitted GARCH model. Variants of GARCH models for both symmetric and asymmetric types were considered
with normal and non-normal distribution innovations in modeling log gold price series. The corresponding results are
shown in Table 5.

Table 5: GARCH Model Identification of Generalized GARCH Models.

Model AlC SIC Log JB
Likelihood

AR(1)-GARCH(1,1) Normal | -3.239062 -3.187621 626.8998 32.612

AR(1)-EGARCH(1,1) -3.248796 -3.187067 629.7688 28.690

Normal

AR(1)-PARCH(1,1) Normal -3.254058 -3.192329 630.7791 34.584

AR(1) CGARCH(1,1) | -3.245176 -3.173159 630.0737 22.302

Normal

AR(1)-GARCH(1,1) -3.273821 -3.212092 634.5736 38.138

Student’s t

AR(1)-EGARCH(1,1) -3.276672 -3.204655 636.1210 35.057

Student’s t

AR(1)-PARCH(1,1) -3.286513 -3.214497 638.0106 54,709

Student’s t

AR(1) CGARCH(1,1) | -3.240266 -3.157961 630.1311 24.455

Student’s t

AR(1)-GARCH(1,1) -3.269669 -3.207940 633.7764 38.641

Generalized Error

AR(1)-EGARCH(1,1) -3.276679 -3.204662 636.1223 44.483

Generalized Error

AR(1)-PARCH(1,1) -3.274779 -3.202762 635.7575 34.082

Generalized Error

AR(1) CGARCH(1,1) -3.255564 -3.173259 633.0683 42.010

Generalized Error

From Table 5, the AR(1) —PARCH(1,1) model with t-distribution was considered as the best model for the log gold
price series based on the minimum AIC and SIC values. The GARCH residuals of this model also presents longest tail
(kurtosis = 4.3029) among the other models (Figure 5).

Figure 5: Histogram and Normality Test for Standardized Residuals for the AR(1) —PARCH(1,1) model.
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The standardized residuals are leptokurtic and the significant Jarque-Bera test indicates that the standardized residuals are
not normally distributed.

Parameter Estimation of AR(1) — PARCH (1, 1)Model with t-Distribution
Parameter estimation was carried out using EViews. The parameter coefficients on the dependent variable of the log
(gold price) series were obtained and the results are tabulated in Table 6.

Table 6: Parameter Estimation of AR(1) — PARCH (1,1) Model with t-Distribution.
Dependent Variable: LOG_PRICE
Method: ML - ARCH (Marquardt) - Student's t distribution
Date: 05/13/13 Time: 03:52
Sample (adjusted): 1979001 2010M12
Included observations: 384 after adjustments
Convergence not achieved after 500 iterations
Variance backcast: ON
@SART(GARCH) = Ci3) + Ci4)*(ABS(RESID(-1)) - C{5)"RESID{-1)) +
C(6)"@SQART(GARCH(-1))

Coefficient  Std. Error  z-Statistic Prob.

C 5769571 0.220361  26.18234  0.0000
AR1) 1.01101%  0.006260 161.4965  0.0000

Variance Equation

C(3) 0.001184  0.000626 1.890836  0.0586
C4) 0.073426  0.030083 2440780  0.0147
C(5) 0404172 0.286676  -1.409856  0.1586
C(6) 0.917048  0.031129 2946007  0.0000

T-DIST. DOF 6.790580  2.381940  2.850861 0.0044

R-squared 0.978588 Mean dependent var 6.035884
Adjusted R-squared 0.978247 S.D. dependent var 0.367274
S.E. of regression 0.054163  Akaike info criterion -3.286513

Sum squared resid 1.106219  Schwarz criterion -3.214497
Log likelihood 638.0106  F-statistic 2871.631
Durbin-Watson stat 2.030452  Prob(F-statistic) 0.000000
Inverted AR Roots 1.01

Estimated AR process is nonstationary

From Table 6, for the conditional mean equation, the coefficient for the constant parameter was found as u = 5.76957 (p
= 0.000) and the coefficient for the AR (1) parameter was ¢; = 1.0110 (p = 0.000) while for the conditional variance
equation, the coefficients for the parameters were oy = 0.00118, a; = 0.073426, y; =-0.404172 and B; =0.917048. A
high value of B, means that volatility is persistent and it takes a long time to change. A high value of o; means that
volatility is spiky and quick to react to the market movements (Dowd, 2002). The sum of ARCH coefficients of the
identified model is close to one (0.001184 + 0.073426 - 0.404172 + 0.917048) indicating that volatility shocks are quite
persistent. This further implies that shocks to the conditional variance will be highly persistent indicating that large
changes in price tend to be followed by large changes and small changes tend to be followed by small changes.

These results are often observed in high frequency financial data. It can also be seen that both R? and adjusted R? values
are almost equal. The model is able to explain nearly 97% of the observed variability. The AR(1) — PARCH (1,1) model
can be written into conditional mean and conditional variance equations as;

log y, =5.7695 —1.011 log y, 1+ u;

0, = 0.00118 + 0.07342|u,_, | + 0.40417u,_, + 0.91705,_,
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Validation of the Fitted Model for an Independent Data Set (Out of Sample) Forecast

The out of sample forecast was also carried out using EViews for the AR(1) — PARCH(1,1) model. The comparison of
forecast values and observed values for the period from January 2011 to December 2012 (out of sample) is shown in
Figure 6.

Figure 6: The Plot of Actual Log Gold Price against the Forecasted Log Gold Price using AR(1) — PARCH(1,1) Model
(For the “Validation data set”).
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From the Figure 6, it can be concluded that the trend of forecast prices follows the actual log (gold price) closely. The
correlation value between the actual and the forecasted log gold price (r = 0.9893, p = 0.000) implies the strong positive
significant relationship between the observed data and forecasted values.

4. CONCLUSIONS

This study was undertaken to develop a GARCH model for the monthly gold price series from December 1978 to
December 2010. Different types of GARCH models for both symmetric and asymmetric types were considered under
normality and non normality ( Student-t and Generalized Error) GARCH distributions. Due to high volatility and in
particularly when fat-tailed asymmetric densities are taken into account, the performance of asymmetric GARCH was
found to be better than symmetric GARCH. Of such GARCH families AR(1) — PARCH(1,1) with t- distribution was
identified as the ‘best fitted” GARCH model.

The estimated parameters of the PARCH (1,1) model, the coefficients of ARCH (a;) and GARCH (f;) in the
conditional variance equation are statistically significant. Also, as is typical of GARCH model estimates for financial
time series data, the sum of the coefficients on the lagged squared error and lagged conditional variance is close to unity.
This implies that shocks to the conditional variance will be highly persistent indicating that large changes in price tend to
be followed by large changes and small changes tend to be followed by small changes, which means that volatility
clustering is observed in the gold price series. The developed GARCH model could help speculators to devise trading
strategies which could enable to various stake holders to enjoy better profits.
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In this study, only the gold price series was used and no exogenous variables which affect the price of gold were
included. However in reality, this is a very important consideration as factors such as global economic growth, inflation,
etc affect gold prices. Thus it is suggested to consider the external variables to improve the model.
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