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_________________________________________________________________________________ 

ABSTRACT— A back propagation neural network (BPNN) is applied to determine the deposition rate of a roll-to-

roll magnetron sputtering system in real time. Because the transmittance spectra of thin films are highly related to 

their thicknesses, the spectrum is a function of the thickness. Thus, determining deposited thickness through the 

functions is possible. However, these functions are not simple one-to-one functions; solving the inverse function to 

find thicknesses from spectra is difficult. Therefore, BPNNs are introduced to build approximate functions of spectra 

and output thicknesses. They are trained with various spectra which correspond to different film thicknesses, and will 

have abilities to estimate thicknesses of thin films. In this study, the estimation error of BPNNs was less than 0.6%. 

The results of low error and real-time response make BPNNs a promising method for monitoring a deposition 

process. 
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1. INTRODUCTION 

For manufacturing optical thin films, the control of film thickness is essential because their optical properties highly 

depend on the thicknesses. Thus, monitoring and stabilizing the manufacturing process are the key points of producing 

high quality thin films. In this study, back propagation neural networks (BPNNs) are introduced to monitor the 

deposition rate of a roll-to-roll sputtering system which was designed for producing optical thin films. 

In order to maintain the deposition rate of sputtering, frequent measuring is necessary. Traditionally, measuring the 

deposition rate of a roll-to-roll sputtering system is to attach a piece of silicon wafer or other substrates in the chamber 

and then measure the thickness of the deposited film after sputtering. Some advent methods are applied for determining 

thicknesses such as using Alpha-Step by mechanical approach directly or fitting the optical properties by software like 

FilmTek and Essential Macleod to estimate the thicknesses indirectly. However, all the methods above require breaking 

the manufacturing process to take out the deposited substrates. They are not only time-consuming but also change the 

conditions of manufacturing. 

Optical emission spectroscopy (OES) provides another method to monitor the stability of deposition. Unlike the 

methods mentioned above, it monitors the intensity of some particular plasma species in real time [1,2]. In other words, it 

monitors the density of a particular ion to identify the stability of deposition rate immediately by assuming that they are 

related to each other. Deposition rate, however, depends not only on ion densities but also various sputtering conditions 

such as vacuum pressure, temperature and energy of charged particles [3-5]. Monitoring the stability of deposition solely 

by OES is limited. 

As the optical properties are highly dependent on the thickness of thin films, transmittance spectra imply the 

information of thicknesses. Nevertheless, the transmittance spectra of thin films are complex. Only considering the light 

absorptions of the materials is not sufficient. Interferences of films are also need to be considered. In other words, the 

transmittance of thin films depends on their optical constants, i.e. the refraction index and the extinction coefficient [6]. 

Fitting thicknesses from the transmittance spectra via using optical equations is a new option, Lee et al. have used 

admittance diagram to find thickness excellently [7,8]. However, artificial neural networks (ANNs) provide another 

choice to estimate thicknesses without applying optical equations, such as making predictions based on coating 
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parameters [9] or reflectance data [10]. In this study, BPNNs which are one kind of ANN were used to determine the 

thickness by learning the relationship between transmittance spectra and film thicknesses. Shown in Figure 1 is a typical 

feedforward neural network with two hidden layers, and the corresponding function is described as 
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Where x and y are the values of input and output respectively, β is bias value of hidden neurons, w, v are weights for 

output and hidden layers respectively, and σ is the activation function of neurons in hidden layers [11]. In this study, the 

activation function of hidden neurons is a sigmoid function as follows: 
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Figure 1: A Typical Feedforward Neural Network with Two Hidden Layers. 

By adjusting w, v and β, the neural network has the potential to simulate any continuous function, and the back 

propagation method can be used for finding these parameters. Thus, BPNNs were introduced to build an approximate 

function of spectrum because that thickness has some kind of relation with transmittance. In this study, various 

transmittance spectra of different thicknesses were used to train BPNNs, and then BPNNs can have the ability to estimate 

thicknesses from transmittance spectra. These BPNNs were also applied to measuring the sputtering deposition rate at 

different plasma power and gas flows. 

2. METHODS 

The experimental system is a roll-to-roll magnetron sputtering system equipped with a balanced deuterium halogen 

source (DH-2000-BAL), a spectra monitor and process control system (EMICON MC) which detection range is 200 - 

1100 nm with 1.4 nm resolution, and a computer that analyzed the transmittance spectra to estimate the deposited 

thicknesses in real time by running BPNNs. Figure 2 shows the layout of the system. 
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Figure 2: The Roll-to-roll Magnetron Sputtering and Monitoring System. 

The target and substrate used here were silver (Ag) and polyethylene terephthalate (PET). EMICON MC is set to take 

transmittance spectra and send to the computer every 100 ms. The pulsed DC power of 350 kHz was applied to the 

magnetron cathode at power from 734 to 1227 W, and the mass flow controller (MFC) for the system controlled the flow 

rate of argon (Ar) from 100 to 500 sccm and hydrogen (H2) at 12 sccm. The background pressure of the chamber was 

5.5×10
-6

 torr, and the process pressure was around 3×10
-3

 torr. 

The Artificial Neural Network (ANN) used in this experiment was a BPNN, one kind of supervised neural network, 

and Levenberg—Marquardt (LM) algorithm was applied for the training process. Figure 3 illustrates the architecture of 

the BPNN which were one input layer, one or two hidden layers, and one output layer. The input layer accepted a 

transmittance spectrum whose wavelength range was from 320 nm to 1000 nm, and the output layer gave us the 

estimated thickness of the Ag thin film. The activation function of neurons placed in hidden layers was sigmoid and in 

output layer was linear. 

 

Figure 3: Architecture of the ANN. The input set {xi} and the output d represent the transmittance spectrum and film 

thickness respectively. 

The BPNN played as a function of a spectrum, and thickness d could be found through this function. 

          (3) 

Where the set {xi} means a transmittance spectrum and the element xi represents a transmittance at specified 

wavelength. 

3. RESULTS 

To train the BPNNs, various transmittance spectra corresponding to different thicknesses of Ag films are required. 

The spectra and thicknesses are the input and learning target for the BPNNs respectively. The training spectra were 

prepared from transmittance spectra of thin films that were deposited on PET at different substrate speed with constant 

deposition rate. In a roll-to-roll system, the deposition rate is defined as deposited thickness at unit substrate speed, so the 

thicknesses can be described as the following equation. 
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                                          (4) 

In this study, 21 groups of spectra were taken, in which 16 groups were used for training and five groups for verifying. 

Each group is presented by one thickness and contained 15 transmittance spectra that would be averaged as input data (as 

{xi} in Eq. 3) for the BPNNs. 

In order to find out a suitable architecture of the BPNN, six different architectures were tested. They were one hidden 

layer or two hidden layers, and each hidden layer contained 5, 10, or 20 neurons. These BPNNs were trained via training 

data at first, and then verified against verifying data. The results are shown in Table 1 and Table 2. 

Table 1: The training and verifying results of single hidden layer architectures. 

Wavelength Range 

[nm] 

Interval 

[nm] 

Number of Input 

Neurons 

Number of Hidden 

Neurons 

Training 

Erroravg 

Verifying 

Erroravg 

320 - 1000 5 137 

5 0.19% 0.68% 

10 0.18% 0.53% 

20 0.14% 0.52% 

Table 2: The training and verifying results of two hidden layers architectures. 

Wavelength Range 

[nm] 

Interval 

[nm] 

Number of Input 

Neurons 

Number of Hidden 

Neurons Training 

Erroravg 

Verifying 

Erroravg 
1

st
 Layer 2

nd
 Layer 

320 - 1000 5 137 

5 5 0.22% 0.99% 

10 10 0.12% 0.81% 

20 20 0.14% 0.67% 

 

The average error is defined as 

         
 

 
  

     
  

 

 

   

      (5) 

Where Ti and Oi represent the thickness which is the target for learning and the output of the i-th group respectively. 

According to the result, the average errors of these architectures were all less than 1%, thus the performances of them 

were remarkable. The best architecture among them was the one which had one hidden layer with 20 neutrons, and was 

chosen for the following experiments. Table 3 and Table 4 show the training and verifying details of this architecture 

respectively. 

Table 3: The training details of the architecture which had one hidden layer with 20 neurons. 

Substrate Speed [m/min] Thickness [nm] 
ANN Output Thickness 

[nm] 
Error 

1.0 22.39 22.38425117 0.026% 

1.2 18.65833 18.658831 0.003% 

1.4 15.99286 15.9947084 0.012% 

1.6 13.99375 13.9931316 0.004% 

1.8 12.43889 12.43678051 0.017% 

2.0 11.195 11.1896432 0.048% 

2.2 10.17727 10.18035404 0.030% 
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2.4 9.329167 9.326688334 0.027% 

2.6 8.611538 8.607285 0.049% 

2.8 7.996429 7.99294972 0.044% 

3.0 7.463333 7.4620964 0.017% 

3.2 6.996875 6.989238 0.109% 

3.4 6.585294 6.577810449 0.114% 

3.6 6.219444 6.213149926 0.101% 

3.8 5.892105 5.895309 0.054% 

4.0 5.5975 5.602231584 0.085% 

Table 4: The verifying details of the architecture which had one hidden layer with 20 neurons. 

Substrate Speed [m/min] Thickness [nm] 
ANN Output Thickness 

[nm] 
Error 

1.1 20.3545 20.35804 0.015% 

1.3 17.2231 17.19445 0.166% 

1.5 14.9267 14.98108 0.362% 

1.7 13.1706 13.21534 0.337% 

1.9 11.7842 11.8494322 0.555% 

The error in Table 3 and Table 4 is defined as 

       
   

 
       (6) 

T and O represent values of the thickness and the BPNN output respectively. 

When a BPNN was fully trained, it was applied to estimate the thicknesses of films in the sputtering system, and the 

deposition rate could be also monitored in real time since the substrate speed was controlled. 

In the following experiment, an application of the BPNN was demonstrated by monitoring the deposition rate while 

changing the sputtering conditions. The deposition rate of a sputtering system is influenced by sputtering conditions such 

as intensity of plasma and pressure of a chamber. If we could determine the dependence of deposition rate on sputtering 

conditions, we could stabilize the film growth by adjusting sputtering conditions. However, the dependence is not 

identical in various sputtering systems; it is related to the design of the system. Rapid determination of the relationship 

will be valuable for deposition process. Hence, we applied a previously trained BPNN to monitor the deposition rate 

while changing the power input and the argon (Ar) flow. Both of them are important sputtering parameters, and they 

influence the deposition rate. Table 5 reveals the result. Figure 4 shows the deposition rate as a linear function of power 

input, from 734 to 1227 W, and also illustrates that the deposition rate is proportional to Ar flow in the limited flow range, 

from 150 to 400 sccm. The 3D plot in Figure 5 shows an overall view of the relationship between the deposition rate, the 

input power and the Ar flow. This information is valuable for film growth processing. By tuning these processing 

parameters, the thicknesses of thin films can be controlled 

It is significant to note that the table 5 contains 99 data of measuring thicknesses of thin films. By using a BPNN, all 

of them were measured continuously without breaking the vacuum to take the samples out from the chamber. Each 

datum only consumed few milliseconds for determination. 
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Table 5: The deposition rate of the roll-to-roll magnetron sputter at various power input and Ar flow. 

Deposition 

rate 

[nm·m/min] 

Ar Flow [sccm] 

100 150 200 250 300 350 400 450 500 

Power 

[W] 

734 15.9871 15.9696 15.9945 15.9908 16.0136 15.8713 15.8733 15.3633 14.8184 

783 16.9935 17.2272 17.2332 17.3119 17.3431 17.2962 17.2902 16.8094 16.1926 

832 17.9789 18.3512 18.3697 18.4326 18.5270 18.5113 18.5313 18.1092 17.5236 

882 19.0224 19.4247 19.5192 19.5818 19.6949 19.6459 19.7247 19.3346 18.8261 

933 20.0906 20.5308 20.6174 20.6681 20.7695 20.8336 20.9064 20.5153 20.0965 

980 21.0839 21.5848 21.6314 21.7691 21.8735 21.9446 22.0039 21.7209 21.2826 

1028 22.0785 22.6387 22.7258 22.8535 22.9771 23.0057 23.0633 22.7719 22.4443 

1077 23.0880 23.7282 23.7946 23.9207 24.0693 24.1024 24.1078 23.7952 23.4812 

1126 24.0962 24.8505 24.8612 24.9783 25.1558 25.1847 25.1961 24.8941 24.6005 

1176 25.1654 25.7857 25.9077 26.0882 26.1854 26.2708 26.3328 25.9658 25.6447 

1227 26.2062 26.8797 27.0502 27.1182 27.2598 27.3347 27.3455 27.0702 26.7323 

 

(a) 

 

(b) 

 

Figure 4: (a) The deposition rate versus power input. (b) The deposition rate versus Ar flow. 

 

Figure 5: The deposition rate as a function of power input and Ar flow. These data were all measured in real time by 

the BPNN. 
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4. CONCLUSION 

In this study, a back propagation neural network (BPNN) is applied to determine the deposition rate of a roll-to-roll 

magnetron sputtering system in real time. The estimation error of BPNNs was less than 0.6%. The results of low error 

and real-time response make BPNNs be a potential promising method for monitoring a deposition process. There are 

several advantages to determine the deposition rate of a roll-to-roll sputtering system by using BPNN. BPNN is a quick 

and real-time approach, and avoids intervening in the deposition processes. These features are of great importance for 

monitoring sputtering systems to stabilize manufacturing processes when connecting to feed-back controllers. It is 

especially suitable for monitoring optical thin film growth as optical properties are measured directly. 
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