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_________________________________________________________________________________ 

ABSTRACT—Inthis paper, a method is proposed to solve the Multi- objective linear programming problem 

(MOLPP);the method uses the idea of an order relation to rank the interval numbers.It checks the dominance of the 

optimal objective values,which are assumed to be an interval numbers by comparing order relations based on their 

mid-points and radius.Moreover, we demonstrate some numerical examples which show that,the proposed method 

could be a worthy alternative. 
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1. INTRODUCTION 

When more than one concern exists, or several numbers of objectives are to be optimised, the idea of multi-objective 

optimization is needed. Multi-objective optimization also known as multi-criteria optimization or pareto-optimization is 

an area of multiple criteria decision-making, which involves with mathematical optimization problems concerning more 

than one objective function to be optimisedsimultaneously [6]. However, it has been applied in many fields of sciences, 

engineering, business, economics and logistics [4-5].Many researchers have studied the pareto-optimal solution of 

MOLPP,the idea of weighted sum method can be found in Zadeh [11]. Koski [8] applied the weighted sum method to 

structural optimization, Marglin [9] developed the -constraints method, the adaptive weighted sum (AWS) method was 

recently developed by [7] to addressed sum of the drawbacks of WSM. In 2009, Arsham et al. [1] proposed a solution 

algorithm to LP problems-improved algebraic method (IAM) - which reduces considerably the computational complexity 

because it works directly on the decision variables, in that no slack, surplus or artificial variables are introduced.  

In this paper, a simple methodology of the approximation of the pareto-optimal solution called order rank method 

(ORM) is presented, which does notrequire the introduction of additional inputs from the decision maker (DM). 

 

2. MULTI-OBJECTIVE LINEAR PROGRAMMING: EXISTING METHODS 

A MOLPP simultaneously optimisesan n-objective subject to the given constraints [4]. Normally, the problem has no 

optimal solution that could optimize all objectives simultaneously. The concept of optimal solution gives rise to the 

notion of non-dominated solutions, for which no improvement in any objective function is possible without sacrificing at 

least one of the objective functions [6]. The n-objectives LPP is formulated as follows: 

Problem: “Max” or “Min”                     
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Subject to:  .0,:  xbAxRxSx n

    (2)
 

where x an n-dimensional vector of the decision variables, nzzz ,...,, 21 are the n -distinct linear objective functions of 

thedecision vector, and nccc ,...,, 21 denote the n -dimensional cost vectors. A is an  constraints matrix, and  

represents m-dimensional constant vector.Furthermore, an optimal solution to this problem is called; pareto-optimal and 

is defined precisely as follows: 

Definition 2.1:A solution is called pareto-optimal (or alternatively; efficient, non-dominated or non-inferior), if there is 

noother feasible solution that is equal or better with respect toall objectives included in the model. 

In this study, to explain the multi-objective solutions, we utilizedwidely used in practice.  the two well-known  multi-

objectives methods .The traditional methods are; the weighted sum method (WSM) and -constraints method. 

2.1 Weighted Sum Method (WSM)  

Zadeh suggested the weighted sum approach in 1963[11]. The idea behind this method is to associate each objective 

function with a weighting coefficient and maximize or minimize the weighted sum of the objectives [11].That means the 

multiple objectives functions are transformed into a single objective function and solved as a single 

objectiveoptimization problem [4]. The modified problemcan be represented as 
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where )(xfi is the  objective function,   is the number of objectives,  and . The problem with 

thisapproach is that the solutions may vary significantly as the weighting coefficient change,and also the optimal 

solutiondistribution is not unique as stated in [4] and [7]. 

2.2 -Constraints Method 

Constraints method dates back to Marglin 1967[8]. In this method, one of the objective functions is selected to be 

optimized, and all other objective functions are transformed into constrained by setting an upper bound to each of them 

[8].For any given of set of right-hand side (RHS) values, the problem is but standard LPP. After the problem is solved for 

one set of achievement level,their values are modified by the decision maker and the problem is solved again with a 

different set of (RHS) values [4].This process is repeated until a solution is found that is acceptable to the decision 

maker. 

The problem to be solve is now of the form 

Problem: “Max” or “Min”: )(xf l  

Subject to: 
jj xf )( Sx where  .,...,2,1 ll     (4) 

 

 

3. INTERVAL ARITHMETIC 

In this section, some basic and important definitions in the study of interval numbers are reviewed.These definitions 

will help in presenting our algorithms. 

Definition 3.1: A real interval vector )( nRIU  is a set of the form  nnUU  )( ,where  and 

)(],[ nR

i

L

ii RIuuU  . 

Definition 4.2: A real interval matrix ) is a set of theform  where and 

. 

Let ],[ RL aaA  and ],[ RL bbB  , then 

1. ],[ RRLL babaBA  (Addition) 
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2. ],[ RRLL babaBA   (Subtraction) 

3.    ],,,max,,,,[min RRLRRLLLRRLRRLLL babababababababaBA    (Multiplication) 

4. ]
1

,
1

][,[
RL

RL

bb
aa

B

A
 for b0  (Division) 

 

4. AN ORDER RANK METHOD (ORM) 

For a given multi-objective linear programming problem, the IAM used to find the coordinates of the corner points of 

the feasible region [1].Parametric representation )(),...,(),( 21 inii fff  of the feasible region is then developed 

using parameters 0,,...,, '

21  sin  such that 



n

i

i

1

1 , where  denotes the number of vertices.   

Proposition 4.1 
The Maximum or (Minimum) points of a (MOLPP) with a bounded feasible region correspond to the Maximization  

or (Minimization) of the parametric objective function )(),...,(),( 21 inii fff  for  

Proof: 

Following [1], let the terms with the largest (smallest) coefficients in )(),...,(),( 21 inii fff  with their corresponding 

parameters ,,...,, 21 LnLL  and ,,...,, 21 SnSS  be denoted by Lh  and Sh respectively.Since, each )( iif   such that 

 are (linear) convex combination of the coefficient,the optimal solution of )( iif  are obtained by setting 

 both Lh   or Sh   equal to 1and all other  and   to zero,where  and the proof is completed.  

Suppose that the second parametric representation of the optimal solution is of the form: 

nnnnnin

nni

nni

g

g

g





















211

2221212

1121111

)(

)(

)(

 

We reduce the system into an augmented matrix 























ng

g

g


2

1





















nnn

n

n















1

212

11211





















n






2

1

     (5) 

Setting ]0,...,0,0,1[],...,,[ 21 n  in (5), we have 
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Setting ]0,...,0,1,0[],...,,[ 21 n  in (5), we have 
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Setting ]1,...,0,0,0[],...,,[ 21 n  in (5), we have 























nn

n

n

nA









2

1

        (8) 

 

Let us consider
T

njjiijiA ],...,,[ 1    as an optimal objective values for  and . Without loss of 

generality, we can define an interval number    ]max,[min iii AAA    or
TR

ij

L

ijiA ],[  , where superscript L and  

R denote the lower and upper bounds of the interval number respectively. 

The mid-point and radius of the interval numbers are defined as follows 
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If the feasible regions of MOLPP are available, it is simple to get thepareto-optimal solution if thefollowing steps are  

considered. 

 

Algorithm 4.1 

Step 1: Form a parametric representation of the feasible regions to obtain the optimal solution. 

Step 2: Form a second parametric representation of the optimal solutions. 

Step 3: Form an augmented matrix of the second parametric representation and apply the setting as the basis of the 

 parameters as shown in equation (6), (7) and so on. 

Step 4: Check the Dominance: Given nAAAA ,...,,, 321  as a sets of optimal objective values, 

- Dominance for Maximization problem  

1A  Dominates nAAAA ,...,,, 432 , 

 If        nAmAmAmAm ,...,, 321  and        nAwAwAwAw ,...,, 321  . . 

 

- Dominance for Minimization problem 

1A  Dominates nAAAA ,...,,, 432 , 

If        nAmAmAmAm ,...,, 321  and        nAwAwAwAw ,...,, 321  . 

Step 5: Conclude that
*x  with its corresponding objective value 1A  is the pareto-optimal solution. 

 

5. NUMERICAL EXAMPLE 

Consider the MOLPP below: 
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Subject to:                           
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The table below shows the solutions of this problem solved by IAM, where under feasibility test 1 and 0 represent “Yes” 

and “No” respectively. 

 

          
Table 1:Solution  

No. 
1x  2x  Feasible? Equation 

1. 2/3 8/3 1 (i) and (ii) 

2. 4 6 0 (i) and (iii) 

3. -1/2 3/2 0 (i) and (iv) 

4. 0 2 1 (i) and (v) 

5. -2 0 0 (i) and (vi) 

6. 4 1 1 (ii) and (iii) 

7. -4 5 0 (ii) and (iv) 

8. 0 3 0 (ii) and (v) 

9. 6 0 0 (ii) and (vi) 

10. 4 -3 0 (iii) and (iv) 

11. [0,4] - 0 (iii) and (v) 

12. 4 0 1 (iii) and (vi) 

13. 0 1 1 (iv) and (v) 

14. 1 0 1 (iv) and (vi) 

15. 0 0 0 (v) and (vi) 

 

 
Table 2: Feasible Solutions 

 
 

0 4 4 0 1 

 
 

2 1 0 1 0 

 

Parametric representation of the feasible region is then developed using 0,,...,, '

621  si such that
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(13) 

        

 
 

53212 2
3

8
 x (14)  

Substituting (13) and (14) into the objective function 1z , we have  

6543211 23856
3

20
 z  

Setting  and all other  to zero, the maximum value found to be . 

Substituting (13) and (14) into the objective function 2z , we have  

6543212 312112
3

2
 z  

Setting  and all other  to zero, the maximum value found to be12. 
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Substituting (13) and (14) into the objective function 3z , we have  

6543213 24646  z  

Setting  and all other  to zero, the maximum value found to be 6. 

Now the optimal solutions are  

Table 3: Optimal solutions 

 
  

 
  

 

We form the second parametric representation of the optimal solution, for 0,,..., '

31  si  such that
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Substituting (15) and (16) into the objective functions (11), we have 
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An augmented matrix of the above system is now form 


















3

2

1

z

z

z















 



466

1211

85

3
2

3
20

















3

2

1







 

(17)  

Setting ]0,0,1[],,[ 321   in (17), we have
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Setting ]0,1,0[],,[ 321   in (17), we have
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Setting ]1,0,0[],,[ 321   in (17), we have
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Now, ],[
3
20

3
2

1 A  , ]11,5[2 A ]12,8[3 A
 We compute the mid-point and radius as follows: 

 

; ; . 

; ; . 

 

It is clear from the above that,    and also  
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Therefore,  dominates both  and  . 

Hence, we conclude that  with optimal objective value  is the pareto-optimal solution. 
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